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Abstract

Many amphibian species exploit temporary or even ephemeral aquatic habitats for reproduction by maximising larval
growth under benign conditions but accelerating development to rapidly undergo metamorphosis when at risk of
desiccation from pond drying. Here we determine mechanisms enabling developmental acceleration in response to
decreased water levels in western spadefoot toad tadpoles (Pelobates cultripes), a species with long larval periods
and large size at metamorphosis but with a high degree of developmental plasticity. We found that P. cultripes
tadpoles can shorten their larval period by an average of 30% in response to reduced water levels. We show that
such developmental acceleration was achieved via increased endogenous levels of corticosterone and thyroid
hormone, which act synergistically to achieve metamorphosis, and also by increased expression of the thyroid
hormone receptor TRΒ, which increases tissue sensitivity and responsivity to thyroid hormone. However,
developmental acceleration had morphological and physiological consequences. In addition to resulting in smaller
juveniles with proportionately shorter limbs, tadpoles exposed to decreased water levels incurred oxidative stress,
indicated by increased activity of the antioxidant enzymes catalase, superoxide dismutase, and gluthatione
peroxidase. Such increases were apparently sufficient to neutralise the oxidative damage caused by presumed
increased metabolic activity. Thus, developmental acceleration allows spadefoot toad tadpoles to evade drying
ponds, but it comes at the expense of reduced size at metamorphosis and increased oxidative stress.
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Introduction

Adaptive developmental plasticity evolves in response to
environmental heterogeneity when organisms can
unambiguously perceive the environment through reliable cues,
and there exists a cross-environmental trade-off such that no
single phenotype can maximise fitness across environments
[1,2]. Plasticity therefore allows organisms to occupy fluctuating
environments by developing appropriate matching phenotypes
[3].

Amphibians are the group of terrestrial vertebrates with the
greatest diversity of life histories, but the majority maintain an
aquatic larval stage that metamorphoses into a terrestrial
juvenile [4,5]. Although some species breed in permanent
water bodies such as rivers, lakes, and marshes, most species
depend upon temporary water bodies for larval development,
from temporary ponds to ephemeral rain pools, rock crevices,
or water pockets on vegetation like bromeliads or bamboo

stumps. Throughout their evolutionary history, amphibian
larvae have excelled at exploiting such temporary aquatic
systems because they often show a high degree of
developmental plasticity enabling them to decouple growth and
differentiation to a remarkable extent [6]. Under abundant food
availability, low risk of predation, and low risk of desiccation,
amphibian larvae are capable of growing while only slowly
progressing in (or arresting) development, but they accelerate
development at the expense of continued growth when adverse
conditions are met, triggering an early metamorphosis [7,8].
Chief among larval risks in temporary systems is pond drying,
which can be detected by tadpoles in the form of shallow water
and proximity to the water surface (i.e. water column height;
[9]). Environmental assessment by amphibian larvae may be
so fine-grained that developmental acceleration can even
decelerate if the conditions in the aquatic system ameliorate
[9,10]. Developmental acceleration in response to drying of the
aquatic habitat has long been reported in anurans [8,11,12]
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and has been found in nearly all species examined [4,13,14].
Accelerated metamorphosis, however, cannot occur prior to
achieving an apparent developmental threshold [15,16].

This ability to adjust larval period to the local aquatic habitat
quality and duration may have played a major role in allowing
different populations and even species to adapt to widely
divergent environments. As a result, divergent reaction norms
among lineages adapted to aquatic habitats of different
flooding regime have been reported below and above the
species level [17-19]. This suggests that ancestral plasticity
may have allowed differences among lineages to evolve by
genetic accommodation, an idea supported by the fact that
morphological consequences of acceleration observed within
populations are also mirrored among populations and species
with adaptively divergent larval periods [20,21]. Thus, tadpoles
reared in conditions that induce fast development result in
juveniles with reduced limb length compared to siblings reared
under control conditions, and these differences scale up among
populations and even species so that lineages with faster
developmental rates result in shorter-legged individuals [20,21].

Tadpoles’ capacity to adaptively tune the time to
metamorphosis to local conditions is controlled by their
neuroendocrine system. In response to specific environmental
stimuli during pond drying, the hypothalamus increases
production of corticotropin-releasing-hormone (CRH) that
stimulates the production of pituitary hormones that activate the
thyroid and interrenal glands in all anurans and non-neotenic
urodeles examined [22,23]. The activation of these
hypothalamo-pituitary-thyroid (HPT) and hypothalamo-pituitary-
interrenal (HPI) axes results in increased levels of thyroid
hormone (TH) and corticosterone (CORT) [24-26]. While TH is
the primary morphogen, CORT synergises with TH to enhance
the sensitivity of tissues to TH through the upregulation of TH
receptors and monodeiodinase enzymes in specific tissues
[25,27]. Thus, the shorter larval periods observed under risk of
pond drying are mediated by increased production of TH and
CORT via the HPT and HPI axes causing developmental
acceleration [25]. What is not clear is the extent to which
hormones and their receptors are increased throughout
development within individuals reared in conditions favouring
rapid metamorphosis.

Despite the advantages of accelerated metamorphosis,
developmental acceleration comes at the cost of physiological,
morphological, and life-history consequences. At the level of
physiology, developmental acceleration seems to be a rather
costly effort consuming a large fraction of the fat bodies
accumulated during larval growth and/or preventing their
accumulation [28]. Furthermore, developmental acceleration
reduces size at metamorphosis [8,28,29], which is a commonly
observed major factor influencing juvenile survival [30,31].
Accelerated metamorphosis also decreases size at first
reproduction [32], challenges immune response of
postmetamorphic individuals [33], and affects juvenile
morphology, resulting in shorter-limbed metamorphs [6,34].
Such fat burning and sustained physiological effort would be
expected to alter the redox balance, greatly increasing the
production of reactive oxygen species (ROS). ROS are
normally produced during development and may even play a

signalling role as secondary messengers in development
[35,36]. However, when the production of ROS causes a redox
imbalance oxidative stress occurs, and if ROS production
exceeds the organism’s antioxidant capacity, it results in
oxidative damage [37,38]. Sustained developmental
acceleration in response to pond drying may cause increased
ROS production and hence may require amphibian larvae to
increase antioxidant enzymatic activity.

Our aims for this study were to examine the main endocrine
mechanisms thought to regulate developmental acceleration in
tadpoles and to quantify whether tadpoles incur oxidative
stress during acceleration. Thus, we exposed tadpoles of the
highly developmentally plastic Western spadefoot toad
(Pelobates cultripes) to reduced water levels simulating pond
drying, and analysed their developmental response. We
quantified tissue content of thyroid hormone and blood
corticosterone concentrations, which have been shown
separately to play a role in accelerated development in other
species. We also tested the prediction that thyroid hormone
receptors (TRβ) would be up-regulated in response to pond
drying as a measure of increased hormone functionality.
Finally, we evaluated the oxidative stress caused by
accelerated development measuring the activity of three
antioxidant enzymes and a biochemical marker of oxidative
damage.

Materials and Methods

Ethics Statement
Egg clutches of the western spadefoot toad Pelobates

cultripes were collected within the Biological Reserve of
Doñana National Park with collecting permits granted by
Consejería de Medio Ambiente from Junta de Andalucía. The
experimental procedures and euthanasia of tadpoles were
conducted at Estación Biológica de Doñana, CISC, following
protocol ‘12_53-Gomez’ approved by the Institutional Animal
Care and Use Committee (IACUC) at Estación Biológica de
Doñana.

Experimental setup
In March 2009, we collected portions of approximately 50

eggs from each of six Western spadefoot toad clutches from
two different ponds at the Doñana Biological Reserve, within
the Doñana National Park (Huelva, southwestern Spain).
Pelobates cultripes tadpoles are large and have a long larval
period (usually between 84 and 130 days; [20,39].
Paradoxically, ecological and mechanistic aspects of
developmental plasticity have been studied in other spadefoot
toad species [11,40,41], but those species have a much more
canalised development and consequently reduced levels of
plasticity compared to P. cultripes [20,28].

The eggs were brought into a climatic chamber at Doñana
Biological Station and allowed to hatch in shallow trays with
aerated carbon-filtered tap water. Once larvae reached the
free-feeding developmental stage, i.e. Gosner stage 25 [42],
we randomly placed 140 tadpoles individually in 3 L clear
plastic buckets (168 mm in diameter x 184 mm tall). The
chamber was set up at constant 24 °C and a 12:12

Mechanisms of Developmental Acceleration

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e84266



photoperiod, water was renewed twice a week, and tadpoles
were fed ad libitum rabbit chow, ca. 1 g/week depending on
stage and size. We raised all tadpoles similarly (Figure 1A)
until Gosner stage 35, a mid-prometamorphosis stage at which
they show their maximum capacity for developmental
acceleration [28], and then reduced the water volume on half of
the experimental units to trigger acceleration (Figure 1B).
Tadpoles in the high water volume were kept in 3 L of water
whereas those in the low water treatment had only ca. 350 mL,
a water column 20 mm high that was just enough to cover the
largest tadpoles [28]. Tadpoles in each water level were raised
to one of two predetermined developmental stages (Figure 1C),
either Gosner stage 38, in late prometamorphosis when larvae
already have well developed hind limbs and the inner
metatarsal tubercule is formed; or Gosner stage 42, right at
metamorphic climax when forelimbs emerge and just prior to
initiation of tail resorption [42]. Hence the design consisted of
two water levels (high vs. low) x two developmental stages
(Gosner 38 vs. 42), with 27 replicates per water level x stage
combination. Shelves in the climatic chamber were distributed
at three heights and hence potentially experiencing a
temperature gradient, so each shelf was considered a block,
and each block held 9 replicates per treatment. For each
tadpole, we recorded the date at which they reached Gosner
stage 35, 38, and 42, and we weighed them after blotting dry.
We estimated growth rate as log(mass) – log(larval period). In
addition, we raised 15 extra individual tadpoles to the
completion of tail resorption (Gosner stage 46) in each water
level treatment to assess the effect of pond drying on
postmetamorphic morphology (Figure 1C). We used callipers to
measure snout-to-vent length and hindlimb length to the
nearest 0.1 mm. We took two measurements of each trait to
estimate repeatability, and averaged them for analysis.

Hormone measurements
We determined the level of corticosterone through enzyme

immunoassays (EIAs) conducted on plasma samples. A total of
20 tadpoles per treatment (i.e., two developmental stages x two
water volumes, total N = 80, Figure 1D) were assayed for
corticosterone determinations. Tadpoles at the appropriate
developmental stage (either 38 or 42 Gosner stage) were
deeply anesthetised by immersion in MS-222, and then placed
under a dissecting stereoscope (Discovery V8, Zeiss, Norway)
and operated at a 20X magnification. We cut and pulled apart
the ventral skin to access the pericardium. Then we dried up
the liquid of the abdominal cavity with filter paper and sectioned
the aorta, rapidly collecting the blood spillage with a 30-gauge
needle mounted on a 1mL syringe, and pouring the blood in
heparinised tubes kept at 4 °C over ice. This procedure was
conducted under 3 min and yielded ~80 µL of blood per
individual. After blood extraction, the animal was euthanized
with MS-222, and then eviscerated, snap frozen in liquid
nitrogen, and preserved at -80 °C for determination of TH, TRβ,
and oxidative stress enzymes. Blood samples were then
centrifuged at 4000 g for 20 min, and the supernatant was
stored at -80 °C in fresh Eppendorf tubes for later analyses.
Samples were assayed with a corticosterone EIA kit (#500655,
Cayman Chemical, MI, USA), using the competition between

corticosterone and a corticoterone-acetylcholinesterase
conjugate used as tracer. The lower detection limit for this
assay was 16 pg/mL. After incubation of the sample and the
two standard curves with tracer and antiserum, the plates were
washed and developed with Ellman’s reagent following the
manufacturer’s indications. We then read the plates on a Victor
3 1420 (Perkin-Elmer, MA, USA) at 405 nm and concentrations
were estimated from interpolation to the standard curves using
a four-parameter fit. Average coefficient of variation for sample
duplicates was 16.91 %.

We determined tissue content of T4 (thyroxine, the precursor
of T3 or tri-iodothyronine, the active form of TH) from tail
samples by radio-immunoassay (RIA). Tail tissue instead of
plasma was used in this case because the blood samples
obtained were insufficient to conduct RIA. We used a sample
size of 10 tadpoles per developmental stage and water level
(total N = 40, Figure 1D). We extracted TH from tail tissue,
homogenising the tissue, centrifuging and extracting the
hormone from the supernatant with chloroform and ion-
exchange chromatography prior to RIA following previous
protocols [43,44]. Lower detection limit was 0.15 pg/mL/mg and
average coefficient of variation was 8.20 %.

RNA isolation, cDNA synthesis, quantitative PCR
TRβ gene expression measurements were carried out as

done previously [45]. Briefly, total RNA was extracted from
frozen samples using Trizol reagent following the
manufacturer's protocol (Invitrogen), and cDNA was
synthesized using 2 ug of total RNA using the High Capacity
cDNA Reverse Transcription Kit following the manufacturer's
protocol (Applied Biosystems). Quantitative PCR (qPCR) for
TRβ and the housekeeping gene rpL8 (2uL of neat or 10-fold
diluted cDNA respectively) was carried out in single-plex
reactions with Taqman FAM-labeled probes in Universal PCR
Master Mix using a 7300 Real Time PCR System (Applied
Biosystems). Primer-probe sets were designed previously [45]:
TRβ: forward primer 5' GGAACCAGTGCCAAGAATG, reverse
primer 5' TCATCCAAGACCAAGTCTGTTG, probe 5'
CGCTTCAAAAAGTG, rpL8: forward primer 5'
CACAATCCTGAAACCAAGAAAACCA, reverse primer 5'
CCACACCACGGACACGT, probe 5' AAGGCCAAGAGAAACT.
No template controls were used and failed to detect any
reaction product contamination. We estimated TRβ gene
expression from 12 tadpoles per stage and water level (Figure
1D). All samples were run in duplicate, and averages were
used for subsequent analyses. Average coefficient of variation
for sample duplicates was 8.88 %.

Oxidative stress enzyme activity
In a subset of animals (N = 40, 10 tadpoles per stage and

water level, Figure 1D), we measured activity of three enzymes
involved in protection against various important ROS such as
superoxide anions and hydrogen peroxide [38,46]: superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase
(GPx). As an indication of oxidative damage, we quantified
thiobarbituric acid reactive substances (TBARs) formed mostly
during lipid peroxidation [47], namely lipid hydroperoxides and
aldehydes [48]. Frozen individuals were homogenized with a
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Miccra (Miccra D-1) homogeniser in a buffered solution (100
mM Tris-HCl with 0.1 mM EDTA, 0.1% triton X-100, pH 7.8 and
0.1 mM PMSF; 1:4, w:v) to inhibit proteolysis. We then
centrifuged the samples at 4000 g for 30 min at 4° C. Total
protein content in the supernatant fluid was determined

following a standard Bradford’s procedure [49]. Enzyme activity
was determined colorimetrically. We determined catalase
activity using potassium permanganate (KMnO4) as an
oxidizing and coloring agent following [50]. KMnO4 reacts with
hydrogen peroxide, the catalase substrate, and is hence

Figure 1.  Experimental design and sample distribution.  (A) Field collected eggs were brought into the laboratory. Once they
reached the free feeding stage (Gonser stage 25), 140 tadpoles were individually raised in 3 L plastic containers until Gosner stage
35. (B) As tadpoles reached stage 35, they were assigned to either constant water volume (3L), or reduced water volume (350 mL).
(C) Tadpoles were then raised up to predetermined stages: Gosner stages 38 and 42 (stages at which the physiological parameters
were determined), or until metamorphosis was complete (Gosner stage 46). (D) Corticosterone (CORT) was determined by
electroimmuno assays from plasma samples obtained from 80 tadpoles across developmental stages and water treatments. Tail
tissue from those tadpoles was used for thyroid hormone (TH) radioimmuno assays and determination of the level of expression of
the thyroid hormone receptor TRβ via qPCR. Levels of oxidative stress and activity of antioxidant enzymes were determined after
whole body homogenization.
doi: 10.1371/journal.pone.0084266.g001
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reduced producing a red product. We read absorbance at a
wavelength of 480 nm five minutes after KMnO4 was added to
the samples. We prepared standard curves of commercial
catalase (SIGMA-60634) and expressed the catalase activity
as U / mg of total proteins. Average coefficient of variation for
sample duplicates was 5.14 %, and the lower detection
threshold was 125 U/mL.

Similarly, we determined the activity of SOD indirectly
measuring the inhibition rate of cytochrome C reduction.
Superoxide radicals (O2

-) oxidize cytochrome C except in the
presence of SOD, which competes for O2

- generated by
hypoxanthine and xanthine oxidase action, reducing
cytochrome C and producing hydrogen peroxide (H2O2) and
oxygen. We monitored the increase in absorbance at 550 nm
and defined one unit of SOD as the amount of enzyme that
inhibited the rate of reduction of cytochrome C by 50% at 25 °C
following [51]. Lower detection limit for SOD was 1 U /mg
protein, and the average coefficient of variation for duplicate
samples was 8.17 %. We determined glutathione peroxidase
(GPx) activity following Paglia and Valentine [52]. Oxidised
glutathione (GSSG) is continually reduced due to an excess of
glutathione reductase (GR) and produces a constant level of
reduced glutathione (GSH). Production of GSH from oxidised
glutathione requires NADPH, and we monitored NADPH
oxidation reading absorbance at a wavelength of 340 nm.
Lower detection limit for GPx was 2 U/mg protein, and the
average coefficient of variation for sample duplicates was
10.88 %. Finally, we measured lipid peroxidation following
Buege and Aust [53]. Lipid peroxidation produces, among other
compounds, malondialdehyde (MDA). MDA reacts with acid to
give a thiobarbituric acid reactive substance (TBARS), a red
product absorbing at 535 nm. To obtain TBARS concentrations
we measured the optical density values for the blank and for
the calibration curve. We calculated the TBARS concentration
(in nmolTBARS/ml) from the absorbance of each sample,
subtracting the blank values and comparing with the calibration
values. Lower detection limit for TBARS was 0.1 µM, and the
average coefficient of variation for sample duplicates was 3.54
%.

Statistical analyses
All analyses consisted of generalised linear models fitted

using the Glimmix procedure (SAS Institute, Cary, NC, USA).
Survival data was modelled assuming a binomial distribution
with a logit link function. All other variables (larval period, size
at metamorphosis, corticosterone, TH, TRΒ, CAT, SOD, GPx,
and TBARs) were modelled either using a Gaussian or a
gamma error distribution (with identity or log link functions,
respectively), chosen on the basis of the lowest Akaike
Information Criterion (AICc) observed in alternative models.
Expression of a housekeeping gene, rpL8, was introduced in
the model as a covariate when analysing differences among
treatments in TRβ. Experimental block was introduced in the
analyses as a random factor. Analysis of relative limb length
included snout-vent-length as a covariate in the model, and
adjusted means were calculated for mean hindlimb length in
each treatment controlling for differences in SVL.

Results

Developmental acceleration in response to decreased
water levels

Decreased water levels reduced tadpole survival from 94.2%
to 79.3%, indicating that it was a considerable source of stress
(df=1,99, χ2 = 4.19, P = 0.041). Tadpoles in full water volume
took on average 105.5 days (± 4.0 SE) to reach Gosner stage
38 and 132.65 days (± 4.25) to reach metamorphosis (Gosner
stage 42), whereas tadpoles exposed to low water volume took
86.38 days (± 4.43) to reach stage 38 and 89.77 (± 4.0) days to
reach metamorphosis, resulting in highly significant reductions
in larval period (F1,44 = 23.20, P < 0.0001 for days to Gosner
stage 38; F1,45 = 40.91, P<0.0001 for days to Gosner stage 42)
(Figure 2A). Counting from the moment when water volume
was reduced, development was accelerated by 32.3% on
average in response to decreased water level. As expected,
body mass at metamorphosis was significantly lower in
tadpoles exposed to low water (3.095 ± 0.107 vs. 1.82 ± 0.122
at Gosner stage 38 and 1.940 ± 0.114 vs. 1.183 ± 0.119 at
Gosner stage 42; F1,88 = 90.78, P < 0.0001) (Figure 2B).
Growth rate was also lower for animals exposed to low water
(F1,85 = 29.68, P < 0.0001), and juveniles emerging from the low
water treatment had on average 5% shorter hind limbs (27.572
± 0.398 mm in juveniles from low water vs. 29.045 ± 0.387 mm
in juveniles from high water, adjusted means; F1,26 = 5.66, P =
0.025) (Figure 3).

Mechanisms mediating developmental acceleration
Corticosterone (CORT) concentration increased from

prometamorphosis (Gosner stage 38) to metamorphic climax
(Gosner stage 42) (F1,55 = 10.34, P = 0.002). However, CORT
in stage-matched tadpoles was higher in those exposed to low
water levels (F1,55 = 10.0, P = 0.003) (Figure 4A) by 2.61 fold at
Gosner stage 38 and 1.72 fold at Gosner stage 42. However,
we found no significant interaction between water level and
developmental stage in CORT levels.

Thyroid hormone was also higher at metamorphic climax
than at pre-metamorphosis (F1,35 = 120.34; P < 0.0001), and
tadpoles exposed to low water had higher TH tissue content
than those in full water volume (F1,35 = 64.84; P < 0.0001)
(Figure 4B). The average fold increase in TH concentration
was 3.31x at Gosner stage 38 and 4.65x at Gosner stage 42.
We found no significant water level by stage interaction. In
addition to increased TH levels, our quantitative PCR results
showed a significant increase in the expression of the TH
receptor (TRβ) in response to low water level (F1,46 = 10.69, P =
0.002) (Figure 4C), controlling for the expression of a
housekeeping gene, rpL8 (see Materials and Methods).
Tadpoles in low water experienced a 1.74 fold increase in TRβ
at Gosner stage 38, and a 1.43 fold increase with respect to
tadpoles in high water at metamorphic climax. We found no
significant interaction between water level and developmental
stage in TRβ expression.
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Oxidative stress as a consequence of developmental
acceleration

Tadpoles exposed to low water levels showed higher levels
of catalase activity (F1,34 = 9.44, P = 0.004) than tadpoles kept
in full water volume (Figure 5). The observed activity was on
average 18.6% higher in low water tadpoles at Gosner stage
38, and 54.67% higher at Gosner stage 42. Similarly, we also
found higher levels of superoxide dismutase activity in tadpoles
exposed to low water level (F1,34 = 5.45, P = 0.026) (Figure 5).
SOD activity was 9.61% higher in low water tadpoles at Gosner
stage 38, and 26.31% higher at Gosner stage 42. No
significant interaction between water level and developmental
stage was found for these two enzymes. Glutathione

peroxidase (GPx), however, was slightly higher in low water
tadpoles, but only at stage 38 hence resulting in a small but
significant interaction between water level and developmental
stage (F1, 34 = 4.44, P = 0.043). Reduced water volume,
however, did not affect levels of TBARs (F1, 34 = 0.00, P =
0.971), but changed instead with developmental stage (F1, 34 =
50.51, P < 0.0001) so that animals at metamorphic climax
(Gosner stage 42) showed a 1.95-fold increase in TBARs
values (Gosner38: 4.64 ± 0.55; Gosner 42: 9.03 ± 0.52). No
significant interaction between water level and stage was
found.

Figure 2.  Developmental responses to decreased water levels.  (A) Western spadefoot toad tadpoles accelerated development
(required a shorter time to reach the target developmental stage) when water level was experimentally decreased. (B) Faster
development resulted in smaller animals at each developmental stage. Bars indicate mean values + SE.
doi: 10.1371/journal.pone.0084266.g002
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Discussion

Mechanisms of developmental acceleration
Tadpoles of the Western spadefoot toad accelerated

development by an average of 32% in response to decreased
water levels in our experiment resulting in a shorter larval
period by over 2 weeks (Figure 2), which is among the highest
responses reported in the literature for anurans [4,54].
Interestingly, the magnitude of this response from this

population of southern Spain matches the whole range of
variation reported in the literature for larval period in this
species [20,39], which also encompasses geographic variation
among populations.

Consistent with previous studies, our results show that
developmental acceleration in response to pond drying is
accompanied by increased levels of TH and CORT (Figure 4),
presumably driven by increased CRH [22,25]. TH and CORT
synergize to increase the rate of metamorphic change [55], and
thus, the higher levels of both hormones in low water contribute

Figure 3.  Spadefoot toad juveniles emerging from reduced water treatment were smaller and had proportionately
shorter hind legs.  
doi: 10.1371/journal.pone.0084266.g003
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to accelerated development. Moreover, because TRβ is a th
direct response gene [56], the up-regulation of TRβ expression
in low water was consistent with increased TH production. The
resulting increased tissue sensitivity and responsivity to

circulating TH from higher TRβ expression thus also
contributed to increased rate of metamorphosis in low water
levels [45,57].

Figure 4.  Mechanisms of tadpole developmental acceleration.  Levels of corticosterone (A), thyroid hormone (B), and
expression of thyroid hormone receptor TRβ (C) were higher for tadpoles exposed to decreased water levels (black bars) than for
those in constant water (white bars). Error bars indicate + SE.
doi: 10.1371/journal.pone.0084266.g004
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Figure 5.  Activity of three antioxidant enzymes in tadpoles
exposed to decreased water level compared to those kept
in constant water level.  Catalase (A) and superoxide
dismutase (B) activity increased in tadpoles experiencing
decreased water level, in both developmental stages.
Glutathione peroxidase (C) also increased when tadpoles
faced low water level, but only in prometamorphosis.
doi: 10.1371/journal.pone.0084266.g005

Our previous phylogenetic and comparative experimental
work showing how changes in developmental rate among
species mirrored differences among individuals reared in
different conditions led us to suggest that life-history evolution
in spadefoot toads may have resulted from genetic
accommodation of ancestral plasticity into the canalised fast
development of some species [20,28]. To further substantiate
this model, we predicted that among species differences in
larval period and physiological and genetic parameters
regulating it (i.e., hormone titre, TRβ expression level) would
mirror ancestral within-species variation. Importantly, P.
cultripes represents the ancestral state of developmental
plasticity in spadefoot toads [20]. Here, we found that
increased TH and CORT levels are maintained at higher levels
throughout development in response to low water in P.
cultripes, and these results mirror fixed differences in
regulatory mechanisms found among spadefoot toad species.
Specifically, higher TH content and higher TR expression
across development is observed in species with short larval
periods (Scaphiopus couchii) compared to other spadefoot
species reared under identical conditions and in P. cultripes
reared at low water compared to P. cultripes reared at high
water [45,58]. In the case of TR expression, S. couchii has
constitutively higher levels of TRα rather than TRβ, but the end
result of increased TR-mediated tissue sensitivity to TH is
apparently the same [45]. Thus, these data support our
predictions about how short larval periods with low plasticity
may have evolved from longer, plastic larval periods via genetic
accommodation.

Costs and consequences of developmental
acceleration

Developmental acceleration in Western spadefoot toad
tadpoles resulted in smaller, shorter-limbed juveniles, as
reported for other species [54,59,60] and predicted in models
of anuran developmental responses to larval growing
conditions [6]. Such reduction in size at metamorphosis is
expected to have a plethora of consequences for juvenile
survival, age of first reproduction, and fecundity that could even
scale-up to demographic consequences [32,61].

Undergoing metamorphosis seems to be metabolically
intensive, and environmentally altered metabolic activity may
carry some consequences. A small fraction of the reactive
oxygen species (ROS) generated in the organism is controlled
and has a role in cell signalling [36]. However, most ROS
(about 90%) are generated as by-products of metabolic activity
[62,63]. If not neutralised, ROS cause oxidative damage to
many key biomolecules, including DNA (especially
mitochondrial DNA and telomeres), proteins, and lipids [62-64].
Such damage has the potential to influence life histories over
both short and long timescales, including accelerated
senescence as unrepaired cell damage accumulates [38,63],
but also as a physiological cost of reproduction, immune
function, or general metabolic activity [37].

We detected increased lipid peroxidation (i.e. increased
TBARs) in tadpoles at metamorphic climax regardless of
experimental treatment. ROS production and antioxidant
activity is known to vary with developmental stage [65], and the
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differences observed across development may reflect at least
in part changes in signalling pathways. Here we found that
environmentally induced developmental acceleration caused
oxidative stress in spadefoot toad tadpoles, as it significantly
increased activity of antioxidant enzymes. Oxidative stress may
be an inescapable consequence of developmental acceleration
in tadpoles partly because of enhanced physiological and
metabolic effort, but also because sustained high glucocorticoid
production is a direct cause of oxidative stress in vertebrates
[66] and increased CORT is key in accelerating
metamorphosis. However, we found no evidence for increased
oxidative damage (presence of lipid hydroperoxides and
aldehydes) with decreased water level. These results suggest
that increased antioxidant activity may have been sufficient to
neutralise oxidative damage in our experiment. Whether
genotypes or lineages adapted to fluctuating environments,
and hence more developmentally plastic, are better at coping
with oxidative stress than less plastic ones is something that
will require further study.

Increased oxidative stress may be a key determinant in
linking accelerated development to increased metabolism,
reduced longevity, and delayed age of sexual maturation.
Similarly [46], showed increased activity of antioxidant
enzymes during phases of compensatory growth in a damselfly
following transient periods of starvation. Moreover, damselflies
forced to undergo compensatory growth incur physiological
costs that include increased metabolic rate and energy storage
depletion [67]. In mammals, increased growth hormone (GH)
increases growth rate but at the expense of increasing the
production of superoxide radicals [68], and growth rate is
positively associated to oxygen consumption and ROS

production in transgenic strains of zebrafish [69].
Developmental acceleration and compensatory growth hence
seem to come at comparable physiological costs among
different animal groups. Organisms with a large degree of
decoupling between growth and differentiation can grow quickly
but not progress in developmental stages or develop quickly
with little or no growth occurring [6]. However, both accelerated
growth and accelerated development seem to incur similar
metabolic and physiological costs, perhaps mediated through
oxidative stress. Oxidative stress could thus be a common
cause of reduced longevity and other long-term deleterious
effects of rapid growth [63] and rapid development. We are
unaware of evidence for long-term consequences of oxidative
stress in amphibians, which will require further study.
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