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A B S T R A C T   

Climate crises such as extreme weather events, natural disasters and climate change caused by 
climate transformations are causing much damage worldwide enough to be called a climate ca
tastrophe. The private sector and the government across industries are making every effort to 
prevent and limit the increasing damage, but the results have yet to meet market demand. 
Therefore, this study proposes a method that uses a deep learning algorithm to predict the 
damage caused by typhoons. Model development is based on a Deep Neural Network (DNN) 
algorithm, and learning data is obtained by fine-tuning the network structure and hyper
parameters; the amount of damage caused by Typhoon Rusa was known as training data. The 
constructed DNN model underwent evaluation and validation by computation of mean absolute 
error (MAE) and root mean square error (RMSE). Furthermore, a comparative analysis was 
conducted to confirm the applicability of the proposed framework against a traditional multi- 
regression model to ensure the model’s accuracy and resilience. Finally, this study offers a 
novel approach to predicting typhoon damage using advanced deep-learning techniques. Sub
sequently, government disaster management officials, facility managers, and insurance com
panies can utilize this method to accurately predict the extent of damage caused by typhoons. 
Preventive actions such as improved risk assessment, expanded insurance companies, and 
enhanced disaster responses plans can be implemented using these outcomes. Ultimately, the 
proposed model will help to reduce typhoon damage and strengthen general resilience to climate 
crises.   

1. Introduction 

1.1. Climate change and natural disaster 

Climate crises caused by extreme weather events (e.g., heat waves, cold waves, droughts, heavy rains, floods, and tropical cyclones) 
and climate change-initiated disasters are responsible for a lot of damage to property and human life to such an extent that they are 
called climate catastrophes worldwide. Therefore, climate change is recognized as the greatest threat facing humanity. Hence, active 
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efforts of all mankind are required to prevent and limit this enormous damage [1]. Extreme weather events caused by climate change 
are occurring with greater frequency and severity than in the past and, therefore, can cause more serious damage to buildings, facilities 
and people [2,3]. Moreover, the 5th Evaluation Report of the Intergovernmental Panel on Climate Change (2014) warns against 
destructive impacts such as changes in average sea level, acidification, heavy rainfall and global increase in average temperature, and 
that these phenomena may accelerate [4]. 

Escalating extreme weather events and increasing global population and wealth are causing avalanche losses worldwide. The 
damage caused by windstorms is becoming critical day by day. The weather disasters that occurred between 1980 and 2021 have 
revealed that tropical cyclones (or hurricanes) have caused the most damage, exceeding $1.1 trillion [5]. Additionally, tropical cy
clones have been responsible for the highest number of deaths, claiming the lives of 6697 individuals during the same period. These 
statistics highlight the severe impact of tropical cyclones in terms of both economic losses and loss of life. As a representative example, 
Hurricane Harvey, Hurricane Irma and Hurricane Maria continually attacked coastal areas of the United States and countries such as 
Puerto Rico in about one month in 2017, resulting in a cumulative damage of approximately 293 billion dollars. All three of these 
hurricanes were Category 4, which caused heavy rains and wind damage [6]. Hurricane Harvey reportedly caused the most substantial 
damage, amounting to $125 billion. It was succeeded by Hurricane Maria, which caused $90 billion, and Hurricane Irma, which caused 
$77.6 billion in damage [6]. Also, in 2005, Hurricane Katrina devastated many states around the Gulf of Mexico, causing the greatest 
natural disaster in US history. Total damage from Hurricane Katrina is estimated at approximately $180 billion. Hurricane Katrina, a 
Category 5 hurricane, was convoyed by powerful heavy rains and strong winds and triggered storm waves to increase the damage [7]. 
Recently, in 2021, Hurricane Ida caused economic damages of $40 billion in the United States [5]. In Europe, an example is damage by 
extratropical cyclones. In particular, Cyclone Anatole, Cyclone Lothar and Cyclone Martin, which occurred successively in 1999, 
caused total damage of around EUR 13 billion, devastating Western European countries such as Switzerland, Germany and France [8]. 
In Asia, the damage caused by Typhoon Haiyan in 2013 is a characteristic example. Typhoon Haiyan hit countries such as China, 
Vietnam and the Philippines, causing about $300 billion in losses. Typhoon Haiyan was also noted as a typhoon that recorded a robust 
maximum wind speed when it invaded the land among tropical cyclones [9]. Kim et al. [10] presented the analysis results of typhoon 
changes and typhoon damage rates that have affected Korea over the past 50 years. This study found that the severity of typhoons 
increases with each decade, and the rate of typhoon damage increases significantly with increasing severity [10]. 

As mentioned earlier, a windstorm caused by extreme weather conditions generates deliberate damage worldwide, and this damage 
is expected to increase in the future. In response, many resources are invested at the private and government levels to prevent, reduce 
and repair major storm destruction. Hence, it is essential to accurately and scientifically forecast the damage that windstorms will 
inflict in order to allocate scarce resources as best as possible. 

1.2. Literature reviews 

As mentioned earlier, the damage caused by the windstorms is predicted to escalate. Thus, one alternative is to utilize a deep 
learning algorithm as a means of predicting increasing damage in an efficient and systematic manner. Deep learning algorithms are 
used for prediction and analysis in countless industries and academia, and their effectiveness is well known [11]. In particular, due to 
the nature of natural disasters, the presence of various sensitive factors and the complexity of the resulting damage, there are some 
disadvantages in the analysis, and the degree of consistency in the predictions also shows limits [9]. For example, in an existing ca
tastrophe model used by insurance companies and vendors, the windstorm damage data is analyzed and quantified through a 
vulnerability function according to the building’s characteristics. This vulnerability function describes the relationship between 
building characteristics and representative windstorm risk indicators (wind speed, rainfall, etc.) in a deterministic manner and ex
presses it as an average failure rate. Then, quantifying damage through the existing vulnerability function makes it difficult to react 
quickly to updated damage data and changing patterns of damage and natural disasters [12]. In addition, in a rapidly evolving big data 
environment, the demand for natural disaster damage analysis using deep learning algorithms will increase day by day to efficiently 
and quickly process and analyze datasets from natural disasters [13–17]. Therefore, predicting windstorm damage using deep learning 
algorithms could be a suitable alternative. 

Many previous studies have been conducted using deep learning algorithms to quantify and forecast the damage inflicted by 
various natural disasters [18–25]. For example, a loss prediction model based on a deep learning algorithm for natural disasters has 
been developed to utilize natural disaster loss factors and disaster-caused construction damage data to predict disaster losses in 
construction works. As a result of the validation of this predictive model, the prediction error was lower than in the case of other 
models, which indicates the robustness and effectiveness of the deep learning algorithm model [18,25]. Building repair costs and 
efficient facility management plans in case of natural disasters were derived using a deep learning algorithm. This study constructed a 
model by learning and testing data on building maintenance, repair costs, and natural disaster factors using a deep learning algorithm. 
The developed model underwent a verification process and presented a higher predictive power than other models [19]. Khosravi et al. 
[20] presented a model for flood sensitivity assessment using the CNN (Convolutional Neural Network) algorithm. In this study, the 
model was constructed by analyzing CNN factors affecting different sensitivity to floods, such as slope, land use, curvature, vegetation, 
distance to rivers and road networks, geology and rainfall [20]. Al Najar et al. [21] recommended a method of using a deep learning 
algorithm to analyze changes in coastal areas caused by storms. This study demonstrates the accurate prediction of sea depth using a 
deep learning algorithm [21]. Moreover, an efficient and practical flood management system has been proposed by predicting the 
occurrence of floods through historical weather data and deep learning algorithms. This hybrid flood prediction model based on a deep 
learning algorithm illustrates the low prediction error in predicting the flood index and is expected to contribute to the modernization 
of the flood monitoring system and reduction of flood damage [22]. In addition, Shane Crawford et al. [23] conducted a study that 
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estimated tornado wind speed and classified building damage using CNN model based on satellite images. Kaur et al. [25] also used 
satellite images and a CNN model to detect the damage caused by hurricanes. Additionally, a technique for predicting the risk of 
landslides caused by earthquakes based on satellite images and a CNN model was proposed by Yi and Zhang [24]. 

As seen earlier, various deep learning algorithms are actively used to predict and evaluate the damage caused by natural disasters, 
and the utility and practicality of deep learning algorithms complement existing models and techniques and contribute to progress. 
Furthermore, the deep learning algorithm contributes greatly to the strategy and decision-making of natural disaster risk management 
based on technological innovation and outstanding reliability. Therefore, this study proposes a framework for creating a deep learning 
algorithms-based model to predict the damages inflicted by typhoons. 

1.3. Loss lessons from typhoon Rusa 

Typhoon Rusa, which occurred in August 2002, is a natural disaster that caused the greatest damage in Korea. Although the central 
pressure and maximum wind speed were lower than those of the major typhoons (e.g., Typhoon Selma in 1987, Typhoon Maemi in 
2003, etc.) which landed on the Korean Peninsula and caused a lot of damage, they recorded the maximum amount of rainfall (the 
greatest daily precipitation of 870.5 mm) and strong winds (43.7 m/s) during the typhoon, causing the greatest property damage in 
history. In particular, it is classified as being representative of a wet typhoon since it causes damage from a large amount of rainfall. 
Total property damage was 4.2 billion dollars, and it was a very catastrophic natural disaster that killed 246 people [26]. Typhoon 
Rusa occurred off the coast of Guam on August 23, passed through Kagoshima Prefecture, Japan, hit the south coast of Korea in the 
afternoon of August 31, crossed the Korean Peninsula to the east coast and faded into a tropical depression on the September 1 in the 
morning. The trajectory of Typhoon Rusa is shown in Fig. 1. Unlike the previous typhoons that landed in Korea, Typhoon Rusa 
maintained a central atmospheric pressure of 950 hPa until landing, maintained strong typhoon force and landed to increase damage. 
The reason Typhoon Rusa held such an exceptionally strong force is closely related to the change in typhoon patterns caused by climate 
change. At the time of Typhoon Rusa’s invasion of Korea, the sea surface temperature on the south coast was 2~3◦ higher than normal 
(26 ◦C), which was analyzed to indicate that the source of energy necessary for typhoon development was sufficiently supplied [27]. 
The Typhoon Committee removed the Rusa name in 2004 and replaced it with Nuri due to severe property damage and casualties from 

Fig. 1. Typhoon Rusa’s Track.  
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the Rusa Typhoon [26]. 
Analyzing record-breaking natural disasters such as Typhoon Rusa and drawing conclusions is significant basic data for disaster 

management [28]. For example, insurers have suffered huge unexpected property losses after the most recent deadly natural disasters 
such as Hurricane Harvey, Hurricane Irma and Hurricane Maria, as well as Hurricane Sandy, Hurricane Ike and Hurricane Katrina. 
Surviving insurers had to develop survival strategies such as adapting premiums and insurance coverage [29]. Such extreme natural 
disasters are an imperative task that can threaten the lives of reinsurers and insurers. Thus, in order to prepare for extreme natural 
disasters, various important indicators and figures are obtained by analyzing extreme natural disasters. For instance, reinsurers and 
insurers designate catastrophe zones and set limit amounts for each catastrophe zone, trying to minimize losses that may result from a 
disaster. It is also used to determine the amount of the major catastrophe loss reserve and to allocate the portfolio by region. Moreover, 
extreme natural disaster analysis is mandatory to determine retention, excess loss reinsurance (XOL), liability limit (LOL) and probable 
maximum loss (PML) used in the insurance industry business and disaster management strategies. Retention, XOL and LOL are among 
the most important indicators in establishing a strategy for the determination of the extent of loss and the effective division and 
allocation of loss risk [30]. The PML is the worst-case maximum expected loss. Additionally, insurers and reinsurers require an 
advanced analysis of potential natural disaster risk in order to calculate reasonable premiums. The premium is composed of the net 
premium, profit, and business cost, of which the net premium consists of fire, lightning, explosion and aircraft risk (FLEXA) and natural 
disaster risk [31]. As discussed above, the damage analysis of extreme natural disasters is taken as the basic data to establish important 
management and business strategies for the efficient management of extreme natural disasters for reinsurers and insurance companies. 
Therefore, scientific and thorough analysis of extreme natural disaster cases is essential for effectively preparing and managing 
extreme natural disasters such as Typhoon Rusa. 

2. Research method and aims 

The aim of this study is to propose a framework for constructing a typhoon damage prediction model utilizing a deep learning 
algorithm based on typhoon Rusa’s damaged data. The detailed workflow of this study is outlined below. Initially, data on the damage 
caused by Typhoon Rusa were collected from insurance companies. Subsequently, a damage prediction model was constructed using a 

Fig. 2. The detailed workflow for the building loss assessment model.  
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deep learning algorithm from the collected dependent and independent variables. Lastly, to validate the DNN model, the prediction 
results are compared and verified with another model. In the present study, a multiple regression model was built, commonly adopted 
for prediction, using the same data that was utilized in the deep learning algorithm. Thereafter, the MAE (Mean Absolute Error) and 
RMSE (Square Mean Square Error) of the multiple regression analysis model and the deep learning algorithm model were calculated 
and compared and analyzed. The DNN model was created using Python 3.7, while the multiple regression analysis model was 
generated using SPSS (Statistical Package for Social Sciences) V23 software. The comprehensive framework and analysis procedure of 
the loss assessment model is presented in Fig. 2. 

3. Data collection: Input and output variable 

This study suggests a framework for creating a deep learning-driven model to accurately predict typhoon damage, which is the aim 
of this study, through the damage case of Typhoon Rusa, the extreme case of a natural disaster in Korea. In the case of Typhoon Rusa’s 
damage data, a large insurance company in Korea collected data on claims payouts caused by the Typhoon. Damage data is provided 
from scratch, excluding all insurance terms and conditions and no personal data is included. Typhoon Rusa, along with Typhoon 
Maemi, is a representative case of extreme natural disasters, and during the invasion of Korea, it was sustained by devastating record 
rainfall and strong winds, causing a lot of damage to property and casualties. Property damage, in particular, has caused the greatest 
amount of damage from the disaster and is recorded as a representative disaster [26]. Typhoon Rusa landed on the south coast of the 
Republic of Korea on the afternoon of August 31, 2002, penetrated the center of the Korean Peninsula for about 18 h and escaped to the 
east coast on the morning of September 1. It stayed in the Korean Peninsula for a long time, and the damage was amplified by strong 
winds and rains strong enough to show massive rainfall of 870.5 mm on August 31 with an hourly rate of 100.5 mm, especially in 
Gangneung [27]. Fig. 3 shows the distribution of damage from Typhoon Rusa. Typhoon Rusa swept the Korean Peninsula for a long 
time with powerful heavy rains and strong winds, causing a lot of damage throughout the Korean Peninsula, so the navigable and 
dangerous semicircles of the typhoon remained indifferent. 

The study’s dependent (output) variable was the recording of a claim payment from a large insurance company in Korea due to 

Fig. 3. Damage distribution of Typhoon Rusa.  
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Typhoon Rusa, and the collected damage data included the amount of the damage claim, total value of the buildings destroyed, oc
cupancy, date of the damage, location of the damage and details of the damage. The amount of damage was applied as the damage 
factor divided by the total value of the damaged buildings. Table 1 presents a detailed description of the considered input variables. 

The dependent and independent variables were gathered from the primary risk indicators utilized in typhoon research. For 
example, typhoon damage and total building value have a statistically negative correlation, and this relationship is widely used for 
typhoon risk quantification and vulnerability studies [9,28]. Occupancy is also one indicator often used to quantify and predict 
damage from typhoons, as the susceptibility of buildings to typhoons varies with occupancy [9,32]. The occupancy was introduced as a 
nominal variable, divided into 1) industrial building, 2) commercial building, 3) construction, 4) residential building, and 5) apart
ment. Wind speed is the primary indicator used to predict and measure typhoon damage, as it is the trigger that causes direct damage, 
such as missile collision, scattering and collapse caused by strong winds, and indirect damage, such as storm surge [33,34]. This study 
used a 10-min average maximum wind speed (m/s) during typhoon Rusa from the Korea Meteorological Administration (KMA), and 
wind speed information was collected from the location of each damaged building. As the distance between the water system and the 
damaged building has a statistically negative relationship, it is repeatedly used in calculation studies and assessments of susceptibility 
to typhoons [12,35]. Also, the height difference between the water system and the building is widely used in related studies as a vital 
indicator of vulnerability to floods and floods caused by typhoons [35,36]. The distance between the water system and the damaged 
building, as well as the difference in elevation between the water system and the building, were calculated using ArcGIS based on the 
damaged building’s location. For these purposes, the high-resolution landcover and topography data (LiDAR DEM) collected from the 
Korean National Geographic Information Institute (NGII) was utilized [37]. Rainfall is a factor that causes damage such as flood, 
flooding and rain intrusion into buildings during typhoon attacks and is mainly used in research into the vulnerability and damage of 
natural disasters [34,38]. For this study, maximum daily and maximum hourly precipitation data were collected through the Korea 
Meteorological Administration (KMA). This study considered 1379 cases of damages caused by Typhoon Rusa. The independent 
variables, which include the total value of the building, occupancy, wind speed, aerial distance from the water system, height dif
ference, daily maximum precipitation, and hourly maximum precipitation, are each associated with their corresponding statistics, as 
presented in Table 2. The total value of the building and the damage ratio were drawn to a normal distribution by transforming the log. 
The descriptive statistics of the output variable (i.e., damage ratio) ranged from − 12.02 to 4.19, with a mean of − 4.10 and a standard 
deviation of 2.25 (Table 2). Descriptive statistics offer valuable insights into data distribution by providing an in-depth overview of 
input and output variable ranges, central tendencies, and variability. 

4. Development of a deep learning algorithm model 

A deep learning algorithm is one of the machine learning techniques that includes an activation function, hidden layer, input layer, 
an output layer, weight and neuron. Extensive combinations are possible depending on the combination of components, and countless 
combinations of variables are possible to be applied to various data. Due to these advantages, deep learning algorithms are used in 
many different fields, such as prediction, regression, recognition and type classification, to prove their effectiveness [39,40]. The deep 
learning algorithms are categorized into Generative Adversarial Networks (GAN), Deep Neural Networks (DNN), Auto Encoder (AE), 
Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), etc., according to the processing method and arrangement. 
For instance, DNN is extensively adopted for modeling multifaceted nonlinear interactions because infinite combinations of artificial 
neural networks are possible depending on the composition of the network structure and the combination of hyperparameters. In 
particular, it confirms the excellent performance of predicting and analyzing nonlinear data (e.g., natural disasters, construction 
works, etc.) of extraordinary complexity and high uncertainty [13,18,41]. Therefore, this study proposes an outline for the devel
opment of a DNN-based predictive model for analyzing and predicting data generated by Typhoon Rusa. The typhoon damage pre
diction model, derived from the DNN algorithm in this study, will improve the existing model and contribute to the mitigation of 
typhoon damage through advanced prediction techniques. Besides, the DNN algorithm-based typhoon damage prediction model will 
ultimately help prevent typhoon damage and reduce risk. 

In the case of data pre-processing, the input data were normalized using the z-score normalization method. Furthermore, 70 % of 

Table 1 
Comprehensive description of input and output variables.  

Variables Explanation Unit 

Damage ratio The damage ratio is the amount of damage divided by the total value of the damaged building (%) Numeral 
Total value of building Total value of damaged buildings (KRW) Numeral 
Occupancy Occupancy of the damaged building: 1) Industrial building, 2) commercial building, 3) construction, 4) 

residential building, and 5) apartment. 
Nominal 
(1–5) 

Wind speed The 10-min average maximum wind speed (m/s) during Typhoon Rusa Numeral 
Aerial distance from water 

system 
The aerial distance between the water system and the damaged building (m) Numeral 

Height difference The height difference between the water system and the damaged building (m) Numeral 
Daily maximum 

precipitation 
Maximum daily rainfall during Typhoon Rusa (mm) Numeral 

Hourly maximum 
precipitation 

Maximum hourly rainfall during Typhoon Rusa (mm) Numeral  
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the input data is divided into training data, and 30 % of the data is allocated for testing. 30 % of the training data was assigned as 
validation data. The DNN algorithm model uses the backpropagation algorithm to find the optimal combination by updating the node 
weights between the input and output variables. As a result, the trial and error method becomes essential to identify the ideal hyper- 
parameter and network structure [42]. For instance, setting the batch size, dropout, epoch, optimizer and activation function in the 
hyper-parameter to make the DNN algorithm model an optimal set-up. The batch size defines the data learning unit of the DNN al
gorithm model and configures it for effective learning. The dropout rate is a regularization penalty to address the overfitting problem 
that may arise in the DNN algorithm model, and Epoch determines the number of learning times for the DNN algorithm model data. 
The optimizer adjusts the learning rate of the DNN algorithm model data to ensure safe learning. Finding the least cost function is 
determine by the activation function. Finally, various combinations of scenarios are derived in the network structure by arranging the 
number of nodes and the number of layers in order to find the optimal combination [42,43]. 

In this study, the ideal combination resulted from the network structure and hyperparameters used in previous studies on pre
dicting damage from natural disasters and quantifying risk studies [13,18,41,44]. The learning number or epoch number was set to 
1000, and the batch unit or learning unit setting was set to 5. Rectified Linear Unit (ReLu) was designated as the activation function, 
which has a result value of 0 and a differential reference. ReLu was introduced to address the limitation of the sigmoid function [45]. 
The optimizer used Adaptive Moment Estimation (Adam). Adam’s method is easy to calculate and has a wide range of applications, and 
refers to the theory of moments based on the probabilistic objective function [46]. The network structure consists of three layers, and 
the dropout is specified as 0 and 0.2. The DNN backpropagation algorithm (Fig. 4a) and the construction of the DNN model (Fig. 4b) 
consist of input variables, a hidden layer, and the output (damage ratio). 

To find the optimal combination of DNN models, the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) values were 
calculated for each scenario. The indicators commonly used to evaluate artificial neural network models are MAE and RMSE, which 
indicate the precision of the model through the deviation between the actual value and the predicted value [47]. For instance, MAE is 
the absolute value calculated by summing and averaging the residuals of the actual value and the result value. The prediction error 
increases as the MAE value rises. RMSE expresses the residual between actual value and predicted value on a uniform scale. The greater 
the RMSE value, the greater the prediction error. The learning outcomes of the model based on various network structurs scenarios and 
dropout rates are shown in Table 3. The network structure’s final scenario was chosen among the scenarios with the lowest MAE and 
RMSE values of the learning outcomes. The learning outcome exhibited a smaller loss function with a dropout rate of 0 compared to a 

Table 2 
Summary of descriptive statistics for input and output variables.  

Variables N Min. Max. Mean Std. Deviation 

Output Variable 
Damage ratio 1379 − 12.02 4.19 − 4.10 2.25 
Input Variables 
Total value of building 1379 16.96 32.22 24.02 2.11 
Occupancy 1379 1 5 3.71 1.61 
Wind speed 1379 21 38 30.19 3.35 
Aerial distance from water system 1379 0 11074 2492.85 2078.73 
Height difference 1379 − 49.00 32767.00 113.35 1682.01 
Daily maximum precipitation 1379 31 870 108.37 87.47 
Hourly maximum precipitation 1379 5 100 18.75 12.55  

Fig. 4. (a) Model framework and DNN backpropagation algorithm, and (b) The layout of the DNN model.  
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dropout rate of 0.2. Moreover, MAE and RMSE decrease as the number of hidden layer nodes increases. In the network structure with 
400-400-400 nodes in the hidden layers, both MAE and RMSE exhibit the lowest loss functions. Therefore, the optimization model 
network structure scenario and the number of hidden layer nodes are set to 400-400-400, and the dropout is set to 0. Table 4 confirms 
the optimal network structure and hyperparameters. 

5. Model validation 

In order to check if the final DNN model is overfitted, a simulation was performed utilizing validation data and test data. Table 5 
illustrates the MAE and RMSE of the simulation results. The simulation of individual data resulted in MAE and RMSE values of 0.451 
and 0.392 for the validation data, and 0.600 and 0.512 for the test data, respectively. The minimal difference between the MAE and 
RMSE values of the verification data and those of the test data suggests that the overfitting issue in the DNN model can be ignored. 

In addition, to validate the final DNN model, a multiple regression analysis (MRA) model was developed using the same variables as 
applied in the DNN model. MRA is a widely used statistical method for prediction and quantification in both academic and industrial 
fields [3,18,48]. Subsequently, the MRA model was developed using the SPSS V23 software, and the model’s MAE and RMSE values 
were calculated separately. 

Table 5 illustrates the comparative results between the proposed DNN model and the conventional MRA model. The DNN model 
exhibits a lower prediction error rate than the MRA model, amounting to 46.5 % in the MAE and 53.8 % in the RMSE. As a result, the 
DNN algorithm model demonstrates enhanced dependability and resilience when it comes to forecasting building losses caused by 
typhoons. Wei and Yang [49] also observed the backpropagation algorithm outperformed the MRA model. 

6. Discussion 

This study suggests a framework for constructing a damage prediction model utilizing the DNN algorithm to forecast the damage 
induced by Typhoon Rusa. Data regarding the damage incurred from Typhoon Rusa was gathered from the insurance company, and 
input and output variables were formulated. To find the optimal combination of network scenarios and hyperparameters, the optimal 
model of the DNN algorithm was obtained by learning the training data for each scenario and finding the minimum cost function. 
Furthermore, validation data and test data were simulated to confirm the overfitting problem that may arise in the DNN algorithm 
model. Comparative analysis revealed that the proposed DNN model outperformed the conventional MRA model in terms of prediction 
error rate, with former showing a lower MAE 46.5 % and RMSE 53.8 %. Therefore, the DNN algorithm model used in this research 
demonstrates high robustness and consistency in predicting damage from typhoons. Moreover, it was again shown that the non- 
parametric model of the DNN algorithm presented an advanced fit for the analysis of nonlinear data with high uncertainty or 
complexity, such as typhoon damage, than the parametric MRA model [48,50]. 

Natural disaster managers or risk managers in the government or private sector will be able to predict typhoon damage with greater 
reliability than the existing model using the DNN algorithm model offered in this study. Moreover, it will have the potential to develop 
a highly reliable typhoon damage prediction model in the framework outlined in this study. Due to the sophistication and reliability of 
typhoon damage prediction, disaster or risk managers will be able to establish a stronger investment and budget strategy to prevent 
and reduce possible typhoon damage. For example, by preparing an emergency reserve or establishing a financial plan according to the 
size of individual assets and individual risk preferences. In addition, insurers and reinsurers can improve the adequacy of current 
insurance rates through the framework or model of this study and apply it to manage cumulative typhoon risk. Moreover, according to 
the predicted catastrophic risk, wind and flood insurance subscribers can establish and validate a disaster risk transfer strategy by 
determining the adequacy of insurance premiums and coverage of current insurance. Therefore, by predicting damage from extreme 
weather disasters such as Typhoon Rusa through the DNN algorithm model and framework of this study, the assessment criteria will 

Table 3 
Model learning result.  

Network Structure Scenario Dropout (0) Dropout (0.2) 

MAE RMSE MAE RMSE 

5-5-5 0.917 1.100 0.782 1.141 
10-10-10 0.705 0.846 0.662 0.902 
25-25-25 0.565 0.678 0.568 0.729 
50-50-50 0.381 0.457 0.370 0.564 
75-75-75 0.355 0.426 0.347 0.545 
100-100-100 0.354 0.425 0.371 0.540 
200-200-200 0.382 0.458 0.367 0.569 
300-300-300 0.340 0.408 0.319 0.537 
400-400-400 0.339 0.407 0.353 0.535 
500-500-500 0.357 0.429 0.324 0.547 
600-600-600 0.342 0.410 0.329 0.540 
700-700-700 0.357 0.429 0.352 0.542 
800-800-800 0.489 0.587 0.421 0.676 
900-900-900 0.350 0.420 0.337 0.543 
1000-1000-1000 0.358 0.430 0.334 0.544  
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provide the necessary for preventing, reducing, and transferring typhoon risk. This will ultimately provide security to reduce losses due 
to natural disasters. 

Furthermore, the occurrence and severity of extreme natural disasters, such as heavy snow, drought, storm, flood, hail, and tor
nadoes, are expected to increase due to climate change because of global warming. The proposed model and framework can be used as 
reference material for natural catastrophe analysis and prognostic research in various fields. Additionally, the natural disaster risk 
indicators adopted in previous similar research in this study (i.e., the total value of the building, occupancy, wind speed, aerial distance 
from the water system, height difference, maximum daily and hourly precipitation) were utilized to developing a model and obtaining 
meaningful results, further enhancing the results of previous research. Moreover, it is believed to be applicable to other related studies 
using the natural disaster risk indicators applied in this study. In addition, devices using technologies such as the Internet of Things, 
unmanned transportation, robots, Information and Communications and sensors have been actively announced recently in various 
facilities, buildings and infrastructure. As the need for data analysis and utilization is estimated to increase rapidly for devices using 
these technologies, it will be possible to apply the proposed framework of this study to similar research. Therefore, using the results 
and framework of this study, it will be possible not only to use it in the sophisticated prediction of catastrophic events such as Typhoon 
Rusa but also to apply it as basic reference material for related studies in various areas of science and industry. 

However, in order to reduce the prediction error of the DNN model developed in this study, it is necessary to discover further 
variables for the model development by excavating additional variables, such as terrain vulnerability, which may affect typhoon 
damage. Besides, since typhoon damage is limited to property damage in this study, it is necessary to update the model to include 
various future damages, such as human-made damage. Under the contract, this study utilized only collected damages caused by 
Typhoon Rusa by a large insurance company in Korea. Therefore, additional studies are required to secure additional damage data 
from multiple countries and other insurers and reinsurers and to compare and validate by further gathering other data on serious 
damage caused by typhoons. Additionally, the DNN algorithm model presented in this research has a lower prediction error than the 
conventional model; nevertheless, because of the peculiarities of the DNN algorithm, the weights and correlations between nodes exist 
as a black box. This can finally undermine the reliability and objectivity of the model as its user does not identify the process and 
justification for drawing the results. Therefore, it is necessary to better understand the model and data by the user and increase the 
reliability of the model through additional research using eXplainable AI (XAI), which can better explain decision-making, causation 
and prediction to users [51]. In addition to XAI, other advanced optimization algorithms, such as customized heuristics, meta
heuristics, hybrid algorithms, adaptive algorithms, and island algorithms, have also emerged as powerful tools for solving challenging 
decision problems across various domains [52–55]. These algorithms aim to find near-optimal solutions for complex optimization 
problems that are difficult to solve using traditional techniques. Their ability to handle complexity, improve convergence and solution 
quality, and adapt to problem conditions makes them valuable in various domains. However, the application of advanced optimization 
algorithms in the field of natural disasters is an area that requires further exploration. Natural disasters involve complex decision 
problems with multiple objectives, constraints, uncertainties, and trade-offs. Advanced optimization algorithms have the potential to 
address these complexities by considering multiple factors simultaneously and finding optimal or near-optimal solutions. Thus, as part 
of future research, we will attempt additional research based on advanced optimization algorithms along with the deep learning 
approach to perform robust and effective solutions that can contribute to more efficient and resilient disaster management practices. 

7. Conclusions 

The world is suffering from severe disasters due to climate change caused by global warming, and the damage caused by these 
disasters will increase. Moreover, as there is a need for accurate damage prediction to systematically and impartially manage natural 

Table 4 
Comprehensive summary of optimal network structure and hyperparameter configuration.  

Module Configuration Elements 

Network structure Node 3 
Layer 400-400-400 

Network Hyperparameter Activation Function Type ReLu 
Optimizer Adam 
Batch Size 5 
Number of Epoch 1000 
Dropout rate 0  

Table 5 
Result of model comparison.  

Models Validation data Test data 

MAE RMSE MAE RMSE 

Multiple Regression Analysis (MRA) – – 1.123 1.107 
Deep Neural Network (DNN) 0.451 0.392 0.600 0.512 
DNN/MRA (%) – – − 46.5 % − 53.8 %  
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disaster risk, especially those reflecting well-characteristics surges, a consistent and robust model for calculating the damage from 
natural disasters is mandatory. In addition, there is a growing need for an accurate damage prediction model for stable and inde
pendent financial management in the event of natural disasters. 

Therefore, this study suggested a framework to creating a predictive model based on typhoon Rusa damage data and the DNN 
algorithm. In this study, the importance of the DNN algorithm model has been proven by comparison with other models, so it can be 
assumed that it will be used in future disaster damage prediction and model development. Therefore, using the outcomes and 
framework of this study, it will be possible to quantify the damage caused by a major disaster and help establish financial management 
guidelines and strategies through quantifying risk. Besides, it can be applied as basic data for other major disasters or other industries 
and research fields, and so it will ultimately contribute to the reduction of damage caused by natural disasters and the development of 
related technologies. For example, insurers and reinsurers can use the framework and findings of this study as a basis for determining 
key indicators and figures such as Excess of Loss Reinsurance, reserve, Liability Limit, Probable Maximum Loss, and insurance pre
miums. Additionally, it can be applied to manage the cumulative risk of natural disasters according to each company’s portfolio, size of 
assets and risk orientation. Besides, the public sector will be able to use the framework of this study or the disaster risk indicators to 
develop a disaster prediction system or an assessment tool. 
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