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Abstract

We present an easily calibrated spatial modeling framework for estimating location-specific

fertilizer responses, using smallholder maize farming in Tanzania as a case study. By incor-

porating spatially varying input and output prices, we predict the expected profitability for a

location-specific smallholder farmer. A stochastic rainfall component of the model allows us

to quantify the uncertainty around expected economic returns. The resulting mapped esti-

mates of expected profitability and uncertainty are good predictors of actual smallholder

fertilizer usage in nationally representative household survey data. The integration of agro-

nomic and economic information in our framework makes it a powerful tool for spatially

explicit targeting of agricultural technologies and complementary investments, as well as

estimating returns to investments at multiple scales.

Introduction

Smallholder farming systems of sub-Saharan Africa are characterized by persistently low pro-

ductivity levels. While there has been some growth in recent years, most of this has come from

area expansion rather than yield gains, and average yield gaps remain about 80% [1]. Increas-

ing mineral fertilizer application is generally accepted as a fundamental component of strate-

gies to address this productivity gap [2]. But levels of fertilizer usage, and application levels by

those who do use fertilizer, generally remain low across the region [3].

Why are fertilizer usage levels so low? A rich empirical literature has developed in recent

years, which emphasizes three key constraints:—agronomic responses to fertilizer are often

much lower in farmers’ fields than on researcher-managed trials, and such responses are sub-

stantially variable over geographic space [4–8]. Low and variable agronomic returns translate

into low and variable economic returns once considering the local farm-gate crop and fertilizer

prices. A number of empirical studies document such fertilizer profitability patterns for maize

farmers in SSA [9–15]. (See [16] for a recent review of over 20 studies estimating the profitabil-

ity of applying inorganic fertilizer on maize in various African locations.) Fourth, the stochas-

tic nature of agricultural production in the absence of insurance markets means that small

farmers face high variability of expected returns [17]. Given risk averseness, such uncertain
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returns may represent powerful disincentives to invest even where the expected returns are rel-

atively high [17–19].

But while profitability and risk are longstanding components of agricultural economists’

evaluations of this question, there has been a dearth of planning and targeting frameworks for

fertilizer that integrate biophysical responses with information about profitability, crop man-

agement and riskiness of returns(although there have been a number of very important invest-

ments in spatially explicit soils information—e.g. the Tanzanian Soil Information System

TanSIS—which could inform such integrative frameworks). This is problematic because with-

out such frameworks governments and private sector actors may struggle to identify optimal

areas to focus market development activities—i.e., areas where farmers will likely face the most

substantial gains to fertilizer investments—or to coordinate complementary investments—e.g.,

promoting fertilizer alongside crop insurance or other risk-reducing financial instruments.

Furthermore, the fact that locally optimal fertilizer recommendations for any particular crop

may vary considerably across locations argues for planning frameworks that allow for spatial

variation in agronomic responses [20].

The goal of this paper is to present a spatially explicit framework for evaluating the likely

economic and agronomic returns to fertilizer investments by smallholder farmers (and the

uncertainty around those returns). We use data from smallholder maize farmers in Tanzania

to parameterize an empirical model, and then implement that model within a spatially

explicit environment that takes account of the spatial distributions of soil and rainfall charac-

teristics, farmers and farmland, and input and output prices. Tanzania is a useful case study

because it is emblematic in many ways of the broader adoption issues in the region. Recent

nationally representative data indicate that only 15% of smallholder farmers use fertilizer, at

an average rate of <70 kg/ha (authors’ calculations from the 2008/09, 2010/11 and 2012/13

waves of the Tanzanian LSMS-ISA surveys). Considerable efforts have been made by the Tan-

zanian government to stimulate demand and facilitate access to fertilizers, including the

National Agricultural Input Voucher Scheme (NAIVS), which provided fertilizer at subsi-

dized rates between 2008/9 and 2013/14. One of the goals of NAIVS was to facilitate a rela-

tively low-risk learning opportunity around fertilizer for farmers, which was expected to

translate to eventual increases in market demand [21]. Understanding and planning for such

demand will depend in part on better tools for estimating the economic returns to fertilizer

at market prices.

We show that there is substantial variation in local yield responses and that after incorpo-

rating local price ratios for maize and nitrogen fertilizer, even larger variability in economic

returns over space. We show that such spatial variability in returns is a useful predictor of

actual farmer fertilizer usage. Furthermore, the role of stochastic rainfall is similarly highly var-

iable across the country, varying in ways that differ from the distribution of expected profit-

ability. Furthermore, we show that the returns to locally-optimized fertilizer recommendations

(as opposed to national-level blanket recommendations) appear to be substantial and may rep-

resent important ways of raising aggregate economic returns to fertilizer investments at the

farming system level.

We provide the data and code necessary to replicate our results and to implement similar

frameworks in other settings (i.e., other countries, crops or inputs). We argue that greater

usage of such approaches to evaluating the potential economic returns to fertilizer—as well as

other production technologies promoted by international R&D institutions—will help to

address the disconnect between agricultural technology R4D and farmer decision-making on

the ground.
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Spatial ex ante analysis framework

Overview

This section outlines a spatial framework that integrates biophysical and socio-economic vari-

ables measured over broad spatial scales (Fig 1). A key idea is that if we are able to reasonably

predict yield responses to fertilizer as a function of spatially varying predictors, then we have a

basis for building a spatially explicit evaluation framework. In principle, such a response func-

tion could be based on a structural model, such as QUEFTS [22] or could take various

parametric or non-parametric approaches to empirical prediction. The only requirements are

that (a) the agronomic response predictions are reasonably good, and (b) we have a sufficient

set of geospatial model covariates to serve as out of sample predictors within similar

geographies.

In the current era, we have increasing amounts of georeferenced agronomic response data

to work with, even in traditionally data-sparse environments and a similarly broad set of

modeling approaches. In this analysis, we take an empirical approach, defining a Random

Forest model on a georeferenced dataset of small farmer maize yields and associated agro-

nomic management data, as well as soils, terrain, rainfall and other biophysical parameters

taken from geospatial datasets in the public domain. We describe these in more detail in the

next section. While our modeling focus is on yield responses to nitrogen, in principle, any

other agronomic response that has a coherent spatial expression could be modeled in this

way, including any agronomic responses conditioned by soils, terrain, rainfall, temperature,

etc.

A second key idea is the incorporation of spatially varying input and output prices. Small-

holder farmers in SSA operate within large and heterogeneous market access contexts, with

farm-gate prices varying considerably from location to location (e.g., [23–25]). Recognition of

this is important to any efforts to meaningfully evaluate technology attractiveness from the

farmer’s perspective. Despite the absence of local market price data, we show that modeling

approaches for predicting local prices in spatially coherent ways are feasible.

Fig 1. Framework overview.

https://doi.org/10.1371/journal.pone.0239149.g001
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A third key conceptual feature of our approach is based on accounting for the stochasticity

of responses. Smallholder farmers are famously risk-averse, and abundant empirical evidence

suggests that risk is an important element of smallholder decision making [26–28]. In our

implementation, we achieve this through the inclusion of seasonal rainfall parameters. How-

ever, other sources of spatially varying uncertainty could also be incorporated, such as price

volatility, which is known to vary with remoteness [29]. Model output can then be defined as a

function of the stochastic parameters.

Linking all these elements, we have a framework for evaluating (a) an expected site-specific

agronomic response—in this case: maize yield responses to nitrogen fertilizer, (b) the expected

profitability of such input use, under local input and output prices and other assumptions, and

(c) the uncertainty around these expected returns at any given location. Given the availability

of databases on the distribution of rural populations, cropland and production, we can aggre-

gate up model output to evaluate the likely aggregate benefits. Such guidance is critical for pol-

icymakers and development partners who must allocate scarce resources to meeting strategic

rural development goals.

To carry out the analysis in this paper, we used R 4.0.2 [30]. Random forest models were

constructed using the "randomForest" R package. Least-cost distances to estimate market

access were calculated using the "gdistance" package.

Modeling yield response to fertilizer

To model maize yield responses to nitrogen, we used the Tanzania Agronomy Panel Survey

(APS) on 553 households in 25 districts of Tanzania collected during the main maize harvest

periods of 2016 and 2017 [31]. Because of lack of measurements in the field, only 601 yield esti-

mates from 455 households were available for modeling. The districts in our study were

selected based on representativeness of favorable maize production defined as (1) areas with

suitable research and extension partners that would allow the scaling of fertilizer decision sup-

port tools, (2) areas with extensive coverage of maize producing areas as classified by the Africa

Soil Information Service—AfSIS, and (3) areas with relatively high human population densities

(i.e., >25/km2) with good access to urban markets (within 4 hrs of travel time). Georeferenced

maize yields were measured using crop cuts (see [32]), and are accompanied by detailed data

on plot characteristics, agronomic management (including fertilizer applications), and other

household, farm and farm manager characteristics. The crop cut protocol involved collecting a

grain sample, which was dried to 15% moisture before weighing. An aggregate N application

rate for the plot was calculated on the basis of all the fertilizer applications reported by the

farmer for that field—i.e., recorded across multiple fertilizer types and application rates, and

normalized by the size of the field.

To estimate maize yield responses to nitrogen fertilizer, we employed a Random Forest

model, a machine learning approach for diagnostics and prediction [33, 34]. In addition to

nitrogen and crop management household variables from the survey data, spatial estimates of

elevation, slope, soil organic carbon and pH, and total seasonal rainfall were included as pre-

dictors. Altitude and slope were obtained from the CGIAR-SRTM 90m digital elevation model

Version 4.1 [35]. Soil property maps for organic carbon and pH at a 250m resolution soil came

from the soil prediction surfaces from the AfSIS project [36]. We calculated seasonal (Decem-

ber to May) rainfall for each household from monthly predictions at 4 km2 resolution from the

TAMSAT v3.0 database [37].

The averages of the household variables found in the survey data were used to simulate the

yields countrywide (Table 1). The model was validated using bootstrap sampling and partial

dependency plots were reviewed for theoretical coherence.
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Spatial prices estimation

Local farm-gate prices for maize in unsampled locations were estimated with a model that cap-

tures information on geographic location, as well as pixel-level meteorological and other envi-

ronmental conditions, and market access characteristics, an approach similar to that described

by [38]. Wholesale market prices for maize were obtained from the 4th wave of the Tanzania

LSMS National Panel Survey 2014–2015 [39]. Original prices in TZS/kg were transformed to

USD/kg using an exchange rate TZS 1598 to the US Dollar. We used this exchange rate

throughout the analysis. The 601 spatially located observed prices were used to fit a random

forest model using predictor variables capturing aspects of market access (travel time to mar-

ket and distance to port), potential demand (population density and cropland) and precipita-

tion averages, as well as longitude and latitude. Table A in S1 Text describes the complete list

of variables used in the maize market price model.

From the estimated local market prices, we predict farm-gate maize prices by assuming a

"last mile" transport cost rate of 0.01 USD/kg/hr. Specifically, a farm-gate price is estimated for

every grid location as the highest of all possible farm-gate prices obtainable from different mar-

ket locations, after accounting for the market-specific transportation costs between the market

and the farm location (i.e., the embedded assumption is that a farmer will sell her production

to the market which gives the highest price, after accounting for the costs required to transport

output to that market).

For nitrogen application, we start with a representative market price of 0.95 USD per kg of

Ng, which we derive from the average price of urea (generally the cheapest source of N)

reported from AfricaFertilizer.org for Tanzania over the last five years. The price for nitrogen

was inferred from the urea price, on the basis of the 46% N content of urea. We estimated

Table 1. Mean and standard deviation (SD) of the Tanzania Agronomy Panel Survey (APS) data.

Variable Mean Standard Deviation

Maize yield (kg/ha) 2604.0 1832.8

Fertilizer use (yes = 1) 0.357 0.479

N application rate among fertilizer users (kg/ha) 35.2 98.0

P application rate among fertilizer users (kg/ha) 11.5 45.4

Intercrop (yes = 1) 0.573 0.4950

Crop rotation (yes = 1) 0.062 0.2407

Use of manure (yes = 1) 0.203 0.4028

Use of crop residue (yes = 1) 0.090 0.2864

Number of weedings 1.827 0.5542

Use of improved seeds (yes = 1) 0.148 0.3557

Field in fallow in the last 3 years (yes = 1) 0.040 0.1961

Erosion control structure (yes = 1) 0.245 0.4304

Terraced field (yes = 1) 0.035 0.1839

Area in hectares of focal plot (log) -0.507 0.9556

Age of head of household 47.702 13.7150

Household size (Number of persons) 5.692 3.1144

Years of education of head of household 7.067 3.5461

Households 455

Observations 601

Values pooled across years. The table shows the average and standard deviation of values in the farm survey data,

which were used to estimate yield responses.

https://doi.org/10.1371/journal.pone.0239149.t001
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farm-gate nitrogen prices by fitting a logistic transportation cost model under which delivered

fertilizer prices treble at 5 hours of travel time from a local market (Fig A in S1 Text).

A key predictor of local input and output prices was the estimated travel time to large

towns. These estimates were produced by creating a conductance surface by assigning travel

speeds to each pixel based on the national road network and land cover and calculating the

quickest travel time to each market using least-cost-path algorithms. The road network in Tan-

zania was obtained from Open Street Maps and travel speeds were assigned depending on

their classification (primary, secondary or tertiary highways). We assigned travel speeds to the

pixels outside the road network by using the Globcover 2009 Version 2.3 Land Cover Classifi-

cation [40] and assuming different travel speeds in each land cover class. With the travel speed

covering Tanzania, market access was estimated by calculating the least accumulated time

from each pixel to a town with a population of more than 50,000 inhabitants. Market town

locations were taken from the GRUMP database [41].

Fertilizer scenarios

We evaluate fertilizer profitability over four different application rate scenarios: no nitrogen

usage (ZERO), a commonly recommended N application rate of 55 kg/ha (BK, [42]) and two

potential fertilizer recommendations optimized to obtain the highest maize yields (OPyield) or

the highest net revenue (OPnetrev) obtainable at any particular location. Optimization scenar-

ios use the average seasonal rainfall data over the 1980–2019 period as the basis for the

calculation.

Results

Market and farm-gate prices of maize and fertilizer

Maize market prices in the LSMS dataset had a mean of 0.37 USD/kg and ranged from 0.07 to

0.94 USD/kg. The random forest model performed well, explaining 92% of this variation of the

training data with an RMSE = 0.17. Predicted prices ranged from 0.14 USD/kg in the Southern

Highlands and areas near Shinyanga to a maximum of 2 USD/kg in some western regions (Fig

2A). After accounting for transport costs from local markets, 60% of the territory had pre-

dicted farm-gate between 0.2 and 0.4 USD/kg (Fig 2B). Prices reach to a maximum of 0.69

USD/kg in Zanzibar. Areas with large maize production, such as the Southern Highlands and

areas near Arusha, had predicted farm-gate prices near 0.3 USD/kg. 12% of Tanzania is pre-

dicted to have no positive farm-gate maize price.

Because of the sparse number of large market towns, our model predicts that approximately

77% of the territory has a nitrogen price of above 2.5 USD/kg and only 12% of the area with

prices lower than 1.5 USD/kg (Fig B in S1 Text). Only northern and eastern regions, with a

higher density of cities and roads, present large areas with lower fertilizer prices.

Yield response model

The yield response model fitted with the random forest model explained 24% of the variance

found in the yields reported in the APS household survey (Fig 3A). The applied nitrogen rate

was the variable with the highest importance followed by rainfall, altitude and soil organic car-

bon (Fig A in S1 Text). Crop management variables such as improved seed, manure use, inter-

cropping were useful predictors in the model.

Partial dependency plots for the random forest model showed a positive response of yield

to rainfall, nitrogen and soil organic carbon (Fig 3B–3D). Increasing seasonal rainfall between

the 500 mm and 1250 mm positively affects yields, as we would expect. (Negative effects of
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increasing precipitation were predicted between 0 mm to 500 mm, although very few sample

points fall in this rainfall range; these results may reflect unobserved irrigation practices.) Yield

increases rapidly when increasing the amount of nitrogen with diminishing returns after an

application of 300 kg/ha.

Simulation results

Given spatial price variability, higher yields are not necessarily associated with higher net reve-

nues (Fig C in S1 Text). In our scenarios, a blanket recommendation will result, on average,

27% more production and a -4% increase in returns compared to a baseline scenario across

the country. Optimizing fertilizer to maximize yields results in an increase of 57% of yields

and a 10% reduction in profitability. Optimizing for returns results in a significant increase in

yields, 47% more than without the use of nitrogen, but an average increase of 16% of returns

across the maize distribution.

However, these yield and profitability changes are highly dependent on the region of the

country. Yields changes vary with soil conditions, while profitability is more dependent on the

proximity to large market towns. According to our model, the maximum yields are obtained

with an application of 175 kg/ha of N for over 90% of the maize distribution and can increase

the production over 60% in areas such as the southern highlands and Dodoma and Singida,

but decrease the profitability because of the low farm-gate prices. Maximizing for yields is pre-

dicted to most profitable in areas such as Dar es Salaam, Musoma, Mwanza and Kigoma,

where the farm-gate maize price is high enough to allow higher investments in nitrogen.

Optimizing for higher yields by using the highest possible N dose can also result in prohibi-

tive costs of fertilizers that are not recovered with the sale of the higher production, resulting

in negative net revenues. Based on our fertilizer price model, areas such as Rungwa and the

Fig 2. Predicted maize prices in Tanzania. (A) Market prices. (B) Farm-gate prices.

https://doi.org/10.1371/journal.pone.0239149.g002
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inland regions of the southeast are predicted to perform better with no fertilizer. Only a sub-

stantial decrease in fertilizer prices, most likely as a result of higher accessibility, can improve

the profitability of nitrogen applications in these areas.

Maximum profitability is a result of only moderate increases in yields, especially in north-

western regions. High nitrogen rates that maximize net revenue are mostly correlated with

high accessibility areas (Fig 4). Only crop areas near cities have recommendations above 125

kg/ha and only 6% of the maize distribution may benefit from applications above 100 kg/ha.

Recommendations between 50 and 100 kg/ha are estimated to be appropriate for 75% of the

territory. In the simulation results, areas near large market towns were those which most

benefitted economically from the use of nitrogen (Table 2). Regions such as Dar es Salaam,

Kigoma and Mara, with Mwanza, Kagera and Kigoma, with large rural populations and high

Fig 3. Yield response random forest model selected results. (A) Observed vs predicted yield and fitness measures of the yield

model. Partial dependence plots of (B) seasonal rainfall, (C) nitrogen and (D) organic carbon from the yield random forest model.

https://doi.org/10.1371/journal.pone.0239149.g003
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maize farm-gate prices, are predicted to have the highest returns to nitrogen fertilizer

investments.

The distribution of the potential profitability distribution in each location was calculated

accounting for pixel level rainfall variability. Results are shown in Fig 5B (with rainfall variabil-

ity expressed as coefficient of variation in panel A for reference). Over 44% of the crop distri-

bution has a coefficient of variation higher than 5% when using an optimized nitrogen rate

and accounting for seasonal rainfall variability. The lower predicted production in the north-

ern and northeastern regions results in higher uncertainty in the distribution of returns. The

Southern Highlands has lower pixel rainfall variability and, combined with the higher yield

results, relatively high expected returns with low variability.

Validation

As a way of validating whether or not predicted profitability has any practical value, we used

the log of predicted net revenue from our baseline scenario, as well as the standard deviation

of net revenue as a measure of uncertainty, in a model of fertilizer usage by smallholder farm-

ers in Tanzania, using three panel waves of the Tanzania LSMS National Panel Survey (2008/9,

2010/11, and 2012/13). For ease of interpretation, we use a linear probability model. To

address time-invariant unobserved heterogeneity which might otherwise bias our results, we

modeled the unobserved time invariant heterogeneity as a function of the time-averages of

(time-varying) observed characteristics (i.e. the Mundlak-Chamberlain device [43, 44]). Thus,

time-averages are added to the model, but not interpreted. Results, shown in Table 3, indicate

that the log of expected profitability is a strong positive correlate of fertilizer usage, and the

standard deviation of expected profitability is a strongly negative correlate of fertilizer usage.

The latter result is consistent with stylized empirical finding African smallholders are less likely

to make fertilizer investments if the returns have higher levels of uncertainty. The fact that

these predicted profitability indicators are significant correlates even after controlling for

Fig 4. Optimized amounts of nitrogen fertilizer rate to maximize net revenue.

https://doi.org/10.1371/journal.pone.0239149.g004
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region and travel time from each household location to the nearest market town suggests that

there is information content in our model predictions beyond simply proxying for market

remoteness.

Robustness check

Our estimated agronomic use efficiencies (AE) are low compared with reported values from

researcher managed studies [32, 45]. We attribute this to the observational nature of our data:

as others have noted, calculated nitrogen use efficiencies for maize are much higher on

researcher-managed plots than on plots managed exclusively by smallholders [45–47]. Our

estimated use efficiencies (mean of 7.2 kg grain per additional kg of N) are comparable to

those found by [21] using LSMS-ISA data for Tanzania (7-8kg). Nonetheless, as a robustness

check, we re-estimate the predicted spatial distributions of fertilizer profitability under

assumptions of 125% and 150% increases in our predicted agronomic use efficiency (bringing

the mean value from 7.2 to 9.2 and 11 kg/kg, respectively. The resulting changes to the cumula-

tive distribution of profitability (Fig 6) are relatively modest: when moving from our estimated

agronomic efficiency distribution (mean = 7.2 kg/kg) to a distribution with a mean of 9.2 kg/

kg (i.e., 125% of the AE predicted by our model), we have an increase of 3% of pixels for which

fertilizer net revenue exceeds 100 USD/ha (i.e., from 90% to 93%). When we assume an agro-

nomic efficiency distribution with a mean of 11 kg/kg (i.e., 150% of our predicted AE), we

Table 2. Summary table of aggregate gains in net revenue.

Region Rural population (million) Maize area (km2) Average gains when changing nitrogen scenarios (USD/ha)

ZERO to OPnetrev BK to OPnetrev

Arusha 1.7 723.9 23.5 118.2

Dar es Salaam 0.3 13.1 463.9 297.9

Dodoma 2.6 933.8 68.6 106.2

Geita 1.8 1085 279.9 147.8

Iringa 1.1 1444.2 107.8 90.6

Kagera 3.3 702.3 225.1 99

Katavi 0.7 583.9 219.2 101.4

Kigoma 2.2 1296.8 369.8 158.5

Kilimanjaro 1.8 627.4 31.7 79.1

Lindi 1.1 482.7 108 86.6

Manyara 2.1 1348.8 20 88

Mara 2.2 491.5 374.6 199.7

Mbeya 3.0 2463.5 165 107.3

Morogoro 2.2 1248.5 78.9 79

Mtwara 1.5 688.5 241.4 126.8

Mwanza 2.9 689.9 271.5 178.2

Njombe 0.9 860.8 154.8 48.6

Pwani 1.2 633 150.8 120.5

Rukwa 1.2 841.6 335.2 139.6

Ruvuma 1.6 959.9 88.9 60.8

Shinyanga 2.2 942.3 178.1 134.7

Simiyu 2.3 1234.2 80.1 103.6

Singida 1.7 728.3 28.9 76.8

Tabora 3.0 1639.5 136.7 107.2

Tanga 2.3 1492 112.7 87.4

https://doi.org/10.1371/journal.pone.0239149.t002
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have an increase of 4% of pixels for which fertilizer net revenue exceeds 100 USD/ha (i.e., from

90% to 94%).

Discussion and conclusions

This paper has illustrated a simple yet useful method of predicting yield responses to fertilizer

over heterogeneous production landscapes, with a view toward guiding strategic investments

and policy interventions. In our case study of smallholder Tanzanian maize farmers, our

results indicate highly variable fertilizer responses over geographic space, in line with other

empirical studies in the region (e.g., [4–7]). While fertilizer use is profitable, on average, it is

not profitable everywhere. Farmers in very remote areas would not gain financially, given local

input-output price ratios, even where agronomic returns are high. This result underscores the

importance of acknowledging spatial differences in economic remoteness, and the implica-

tions for technology profitability, in designing agronomic interventions. This is particularly

important for primarily agrarian economies with large shares of the rural population in remote

areas, conditions that characterize many of the countries in sub-Saharan Africa.

Our analysis has direct implications for the debate on closing yield gaps. Closing yield gaps

may not be economically feasible in areas which are remote from markets. However, using a

framework such as the one we propose may help to identify where to prioritize investments in

closing yield gaps, i.e., where returns on investment are largest.

Fig 5. Rainfall and net revenue variation. (A) Seasonal (December-May) rainfall coefficient of variation. (B). Net revenue coefficient of variation

resulting from the OPnetrev scenario.

https://doi.org/10.1371/journal.pone.0239149.g005
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Our results also highlight the importance of acknowledging uncertainty in modeling the

returns to investments from a farmer’s perspective. In our modeling framework, both agro-

nomic and economic returns to fertilizer investments are strongly conditioned by location-

specific rainfall patterns. Given the uncertainty around rainfall outcomes in any particular

year, there is a corresponding amount of uncertainty in investment returns from the farmer’s

perspective. The variability of estimated returns from our model is a good predictor of actual

fertilizer usage in a nationally representative sample of Tanzanian smallholders: higher levels

of uncertainty around investment returns are strongly negatively associated with the likelihood

of fertilizer usage. This finding underscores the role that risk plays risk in smallholder deci-

sion-making and signals that technology promotion efforts, which fail to address economic

risk, are fundamentally flawed. In addition, and, conversely, agronomic practices that improve

agronomic use efficiencies through technology promotion can reduce these financial risks.

Only when farmer decision-making is more fully integrated into planning frameworks will

the required changes in production technology begin to take place at the scale necessary to

deliver expected changes in smallholder-dominated food systems. The ex ante framework

articulated in this paper is one way in which economic returns and the variability of those

Table 3. Validation: Out of sample prediction of fertilizer usage.

Dep var: fertilizer user (=1) (1) (2)

log(net revenue) 0.0952��� 0.110���

(2.84e-06) (1.76e-07)

std.dev.(net revenue) -0.000691���

(0.00101)

area cultivated 0.000498 0.000466

(0.771) (0.787)

age of head -0.000105 -0.000168

(0.770) (0.639)

female head (=1) -0.00568 -0.00662

(0.668) (0.617)

education of head 0.00985��� 0.00960���

(8.46e-09) (1.76e-08)

# members 0.000830 0.00100

(0.777) (0.732)

log value of productive assets 0.00621��� 0.00635���

(0.00681) (0.00576)

log travel time to market town -0.0372��� -0.0382���

(1.82e-05) (1.04e-05)

mean annual rainfall 1997–2014 0.000113�� 7.99e-05

(0.0349) (0.143)

Region FE? yes yes

Year FE? yes yes

Mundlak-Chamberlain device? yes yes

Observations 5,819 5,819

R-squared 0.236 0.238

Dependent variable is a dummy indicator taking a value of 1 if the household is a user of inorganic fertilizer. Data are

from the 2009, 2010 and 2013 waves of the Tanzania LSMS-ISA data, restricted to landholding households in the

rural areas. Standard errors are robust to clustering at the enumeration area level. Model (2) includes the standard

deviation of the expected profitability.

https://doi.org/10.1371/journal.pone.0239149.t003
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returns may be better linked with agronomic modeling and incorporated into strategic plan-

ning and targeting frameworks. We envision such frameworks becoming increasingly impor-

tant ways to address the challenge of increasing sustainable intensification efforts in the

region.
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