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Abstract: We developed particle swarm optimization-based support vector regression (PSVR) and
ordinary linear regression (OLR) models for estimating the refractive index (n) and energy gap
(E) of a polyvinyl alcohol composite. The n-PSVR model, which can estimate the refractive index
of a polyvinyl alcohol composite using the energy gap as a descriptor, performed better than the
n-OLR model in terms of root mean square error (RMSE) and mean absolute error (MAE) metrics.
The E-PSVR model, which can predict the energy gap of a polyvinyl alcohol composite using its
refractive index descriptor, outperformed the E-OLR model, which uses similar descriptor based on
several performance measuring metrics. The n-PSVR and E-PSVR models were used to investigate
the influences of sodium-based dysprosium oxide and benzoxazinone derivatives on the energy
gaps of a polyvinyl alcohol polymer composite. The results agreed well with the measured values.
The models had low mean absolute percentage errors after validation with external data. The
precision demonstrated by these predictive models will enhance the tailoring of the optical properties
of polyvinyl alcohol composites for the desired applications. Costs and experimental difficulties
will be reduced.

Keywords: polyvinyl alcohol; composite; support vector regression; refractive index; particle swarm
optimization; energy gap

1. Introduction

Polyvinyl alcohol is an atactic, semi-crystalline polymeric material that possesses
excellent biodegradability, biocompatibility, useful mechanical properties, excellent optical
properties, and non-toxicity, hence its wide range of applications [1–3]. Other excellent
properties of polyvinyl alcohol include thermal stability, water solubility, excellent optical
transmission, and non-corrosiveness [4]. These features, especially its optical properties
such as the refractive index and energy gap, promote its industrial and technological
uses as an optoelectronic material, a coating material, a solar cell component, a super
capacitor component, and a component of several kinds of sensors [5,6]. The hydrogen
bonding between polyvinyl alcohol and other materials is facilitated by the presence of
hydroxyl groups on the carbon backbone of polyvinyl alcohol, and these bonds help
with composite formation [6,7]. Polyvinyl alcohol is of significant interest because it is
abundantly accessible, relatively cheap, contains many volatile functional groups, and
has hydrophilic features. It has excellent charge storing capacity, has great dielectric
strength, and gives uniform high-optical-quality films for nonlinear optical instruments and
optical sensors. Temperature dependency and inter or intramolecular connectivity enhance
polyvinyl alcohol chains’ flexibility [8]. These properties strengthen the polyvinyl alcohol
matrix, making it a viable composite that can be used for electronic devices, bioengineering,

Polymers 2021, 13, 2697. https://doi.org/10.3390/polym13162697 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6666-1755
https://orcid.org/0000-0003-0951-9450
https://doi.org/10.3390/polym13162697
https://doi.org/10.3390/polym13162697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13162697
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13162697?type=check_update&version=3


Polymers 2021, 13, 2697 2 of 16

and optoelectronics. Fillers have been incorporated as dopants to modify and tailor
polyvinyl alcohol’s optical properties for specific applications [8].

A polymeric composite involves reinforcement and the incorporation of a filler into
the parent polymer matrix, which ultimately results in enhanced physical, optical, electrical,
chemical, and mechanical properties [9]. The properties of these polymeric composites are
strongly influenced by the nature of the parent polymer; the concentration of the filler; the
mutual interaction between the polymer and the filler; and the size, shape, and type of the
modified composite [8]. Fillers take different forms, including metal powders, carbon fiber,
chalk, volcanic minerals, glass fibers, polymeric fibers, and natural fibers. The hydroxyl
groups on the carbon backbone of polyvinyl alcohol eases composite formation with other
materials and provides viable ways of enhancing its optical properties (refractive index
and energy gap). The refractive index is one of any polymer’s most important optical
features, due to its influence on and connection with electrical, optical, and magnetic
properties. Adequate knowledge of the refractive indices of polymers is important for
their applications in waveguide manufacturing, optical fibers, and optical films, among
others [10]. Polyvinyl alcohol compounds with high refractive indices are highly desirable
in photonics and optics, due to their potential to increase light output by reducing reflection
losses [11].

We developed particle swarm-based support vector regression (PSVR) for predicting
the refractive indices of polyvinyl alcohol composites while using the energy gap as a
descriptor. Filler incorporation alters the energy gap of any polyvinyl alcohol due to
trap-level formation within the band gap when an impurity is incorporated into the
polymer matrix [12]. Linear relations exist between the energy gaps and the refractive
indices of semiconductors [13]. The refractive indices of heterogeneous polymers have
been predicted in other ways [10]. We utilized the aforementioned relation by developing
machine learning-based predictive models for estimating the refractive indices and energy
gaps of atactic polyvinyl alcohol composites for the first time, due to the importance of
polyvinyl alcohol for technological advancement. Ordinary linear regression (OLR)-based
models were also developed in this work to demonstrate nonlinear relationship between
the refractive indices and energy gaps of polyvinyl alcohol composites, and to further
clarify the inadequacy of linear models in addressing the relationship.

Support vector regression (SVR) belongs to the category of nonlinear intelligent al-
gorithms. It operates according to the principle of structural risk minimization, using
statistical learning [14]. It addresses nonlinear problems conveniently through nonlinear
mapping functions and efficiently handles small samples of datasets with excellent pre-
dictive outputs [15,16]. The algorithm has enjoyed wider applicability lately due to its
robust mathematical computation and global convergence feature [17–22]. The hyperpa-
rameters associated with SVR include the epsilon, penalty factor, kernel function, and
kernel parameter. Accurate determination of the hyperparameters of the algorithm remains
the key to the precision of the model. Tuning of these hyperparameters is often achieved
through manual searching, grid searching, or the use of heuristic algorithms. Among the
heuristic algorithms, the particle swarm optimization (PSO) algorithm has demonstrated
a high rate of success and excellent processing time [23,24]. It avoids local convergence
and attains fast convergence rate without doing so prematurely. Excellent features of
PSO were combined with those of SVR to develop PSVR-based models so that the optical
properties of polyvinyl alcohol composites could be estimated with high precision. We
developed hybrid intelligent models for determining the influences of fillers or dopants on
the refractive index (n) and energy gap (E) of polyvinyl alcohol using particle swarm-based
support vector regression (PSVR) algorithms. The performances of the developed hybrid
intelligent models were compared with those of ordinary linear regression (OLR)-based
models using various performance metrics.

The content of the remainder of this manuscript is as follows. Section two presents
the mathematical formulation of SVR and PSO algorithms. Section three describes the
computational details of the hybridized algorithms, physical descriptions of the materials,
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and the acquisition of the implemented dataset. Section four explains the results of the
models and presents a comparison with the outcomes of the ordinary linear regression
models. Section five concludes the manuscript.

2. Mathematical Descriptions of the Algorithms

The formulation of the support vector regression algorithm is mathematically de-
scribed in this section. The evolutionary principle governing particle swarm optimization
is also presented.

2.1. Support Vector Regression

Support vector regression can connect the energy gap of doped polyvinyl alcohol with
the corresponding refractive indices through data transformation from a two-dimensional
structure to a higher-level structure of n dimensions [25,26]. Consider a dataset of M
samples of polyvinyl alcohol composite consisting of input energy gap Ek ∈ X = Rm and
measured refractive indices nk ∈ Y = R, such that k = 1, 2, . . . , M. The algorithm addresses
the problem through a regression function presented in Equation (1) [27,28].

n(E) = 〈γ•E〉+ b (1)

where γ and b are vector weights and bias, respectively, where γ, b ∈ R. The dot product
between the input E and weight vector γ is represented by 〈γ•E〉. Restricting the precision
of the model to a threshold value defined by epsilon ε requires that the Euclidean norm
shown in Equation (2) is minimized and subjected to the constraints and conditions of
Equation (3) [29,30].

min
‖γ‖2

2
(2){

nmeas − 〈γ•Ek〉 − b ≤ ε

〈γ•Ek〉+ b− nmeas ≤ ε
(3)

where measured and estimated refractive indices are denoted by nmeas(E) and n(E), re-
spectively. Positive variables (χ and χ∗) known as slack variables penalize the prediction
function in situations where the precision threshold defined by ε becomes difficult to actu-
alize. With these inclusions, the optimization problem is transformed to Equation (4), and
the new constraints contained in Equation (5) hold.

Min
‖γ‖2

2
+ C

M

∑
k=1

(χ∗ + χ) (4)

{
nmeas − 〈γ•Ek〉 − b ≤ ε + χ

〈γ•Ek〉+ b− nmeas ≤ ε + χ∗
, χ∗, χ ≥ 0 (5)

where C is the penalty coefficient that influences the precision and accuracy of the model.
It penalizes samples outside the channel through determination of the tradeoff between
model complexity and the training error. A small value of C indicates a regression function
permitting a lower-cost deviation of the predicted refractive index from the measured
values. Thus, the epsilon loss function is defined in Equation (6).

|nmeas − n|ε =
{

0 , |χ| ≤ ε

|χ| − ε, otherwise
(6)

It should be noted that the refractive indices of the trained sample of polyvinyl
alcohol composites, which fall within negative and positive ε zone, do not fall within
the loss. Lagrange multipliers are adequate for solving the convex optimization problem
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contained in Equation (4). Lagrange multipliers (λ, λ∗, δ, δ∗) are introduced as presented
in Equation (7).

L(b, γ, λ, λ∗, χ∗, χ, δ, δ∗) = Min ‖γ‖
2

2 + C
M
∑

k=1
(χk
∗ + χk)−

M
∑

k=1
δkχk −

M
∑

k=1
δ∗k χ∗k

+
M
∑

k=1
λk
(
n(Ek)− nmeas

k − ε− χk
)
+

M
∑

k=1
λ∗k
(
n(Ek)− nmeas

k − ε− χ∗k
) (7)

The final regression function after Lagrange multipliers and subsequent transforma-
tion to original dual space is presented in Equation (8) [31].

n(E) =
M

∑
k=1

(λk − λ∗k )Ek•E + b (8)

The support vectors acquired during the training phase of model development with
the training samples correspond to λk − λ∗k 6= 0. These support vectors represent the data
points which are closer to the hyperplane and can influence the orientation and the position
of the hyperplane. Inclusion of kernel function η(Ek, E) into Equation (7) allows nonlinear
mapping, and the new regression function is presented in Equation (9) [32]

n(E) =
M

∑
k=1

(λk − λ∗k )η(Ek, E) + b (9)

The Gaussian kernel function presented in Equation (10) performs better than the other
functions. This kernel is a robust radial basis kernel which has excellent anti-interference
defense against data noise.

η(Ek, E) = exp

(
−‖Ek − E‖2

ω

)
(10)

where ω is the kernel parameter.

2.2. Particle Swarm Optimization (PSO)

Particle swarm optimization is a metaheuristics-based method of optimization that
was inspired by fish training and bird swarming. The algorithm addresses optimization
problems by considering a flock of birds with social interactions among themselves in a
search for sources of food [33,34]. Each bird searching for food sources is considered a
particle; the swarm refers to the flock of birds. Velocity and position are two characteristic
features that direct the swarm towards the food sources, and these features are determined
randomly at the initial stage of the search. When a bird attains an ideal position, the
position is referred to as its individual best, since the position factors in the peculiarities
of the bird itself. However, the global best position comes into play when a bird attains
the best position with respect to the swarm [31,35]. With the individual experience of each
bird and the experiences perceived by other birds in the swarm, the position and velocity
(individual best and global best positions and the velocities) are updated and refreshed
accordingly. The position and velocity of each of the particles (bird) are mathematically
modeled and simulated as shown in Equations (11) and (12), respectively.

Rj(i + 1) = Rj(i) + Vj ∗ (i + 1) (11)

Vj(i + 1) =
(
ψ ∗ (Vj(i)

)
+
(

ac ∗ τ ∗ (Pj − Rj(i)) + (âc ∗ τ̂ ∗ (P̂j − Rj(i))
)

(12)
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where Rj = jth particle position (N-dimensional), Vj = jth particle velocity (N-dimensional),
ψ = weight (inertial), ac = first acceleration constant, τ = random number in a range of
0 to 1, Pj = individual best position, âc = second acceleration constant, τ̂ = another random
number from 0 to 1 (it may be different or the same as τ), and P̂j = global best position.
The inertial weight controls the stopping conditions of the algorithm and decreases as the
number of iterations increases [36]. The relation with which the inertial weight controls the
convergence of the algorithm is presented in Equation (13).

ψ = ψmax −
(

ψmax − ψmin

imax

)
i (13)

where imax and i, respectively, represent the maximum number of iterations defined by the
user at the commencement of the algorithm, two hundred, and the number of iterations at
a particular time.

3. Hybrid Particle Swarm-Based Support Vector Regression Model Development

The computational part of this work is presented in this section. Data acquisition and
a description of the dataset are also presented.

3.1. A Description of the Dataset and Its Acquisition

The refractive indices and energy gaps of polyvinyl alcohol composites used for devel-
oping PSVR and OLR models were extracted from the literature [6,7,12,37–46]. The energy
gaps and refractive indices dataset was extracted from sixty-three composite samples of
polyvinyl alcohol. Increments in the concentrations of fillers within the polymer matrices
influence the refractive indices of the polymer composites due to crosslink formation in
the respective matrices. The refractive index of a polymer changes with the density of the
crosslinking because of the tightness and closeness between the chains [6]. Similarly, impu-
rities (fillers) incorporated into the polymer matrix lead to trap-level formation within the
band gap, which consequently affects the energy gap of the composite [12]. The correlation
cross-plot between the refractive indices and energy gaps of polyvinyl alcohol composites
is presented in Figure 1. It can be inferred from the figure that there exists no linear relation-
ship between refractive index and energy gap for the investigated polymeric composites.
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3.2. Computational Methodology of the Particle Swarm Optimized Support Vector Regression

Development of PSVR and OLR-based models was conducted within the MATLAB
computing environment. The hyperparameters influencing the precision, robustness, and
accuracy of support vector regression were optimized using a particle swarm optimization
algorithm, in which each bird (particle) in a flock (swarm) was assumed to contain the
information about the hyperparameters in a specified order. The dataset employed for the
simulation was randomized before proceeding to the data partitioning phase to ensure
uniform distribution of the data points. The randomized set of data was further separated
into training and testing at 8:2. The training set was employed for support vector acquisi-
tion. The effectiveness and efficacy of each model were assessed using the testing set. The
step-by-step procedures of the algorithm hybridization are summarized as follows:

Step 1: Particle swarm parameter and search space initialization: PSO parameters
such as the population size (NP), maximum number of iteration (imax), inertial weight (ψ),
and acceleration constants (âc and ac) were initiated and specified. The search spaces for
each of the hyperparameters were also defined as [1000 1; 0.9 0.1; 0.9 0.01] for the E-PSVR
model, corresponding to [penalty factor, epsilon, kernel option]. The search space for the
n-PSVR model was defined as [1000 1; 0.9 0.1; 0.9 0.1], corresponding to [penalty factor,
epsilon, kernel option]. It should be noted that the limits of the search spaces were selected
after performing a random check of the most probable locations of the possible solutions.

Step 2: Random generation and initialization of particle position and velocity: The
position and velocity of each of the particles constituting a swarm were generated randomly
within the search space. The generated position and velocity were potential values of the
hyperparameters.

Step 3: Fitness function evaluation: Evaluation of the fitness of each of the particles
involves the development of an SVR-based model by implementing the following major
steps. (i) Selection of a function (such as sigmoid, polynomial, or Gaussian) which serves
as the kernel function. (ii) The selected function, a particle from a swarm, and the training
data are incorporated into the SVR algorithm to train a model. (iii) The trained model is
evaluated using root mean square error (TR-RMSE). (iv) The testing dataset is fed into the
support vectors acquired during the training for model validation. (v) The tested model is
also evaluated using root mean square error (TS-RMSE). Therefore, each particle within the
swarm has the corresponding value of TS-TMSE (that is, individual best Pj) which serves
as the fitness value. The lower the value of TS-RMSE, the fitter the particle. When the
lowest value (corresponding to the most fit particle) of TS-RMSE in a swarm is compared
with the lowest values of TS-RMSE of the other swarms, the lowest TS-RMSE from all the
swarms is referred to as the global best (P̂j).

Step 4: Updating the individual best positions: If the value of the particle current
position (Pcurrent) is greater than Pj, update the position as Pcurrent = Pj. Otherwise, proceed
to the next step.

Step 5: Global position update: If Pcurrent > P̂j, update as Pcurrent = P̂j. Otherwise,
proceed to the next step.

Step 6: Iteration continuation: If a particle’s index is greater than the initially defined
number of particles, proceed to the next step. Otherwise go back to Step 3.

Step 7: Fitness evaluation using global best position: Using the global best position,
evaluate the fitness function of the particles.

Step 8: Velocity and position update: Update the velocity and position of the particle
using Equations (11) and (12), respectively.

Step 9: Stopping conditions: The algorithm stops the repeating circle if the maximum
number of iterations has been attained. Otherwise, go to Step 2.

The computational flow description of the developed PSVR-based models is presented
in Figure 2. The complete code is available at the Supplementary Materials.
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Figure 2. Computational architecture of the developed PSVR-based models.

4. Results and Discussion

The outcomes of the developed n-PSVR, n-OLR, E-PSVR, and E-OLR models are
presented in this section. The dependencies of the developed models on the number of
particles in the swarm are presented. Results of the investigation of the influences of fillers
on the optical properties of polyvinyl alcohol composite are also presented.

4.1. Convergence and Sensitivity of the Developed PSVR-Based Models

The influences of the number of swarm particles on the exploration and exploitation
capacities of the developed n-PSVR and E-PSVR models are presented in Figure 3. The
figure also includes the sensitivity of each of the developed models to the hyperparameters,
given various numbers of swarm particles. A balance should be maintained between
the exploration and exploitation capacities of the PSO algorithm. When a small number
of particles explores a search space, the exploration ability of the algorithm might be
hindered. To enhance this exploration capacity by populating the search space with many
particles, the exploitation strength of the algorithm might be affected. Figure 3a presents the
convergence of the developed n-PSVR model as the number of iterations varies. Premature
convergence was observed when the number of particles was set to ten. The figure shows
fifty particles in a swarm led to global convergence. The algorithm was trapped in local
solutions as the number of particles in the swarm increased from fifty to one hundred.
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This can be attributed to the deterioration of the exploitation capacity of the algorithm,
as the search space was well explored with fifty particles. Figure 3b shows the variation
of the penalty factor with the number of particles in the swarm. Less deviation of the
estimated refractive index was observed when fifty particles explored the search space.
The sensitivity of the developed n-PSVR model to error threshold epsilon is presented in
Figure 3c. Although the convergence began at different points when different numbers of
swam particles explored the search space, the algorithm converged to the optimum error
threshold with fifty particles. This signifies the robustness and precision of the developed
model. Error convergence of the developed E-PSVR model is presented in Figure 3d.
Irrespective of the number of particles exploiting the search space, the algorithm converged
to the same global solution. This shows the robustness of the model we made to have
enhanced exploitation and exploration capacities. Figure 3e presents the sensitivity of the
E-PSVR model to the penalty factor with different numbers of swarm particles in the search
space. The algorithm showed similar global convergence after sixty iterations. Figure 3f
shows the sensitivity of the E-PSVR model to the value of error threshold epsilon. The
model showed good convergence irrespective of the number of swarm particles. The details
of the swarm particles that demonstrated optimum performance, as measured through
lowest root mean square error (RMSE), are presented in Table 1. It should be noted that
several kernel functions were investigated. The reported Gaussian kernel function showed
superior performance over polynomial and sigmoid functions.
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Table 1. Details of swarm particles with optimum performance.

n-PSVR E-PSVR

C 73.6036 91.937
NP 50 50
ε 0.217 0.472
ω 0.2671 0.0587
η(Ek, E) Gaussian Gaussian

4.2. Performance Evaluations of the Developed Models

The performance of each of the four developed models was evaluated using error
metrics and correlation coefficients. The empirical linear equations for the n-OLR and
E-OLR models are presented in Equations (14) and (15), respectively.

n−OLR = −0.0628Eg + 2.1354 (14)

E−OLR = −0.3885n + 4.5493 (15)

The empirical equations were generated using a set of training data and later validated
with test data. Evaluations of the performances of n-PSVR and n-OLR models are presented
in Figure 4.

The n-PSVR model had superior performance to the n-OLR model in the training
and testing stages of model development according to root mean square error (RMSE),
mean absolute error (MAE), and correlation coefficient (CC). The n-PSVR model performed
better than the n-OLR model during the training phase, as presented in Figure 4a. The
performance improvement was 70.83% in terms of CC. The testing phase of model devel-
opment showed performance improvements of 83.90%, 9.39%, and 7.12% with CC, RMSE,
and MAE metrics, respectively, as shown in Figure 4b–d. Performance during the training
phase was only compared using CC, since future performance of a model can be effectively
judged using the testing performance.
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Figure 4. Performance of the developed n-PSVR model using various error metrics. (a) Correlation coefficient for each of
the developed refractive index model during training phase (b) Correlation coefficient for each of the developed refractive
index model during testing phase (c) Root mean square error for each of the developed refractive index model during
training phase (d) Mean absolute error for each of the developed refractive index model during testing phase.

The E-PSVR, which can estimate the energy gaps of polyvinyl alcohol composites,
performed better than the E-OLR model. The performance enhancement was 80.34% in
terms of CC, on training data, as depicted by Figure 5a. Similar performance improvements
of 108.46%, 37.28%, and 32.77% in CC, RMSE, and MAE, respectively, were obtained at the
testing stage of model development, as presented in Figure 5b–d. The results with all error
metrics of the performance evaluation at each stage of model development are presented
in Table 2.

Table 2. Performance evaluations of the developed models.

Training Phase Testing Phase

CC CC RMSE MAE

n-PSVR 0.5042 0.8196 0.3124 0.2192
n-OLR 0.1470 0.1319 0.3448 0.2360
E-PSVR 0.7332 0.7743 0.5663 0.4645
E-OLR 0.1441 −0.0655 0.9029 0.6909
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4.3. The Doping Effect of Sodium-Based Dysprosium Oxide on the Energy Gap of Polyvinyl
Alcohol Using E-PSVR

The effect of incorporating sodium-based dysprosium oxide on the energy gap of
polyvinyl alcohol using is presented in Figure 6, which was calculated using E-PSVR. The
results of the developed E-PSVR model match the measured values well [44].

The gap disjoining the conduction band from the valence band was reduced by the
incorporation of the filler (sodium-based dysprosium oxide). This observation can be
attributed to the induction of a localized electronic state which facilitated lower-energy
electronic transitions [44]. The disorderliness in the doped samples increased as the
filler concentration increased, due to structural change in the polymer consequent upon
incorporation of the dopant. This experimentally observed energy gap reduction was
well captured by the E-PSVR model, except for the sample with a 2% concentration of
sodium-based dysprosium oxide, which showed a maximum deviation of 1.5% for the
measured and estimated energy gaps of 3.62 and 3.6744 ev, respectively.
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4.4. The Importance of Benzoxazinone for the Energy Gap of Polyvinyl Alcohol Using the
E-PSVR Model

The energy gap lowering effect of incorporating benzoxazinone on polyvinyl alcohol,
as obtained by the E-PSVR model, is presented in Figure 7. The figure also presents a
comparison between the obtained outcomes of the model and the measured values [6].
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The observed energy gap reduction can be attributed to the formation of chemical and
structural bonds. The molecules of benzoxazinone each form a bond with polyvinyl alcohol,
which enhances the formation of trap levels existing between the lowest unoccupied
molecular orbit (LUMO) and highest occupied molecular orbit (HOMO). Therefore, lower
energy transitioning becomes feasible, leading to optical energy gap reduction [6].

4.5. Further Validation of the E-PSVR and n-PSVR Models Using External Data

To assess the performances of the hybrid E-PSVR and n-PSVR models, external vali-
dation was conducted with them. In the validation process, the developed models were
only supplied with the model inputs. The models employed the acquired support vectors
during the training phase of model development for performing external validation. It
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should be noted that the external data utilized for the validation process were not in-
cluded in the training and testing sets of data used for model development. Validation of
the n-PSVR model employed thirty-five polyvinyl alcohol composite polymers extracted
from different sources. Twenty-eight polyvinyl alcohol composite polymers were used for
validating the developed E-PSVR model. Table 3 presents the outcomes of the external
validation with the inclusion of percentage error for each of the polyvinyl alcohol composite
polymers. The mean absolute percentage errors (MAPE) for the developed n-PSVR and
E-PSVR models were 7.92 and 7.57, respectively, for the employed validation data. The
standard deviation (SD) of the mean error and the standard error of the mean (SEM) are
also presented in the table.

Table 3. Results of external validation of the developed hybrid models.

S/N
Measured

Energy
Gap (ev)

Measured
Refractive

Index
n-PSVR %Error S/N

Measured
Refractive

Index

Measured
Energy Gap

(ev)

E-PSVR
(ev) %Error

1 5.36 1.47 [47] 1.67 13.35 1 2.12 4.27 [48] 4.10 3.89
2 5.06 1.80 [47] 1.82 1.16 2 1.47 5.36 [47] 4.97 7.28
3 2.67 2.01 [47] 2.07 3.14 3 2.01 2.67 [47] 2.82 5.50
4 2.80 1.56 [49] 1.78 14.29 4 2.06 1.82 [47] 1.86 2.20
5 2.40 1.72 [49] 1.59 7.80 5 1.43 5.00 [5] 4.35 13.04
6 3.98 1.67 [50] 1.47 11.68 6 1.44 4.50 [49] 4.53 0.62
7 3.90 1.72 [50] 1.62 5.88 7 1.67 3.98 [50] 3.66 8.03
8 3.81 1.79 [50] 1.78 0.53 8 2.10 3.78 [50] 3.40 9.92
9 3.78 2.10 [50] 1.82 13.42 9 1.94 3.62 [50] 4.04 11.53
10 3.62 1.94 [50] 1.78 8.34 10 1.22 2.70 [51] 2.34 13.46
11 4.96 2.02 [52] 2.14 5.74 11 1.26 2.60 [51] 2.75 5.88
12 5.05 1.99 [52] 1.86 6.65 12 1.54 3.80 [53] 4.36 14.79
13 5.02 2.00 [52] 1.96 1.78 13 2.13 4.20 [54] 4.33 3.20
14 2.40 1.56 [51] 1.59 1.65 14 1.43 4.48 [54] 4.40 1.76
15 2.30 1.65 [51] 1.44 12.61 15 1.53 4.77 [54] 4.30 9.83
16 3.50 1.53 [53] 1.64 7.50 16 1.57 5.20 [55] 4.58 11.98
17 3.60 1.62 [53] 1.75 8.06 17 2.51 4.15 [55] 4.33 4.38
18 4.97 2.00 [54] 2.11 5.65 18 1.91 4.41 [56] 4.03 8.66
19 4.14 1.26 [54] 1.40 11.42 19 1.98 4.32 [56] 3.94 8.80
20 6.45 1.76 [54] 1.55 11.90 20 2.11 4.10 [56] 3.79 7.54
21 5.20 1.57 [54] 1.45 7.83 21 1.41 4.90 [57] 4.20 14.24
22 4.80 2.08 [55] 2.12 1.80 22 2.15 4.60 [57] 4.59 0.29
23 3.10 2.81 [54] 2.96 5.23 23 2.49 4.50 [57] 4.62 2.65
24 5.05 1.99 [54] 1.86 6.84 24 2.89 4.20 [57] 3.78 10.09
25 4.98 2.00 [58] 2.09 4.27 25 1.38 4.76 [59] 4.36 8.47
26 4.91 2.01 [58] 2.21 9.75 26 2.13 4.22 [59] 4.33 2.72
27 4.87 2.02 [58] 2.21 9.49 27 2.67 2.11 [59] 2.38 12.74
28 4.57 1.77 [56] 1.78 0.54 28 2.39 3.01 [60] 3.27 8.51
29 4.41 1.91 [56] 1.75 8.13 SD = 0.19 SEM = 0.04 MAPE = 7.57
30 5.00 1.87 [5] 2.03 8.55
31 2.56 1.94 [59] 2.13 9.64
32 3.33 2.31 [60] 2.09 9.60
33 3.01 2.39 [60] 2.61 9.23
34 4.61 2.06 [48] 1.80 12.84
35 4.55 2.07 [48] 1.78 14.14
36 4.51 2.08 [48] 1.78 14.54

SD = 0.08 SEM = 0.01 MAPE = 7.92

5. Conclusions

The optical properties of polyvinyl alcohol composites were modeled in this work
using hybrid support vector regression and particle swarm optimization. The results of the
hybrid PSVR-based model were compared with the estimates of ordinary linear regression
(OLR) models using error metrics such as RMSE, CC, and MAE. The E-PSVR model
performed better than the E-OLR model with a performance enhancement of 80.34% in CC
on the training data. Similar performance improvements of 108.46%, 37.28%, and 32.77% in
CC, RMSE, and MAE, respectively, were obtained at the testing stage of model development.
The n-PSVR model also outperformed the n-OLR model using three error metrics. The
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E-PSVR model was used to investigate the significance of sodium-based dysprosium
oxide and benzoxazinone on the energy gap of a polyvinyl alcohol composite. The results
agree well with the measured values. The E-PSVR and n-PSVR models were externally
validated using thirty-six and twenty-eight polyvinyl alcohol composites, respectively, and
the obtained optical properties agree well with the measured values. The outstanding
performance demonstrated by these models should strengthen and aid the design of
polyvinyl alcohol-based composites for specific industrial and technological applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13162697/s1, The developed source code that implements the proposed hybrid PSVR
models is included as supplementary material. The employment data (training, testing and external
validation) are also included to ease the reproducibility of the developed models.

Author Contributions: Conceptualization, T.O.O.; Data curation, T.O.O.; Formal analysis, M.A.A.R.;
Funding acquisition, M.A.A.R.; Methodology, M.A.A.R.; Supervision, M.A.A.R.; Writing—original
draft, T.O.O.; Writing—review & editing, M.A.A.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by Ministry of Higher Education (MOHE) of Malaysia through
Fundamental Research Grant Scheme (FRGS/1/2020/ICT02/UPM/02/3) and the APC was funded
by Universiti Putra Malaysia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the results can be found in literature as stated in
Section 3.1 and the additional dataset is also available in Section 4.5 Table 3 of the manuscript.

Acknowledgments: This research was supported by Ministry of Higher Education (MOHE) of
Malaysia through Fundamental Research Grant Scheme (FRGS/1/2020/ICT02/UPM/02/3).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Soliman, T.S.; Vshivkov, S.A. Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite

films. J. Non. Cryst. Solids 2019, 519, 1–6. [CrossRef]
2. Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G. Studies on nonlocal optical nonlinearity of

Sr—CuO—polyvinyl alcohol nanocomposite thin films. Thin Solid Films 2015, 595, 48–55. [CrossRef]
3. Khairy, Y.; Mohammed, M.I.; Elsaeedy, H.I.; Yahia, I.S. Optical and electrical properties of SnBr 2 -doped polyvinyl alcohol (PVA)

polymeric solid electrolyte for electronic and optoelectronic applications. Optik 2020, 228, 166129. [CrossRef]
4. Devi, C.U.; Sharma, A.K.; Rao, V.V.R.N. Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films.

Mat. Lett. 2002, 56, 167–174. [CrossRef]
5. Rashad, M. Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 2020, 105,

109857. [CrossRef]
6. El-badry, Y.A.; Mahmoud, K.H. Molecular and Biomolecular Spectroscopy Optical study of a static benzoxazinone derivative

doped poly (vinyl) pyrrolidone—Poly (vinyl) alcohol blend system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219,
307–312. [CrossRef]

7. Mahmoud, K.H.; Elsayed, K.A.; Kayed, T.S. Molecular and Biomolecular Spectroscopy Optical properties of polyvinyl alcohol
film irradiated with Nd: YAG laser. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 518–522. [CrossRef]

8. Ali, H.E.; Algarni, H.; Yahia, I.S.; Khairy, Y. Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped
by fullerene. Chin. J. Phys. 2021, 72, 270–285.

9. Saini, I.; Rozra, J.; Chandak, N.; Aggarwal, S.; Sharma, P.K.; Sharma, A. Tailoring of electrical, optical and structural properties of
PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 2013, 139, 802–810. [CrossRef]

10. Duchowicz, P.R.; Fioressi, S.E.; Bacelo, D.E.; Saavedra, L.M.; Toropova, A.P.; Toropov, A.A. QSPR studies on refractive indices of
structurally heterogeneous polymers. Chemom. Intell. Lab. Syst. 2015, 140, 86–91. [CrossRef]

11. Abdelaziz, M. Cerium (III) doping effects on optical and thermal properties of PVA films. Phys. B Phys. Condens. Matter. 2011,
406, 1300–1307. [CrossRef]

12. Nangia, R.; Shukla, N.K.; Sharma, A. Optical and structural properties of Se 80 Te 15 Bi 5/PVA nanocomposite films. J. Mol.
Struct. 2019, 1177, 323–330. [CrossRef]

https://www.mdpi.com/article/10.3390/polym13162697/s1
https://www.mdpi.com/article/10.3390/polym13162697/s1
http://doi.org/10.1016/j.jnoncrysol.2019.05.028
http://doi.org/10.1016/j.tsf.2015.10.039
http://doi.org/10.1016/j.ijleo.2020.166129
http://doi.org/10.1016/S0167-577X(02)00434-2
http://doi.org/10.1016/j.optmat.2020.109857
http://doi.org/10.1016/j.saa.2019.04.050
http://doi.org/10.1016/j.saa.2017.12.059
http://doi.org/10.1016/j.matchemphys.2013.02.035
http://doi.org/10.1016/j.chemolab.2014.11.008
http://doi.org/10.1016/j.physb.2011.01.021
http://doi.org/10.1016/j.molstruc.2018.09.080


Polymers 2021, 13, 2697 15 of 16

13. Ravindra, N.M.; Ganapathy, P.; Choi, J. Energy gap–refractive index relations in semiconductors—An overview. Infrared Phys.
Technol. 2007, 50, 1–29. [CrossRef]

14. Vapnik, V.N. Statistical Learning Theory; Wiley-Interscience: New York, NY, USA, 1998.
15. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Inc.: New York, NY, USA, 1995; Volume 70–92.
16. Basak, D.; Pal, S.; Patranabis, D.C. Support Vector Regression. Neural Inf. Process. Lett. Rev. 2007, 11, 203–224.
17. Owolabi, T.O.; Abd Rahman, M.A. Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-

Based Support Vector Regression and Extreme Learning Machine. Symmetry 2021, 13, 411. [CrossRef]
18. Owolabi, T.O.; Abd Rahman, M.A. Energy Band Gap Modeling of Doped Bismuth Ferrite Multifunctional Material Using

Gravitational Search Algorithm Optimized Support Vector Regression. Crystals 2021, 11, 246. [CrossRef]
19. Olatunji, S.O.; Owolabi, T.O. Modeling superconducting transition temperature of doped MgB 2 superconductor from structural

distortion and ambient temperature resistivity measurement using hybrid intelligent approach. Comput. Mater. Sci. 2021, 192,
110392. [CrossRef]

20. Tokuyama, H.; Mori, H.; Hamaguchi, R.; Kato, G. Prediction of the lower critical solution temperature of poly(N-isopropylacrylamide-
co-methoxy triethyleneglycol acrylate) in aqueous salt solutions using support vector regression. Chem. Eng. Sci. 2021, 231, 116325.
[CrossRef]
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