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Abstract
The global distribution of the soil-dwelling bacterium Burkholderia pseudomallei, causative
agent of melioidosis, is poorly understood. We used established culturing methods devel-

oped for B. pseudomallei to isolate Burkholderia species from soil collected at 18 sampling

sites in three states in the southern United States (Arizona (n = 4), Florida (n = 7), and Loui-

siana (n = 7)). Using multi-locus sequence typing (MLST) of seven genes, we identified 35

Burkholderia isolates from these soil samples. All species belonged to the B. cepacia com-

plex (Bcc), including B. cenocepacia, B. cepacia, B. contaminans, B. diffusa, B.metallica,
B. seminalis, B. vietnamiensis and two unnamed members of the Bcc. The MLST analysis

provided a high level of resolution among and within these species. Despite previous clinical

cases within the U.S. involving B. pseudomallei and its close phylogenetic relatives, we did

not isolate any of these taxa. The Bcc contains a number of opportunistic pathogens that

cause infections in cystic fibrosis patients. Interestingly, we found that B. vietnamiensis was
present in soil from all three states, suggesting it may be a common component in southern

U.S. soils. Most of the Burkholderia isolates collected in this study were from Florida (30/35;

86%), which may be due to the combination of relatively moist, sandy, and acidic soils

found there compared to the other two states. We also investigated one MLST gene, recA,
for its ability to identify species within Burkholderia. A 365bp fragment of recA recovered

nearly the same species-level identification as MLST, thus demonstrating its cost effective

utility when conducting environmental surveys for Burkholderia. Although we did not find B.
pseudomallei, our findings document that other diverse Burkholderia species are present in

soils in the southern United States.
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Introduction
The Gram-negative genus Burkholderia is composed primarily of diverse soil-dwelling bacteria
that play a variety of ecological roles as saprophytes, nitrogen-fixing mutualists, and pathogens.
The genus includes plant pathogens, such as B. gladioli and B. glumae, and two species that are
highly pathogenic to humans and other animals (B. pseudomallei and B.mallei). Burkholderia
pseudomallei, the causative agent of melioidosis, is endemic to Southeastern Asia and Australasia
[1, 2]. However, melioidosis also is reported sporadically in other locations of the world, including
the Americas, Africa, the Middle East, and various island communities [1]. As a result, the current
known global distribution of B. pseudomallei is thought to be just “the tip of the iceberg” [3].

Seroreactivity to B. pseudomallei antigens has been observed in healthy U.S. individuals [4], pos-
sibly as a result of exposure to B. pseudomallei or genetic near neighbor species. Five naturally
acquired humanmelioidosis cases [5, 6] and four patients infected with genetic near neighbors of
B. pseudomallei (B. oklahomensis and B. thailandensis) [7, 8] have been described in the U.S.
Despite the possible presence of B. pseudomallei and its close genetic near neighbors in North
America, only B. oklahomensis and B. thailandensis have been cultured from environmental sam-
ples [5, 7, 8]. However, members of the more distantly related B. cepacia complex (Bcc), which con-
tains numerous opportunistic human pathogens [9–11], are frequently isolated in North America.

The diverse taxa of the Bcc have received increased attention due to their importance to
plants, agriculture, and human health. One species belonging to this group, B. vietnamiensis,
has the ability to fix nitrogen, which allows it to form mutualistic relationships with rice plants
[12]. A well-known strain of B. vietnamiensis (G4) is especially interesting due to its ability to
degrade common organic pollutants. This strain was isolated from a wastewater treatment
facility in Florida and is now used for bioremediation [13]. Other species within the Bcc (B.
ambifaria, B. cenocepacia, B. cepacia) have been identified as significant pathogens to commer-
cially valuable plants, such as onions and bananas [14, 15]. Several members of the Bcc, as well
as the more distantly related B. gladioli, have been described as opportunistic pathogens, partic-
ularly in cystic fibrosis (CF) patients [16–18]. The top three Bcc species responsible for infec-
tions of American CF patients are B. cenocepacia, B.multivorans, and B. vietnamiensis [18–20].

Based on clinical cases in North America involving individuals infected with B. pseudomallei
or its close genetic near neighbors [21], we suspected these species might be present in North
American environments that are similar to those in melioidosis-endemic regions of Asia and
Australia. In particular, B. pseudomallei and its near neighbor species are found in Australia
and Asia in sandy, acidic, moist soils that are well-oxygenated, and protected from UV expo-
sure [22, 23]. In endemic regions where melioidosis cases are common, B. pseudomallei, B.
thailandensis, and B. oklahomensis can be readily isolated from soil and water samples using
selective media developed for the isolation of B. pseudomallei, such as Ashdown’s agar [24]. A
recent consortium outlined effective methods and media for conducting surveys of B. pseudo-
mallei in the environment [25]. However, few surveys for B. pseudomallei and its near neigh-
bors have been conducted outside of endemic areas [26, 27] despite the ongoing discovery of
new species in this group [28]. To address this knowledge gap, we surveyed for B. pseudomallei
and its genetic near neighbors in soils from three southern U.S. states using these well-estab-
lished sampling and culturing methods.

Methods

Environmental sampling in the U.S
From September-November 2012, we collected soil from three southern states (Arizona, Flor-
ida, and Louisiana) to survey for B. pseudomallei and its genetic near neighbors (Fig 1). Warm
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southern regions were selected because B. pseudomallei is largely endemic to tropical regions,
such as Southeast Asia and northern Australia [1]. Due to their proximity to the hot and
humid climate of the Gulf of Mexico, both Florida and Louisiana provide the closest approxi-
mation in the US to the environmental conditions where B. pseudomallei is endemic. Arizona
was included due to a recent case of melioidosis described from the southern region of that
state [5, 29]. All collection sites were chosen for their close vicinity to surface freshwater with
road access, but we avoided agricultural fields and human dwellings (Table 1). No specific per-
missions were required for our sampling activities, because they occurred along the right-of-
way of public roads and in municipal parks without access restrictions. Also, the field sampling
did not involve endangered species or protected habitats. Soil collection procedures followed
those employed by the Menzies School of Health and Research [22] and are expanded versions
of those used by the wider B. pseudomallei research community [25]. Soil was collected at mul-
tiple sites per state (AZ = 4, FL = 7, LA = 7), which are displayed on maps in S1 Fig. At each
site five sampling holes were dug along linear 40m transects (10m between holes) using hand
spades, with two samples collected at different depths (10cm and 30cm) from each hole for a
total of 180 soil samples. All field equipment was rinsed with water and decontaminated with
70% ethanol between each sampling hole. Soil samples were collected in 50mL sterile conical
tubes and stored in the dark at ambient temperature until they were shipped (also at ambient
temperatures) to Northern Arizona University.

All culturing procedures were carried out at Northern Arizona University and followed
methods previously described [25, 30]. It is important to note that these methods were devel-
oped specifically to isolate B. pseudomallei and not all Burkholderia species. Briefly, 20g of each

Fig 1. Soil sampling locations within the United States. Soil sampling was conducted in the states of Arizona (AZ), Louisiana (LA), and Florida (FL).
Yellow circles indicate the specific locations. More location information is provided in Table 1 and S1 Fig.

doi:10.1371/journal.pone.0143254.g001
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collected soil sample was suspended in 20mL of sterile distilled water and incubated at 37°C
while shaking (250 rpm) for 48 hours. Samples were allowed to settle for 1 hour and then
100μL of the water suspension was plated onto Ashdown’s agar plates. Also, 10mL of water sus-
pension was inoculated into 10mL of Ashdown’s broth (containing 0.05 mg/mL colistin) [24].
The Ashdown’s broth was then shaken at 37°C for seven days. We plated 10μL of the top layer

Table 1. Soil sample collection sites for Burkholderia spp. isolation, with ten samples collected per site.

State a Site # of
Burkholderia
isolates

Species b Collection
Date

Dominant
soil type at
site

County County
average
annual
rainfall
(inches) c

Closest
water
source

Latitude
(North)

Longitude
(West)

AZ 1 0 9/24/2012 clay Pinal 9.36 Cattle tank 32.56 -111.36

AZ 2 0 9/24/2012 clay Pinal 9.36 Cattle tank 32.56 -111.36

AZ 3 1 B.v (1) 9/25/2012 sand Pima 10.92 Coyote
Springs

32.04 -110.56

AZ 4 1 B.a (1) 9/25/2012 sand Pima 10.92 Coyote
Springs

32.04 -110.56

FL 1 2 B.co (1);
B.v (1)

11/6/2012 sand Orange 51.12 St. Johns
River

28.54 -80.94

FL 2 10 B.c (1); B.
v (9)

11/6/2012 sand Brevard 51.83 Fox Lake 28.59 -80.87

FL 3 0 11/6/2012 sand Brevard 51.83 Salt Lake 28.64 -80.90

FL 4 1 B.c (1) 11/6/2012 sand Brevard 51.83 Salt Lake 28.66 -80.91

FL 5 6 B.c (1); B.
s (2); B.v
(3)

11/7/2012 sand Lake 51.63 Lake
Minneola

28.56 -81.77

FL 6 3 B.ce (1);
B.c (1); B.
m (1)

11/7/2012 sand Lake 51.63 Lake
Minneola

28.56 -81.78

FL 7 8 B.c (1); B.
d (1); B.v
(6)

11/7/2012 sand Lake 51.63 Trout Lake 28.45 -81.71

LA 1 0 10/10/2012 sand Plaquemines 61.17 Mississippi
River

29.66 -89.95

LA 2 1 B.d (1) 10/10/2012 sand Plaquemines 61.17 Mississippi
River

29.66 -89.95

LA 3 0 10/10/2012 clay St. John the
Baptist

62.25 Lake
Maurepas

30.10 -90.44

LA 4 0 10/10/2012 clay St. John the
Baptist

62.25 Lake
Maurepas

30.10 -90.44

LA 5 1 B.v (1) 10/10/2012 clay St. John the
Baptist

62.25 Lake
Ponchartrain

30.11 -90.43

LA 6 1 B.v (1) 10/10/2012 sand St. Charles 61.83 Lake
Ponchartrain

30.06 -90.37

LA 7 0 10/10/2012 clay St. Charles 61.83 Lake
Ponchartrain

30.06 -90.37

Total
isolates

35

a AZ = Arizona, FL = Florida, LA = Louisiana
b B.a = B. arboris; B.ce = B. cenocepacia; B.c = B. cepacia; B.co = B. contaminans; B.d = B. diffusa; B.m = B. metallica; B.s = B. seminalis; B.v = B.

vietnamiensis
c Obtained from www.usa.com. Calculated from historical data of U.S weather stations from 1980 to 2010.

doi:10.1371/journal.pone.0143254.t001
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from the Ashdown’s broth suspension onto Ashdown’s agar plates (containing 4 mg/mL genta-
mycin) at Day 2 and Day 7 post broth inoculation. After 48 hours of incubation at 37°C, we
sub-cultured single colonies from the Ashdown’s agar plates (up to 5 colonies per plate). We
were specifically interested in isolating members of the B. pseudomallei group and, thus,
selected colonies that displayed a morphology similar to B. pseudomallei: lavender to purple
colonies, dry, slightly textured, with a raised dome or fried-egg morphology, and dimpled/
wrinkled centers [31, 32]. Because we used these selection criteria and methods developed spe-
cifically for the isolation of B. pseudomallei and not all Burkholderia species, it is likely that we
missed some Burkholderia species present in the samples that are not closely related to B. pseu-
domallei [33].

Detection of B. pseudomallei
To quickly determine the presence of B. pseudomallei we screened DNA extractions using a
real-time PCR assay that targets orf2 in the type three secretion system 1 (TTS1) cluster of B.
pseudomallei. This target is highly specific to B. pseudomallei and is considered the gold stan-
dard for PCR-based detection of B. pseudomallei [34]. Although the consensus guidelines sug-
gest using the latex agglutination assay, we used molecular identification because it is more
accurate. DNA was extracted from all sub-cultured colonies using a 5% Chelex1-100 heat
soak method [35, 36]. All DNAs were screened using published conditions on ABI 7900
machines. We used DNA from a known positive control isolate of B. pseudomallei (K96243)
and water was used for no-template controls (NTCs).

Molecular identification of Burkholderia spp
To identify any potential Burkholderia spp. from the Ashdown’s medium, we sequenced a
365bp section of the recombinase A gene (recA) and, when necessary, the 16S rRNA gene. The
RecA protein is essential for DNA recombination and repair and its nucleotide gene sequence
exhibits mutations among Burkholderia species, making it valuable as a molecular target for
species-level identification [37]. Since other soil-dwelling bacteria besides Burkholderia are
known to grow on Ashdown’s media (including Delftia, Pandoraea, Pseudomonas, and Ralsto-
nia) [31], we used Burkholderia-specific primers BUR 3 [38] and BUR5 [39] to amplify a
365bp region of the recA gene for the next screening of all sub-cultured isolates. The 20μL PCR
contained final concentrations of the following reagents: 1 x buffer, 1.5mMMgCl2, 0.25mM
dNTPs, 0.2μM of each primer, 1.0 U of Platinum1 Taq (Invitrogen, Grand Island, NY), 1.2M
betaine, and 1μL of DNA template (diluted genomic DNA). A modified version of a previously
described “slowdown PCR” designed for GC-rich template [40, 41] was used for cycle condi-
tions (SEQSLOWD). The modifications made to the slowdown PCR were as follows: initial
denature of 95°C for 5 minutes was excluded, extension time lengthened from 40 seconds to 3
minutes, starting annealing temperature reduced from 70°C to 65°C, ending annealing temper-
ature reduced from 53°C to 52°C, starting annealing temperature reduced from 58°C to 55°C
for the last 15 cycles, and final extension of 72°C for 10 minutes was added. The complete PCR
cycle conditions for SEQSLOWD are listed in S1 Text. The 365bp PCR product (4μL) was visu-
alized on a 1.5% agarose gel using a 100bp ladder (Invitrogen, Grand Island, NY) for reference
to the target size and estimation of the dilution needed for cycle sequencing PCR (below).

The 16S rRNA gene was sequenced from isolates that yielded negative recA results to ensure
that we did not exclude any Burkholderia spp. that may possess incompatible recA priming
sites. We used modifications of universal 16S primers 27F.1G (forward, 5’-GAGRGTTT
GATCMTGGCTCAG-3’) and 1391R (reverse, 5’-TGRACACACCGCCCGTC-3’) to amplify a
~1400bp region of the 16S rRNA gene [42]. The 20μL PCR contained final concentrations of
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the following reagents: 1 x buffer, 2.0 mMMgCl2, 0.2 mM dNTPs, 0.4μM of each primer, 1.6 U
of Platinum1 Taq (Invitrogen, Grand Island, NY), and 1μL of DNA template (gDNA diluted
1/10). PCR cycle conditions were as follows: 5 min, 94°C; (30 sec, 94°C; 30 sec, 55°C; 75 sec,
72°C) x 35 cycles; 5 min, 72°C; held at 16°C. The 1400bp PCR product (4μL) was visualized on
a 1.0% agarose gel using 1kb ladder (Invitrogen, Grand Island, NY) for reference to the target
size and estimation of the required dilution for cycle sequencing PCR. Water was used for no-
template controls (NTCs) and known Burkholderia DNA served as controls for all PCRs.

Both recA and 16S rRNA genes were sequenced using the Sanger method. To remove excess
primers and dNTPs from the post-PCR product, 4μL of Exo-SAP-IT1 (USB Corporation,
Cleveland, OH) was added to each reaction and incubated for 15 min at 37°C, followed by
enzyme deactivation for 15 min at 80°C. PCR dilutions were made depending on the band
intensity from the gel electrophoresis. Faint bands were diluted 1:2 in water whereas bright
bands were diluted 1:5. The diluted PCR product was used as template for sequencing using
the BigDye1 Terminator v3.1 Cycle Sequencing Kit (Life Technologies, Grand Island, NY).
The same primers used for the initial amplification of recA were used in two cycle sequencing
reactions. An additional five internal primers (335F2, 5’-CTCCTACGGGAGGCAGCAG-3’;
926F, 5’-CTCCTACGGGAGGCAGCAG-3’; 926F, 5’-TTAAAACTCAAATGAATTGA
CGGGG-3’; 1053F, 5’-GTGCTGCATGGCTGTCGTCAG-3’; 515R, 5’-ATTACCGCGGCT
GCTGGCAC-3’; 787R, 5’-ATTAGATACCCRNGTAGTCC-3’; 1391R, 5’-TGRACACAC
CGCCCGTC-3’) [42] were used to achieve full coverage of the 1400bp 16S rRNA gene in seven
cycle sequencing reactions. Cycle sequencing conditions for recA and 16S rRNA genes were the
same except for the primer starting concentrations (recA, 0.8μM; 16S rRNA, 3.2μM). The com-
ponents for the cycle sequencing were 2μL 5x sequencing buffer, 1μL BigDye1 v3.1, 0.32μM of
a single primer and 2μL of diluted PCR product producing a 10μL reaction. The cycle condi-
tions for cycle sequencing consisted of 1 min, 96°C; (30 sec, 96°C; 10 sec, 50°C; 4 min, 60°C) x
30 cycles; held at 16°C. An EDTA/ethanol precipitation cleanup was performed on the prod-
ucts before they were sequenced on a 3130xl Sequencer (Applied Biosystems, Carlsbad, CA).

Once the recA and 16S rRNA fragments were sequenced they were assembled and edited by
visual inspection with Sequencher 5.1 (Gene Codes, Ann Arbor, MI). Using NCBI BLAST
(http://blast.ncbi.nlm.nih.gov/Blast.cgi), all recA and 16S rRNA amplicons were identified to
genus and any isolates that were not Burkholderia were excluded. The Burkholderia recA
sequences were then aligned with other Burkholderia recA sequences from NCBI GenBank,
including B. xenovorans as an outgroup taxon, as previously established by Cesarini et al., 2009
and Martina et al., 2013 [43, 44] (accession numbers reported in S2 Fig). A total of 65
sequences (35 sequences from this study and 30 external sequences) were aligned in
Sequencher 5.1 using Clustal WMultiple Alignment. Aligned sequences were imported into
MEGA version 5.2 to construct a maximum parsimony tree from the recA sequences with a
bootstrapping method [45–47]. Only bootstrap values of�50% are reported on the consensus
tree (S2 Fig).

Multiple locus sequence type (MLST) analysis
Isolates identified as Burkholderia spp. were streaked from a single colony to form a lawn and
then stored at -80°C in Luria Bertani (LB) broth with 20% glycerol. Culture was grown on LBA
plates and incubated at 37°C for 24–48 hours. High molecular weight DNA was extracted
using the Qiagen1DNeasy Blood and Tissue Kit (catalog no. 69504; Valencia, CA) in prepara-
tion for whole genome sequencing using Illumina HiSeq, MiSeq, or GAIIx (Illumina, Inc.; San
Diego, CA) sequencing technology. Using approximately 2.7μg of gDNA, libraries were pre-
pared for whole genome sequencing as previously described [48].
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Raw reads were assembled using SPAdes v3.5.0 [49] (data not shown). A multiple locus
sequence type (MLST) system specific for the Bcc was used [50]. First, alleles were called by
aligning assemblies against MLST alleles from the PubMLST website (see http://pubmlst.org/
bcc/) with BLASTN [51]. For each case, the top BLAST hit for each allele was identified and
the sequence type was reported for exact matches. For our 35 samples from this study,
concatenated sequences of the seven MLST genes (atpD, gltB, gyrB, recA, lepA, phaC, and trpB)
were generated by extracting the exact match from BLASTN alignments. Each sequence type
(ST) was searched for in the PubMLST Bcc database (see http://pubmlst.org/bcc/) to determine
its closest match. At least one representative was downloaded as an external reference in addi-
tion to the type strains for members of the Bcc and B. gladioli as a reference outside of the Bcc
(40 reference sequences). All concatenated MLST sequences (n = 75) were aligned using MUS-
CLE [49] and a maximum parsimony analysis was performed using MEGA v6 with a boot-
strapping method [45, 47, 52]. Only bootstrap values of�50% are reported on the consensus
tree (Fig 2).

Results/Discussion

Burkholderia species identified
Burkholderia pseudomallei was not identified in any of our soil collections and, to date, this
species has yet to be isolated from environmental samples within the United States. Despite the
collection of both clinical and environmental isolates in the U.S. of B. oklahomensis [8] and B.
thailandensis [7], we were unable to identify these species or any other close genetic near neigh-
bors within the B. pseudomallei group (Fig 2). All 176 isolates sub-cultured from the Ash-
down’s agar plates (AZ = 45, FL = 82, LA = 49) were negative for TTS1 but we identified 36
isolates that showed amplification using the Burkholderia recA assay. Of these 36 recA positive
isolates, 35 were identified as Burkholderia spp., whereas the last isolate had a closest NCBI

BLAST identity with Rubrivivax gelatinosus. The 35 Burkholderia isolates were cultured from
multiple locations in all states, including 2/4 (50%) sampling sites in AZ, 3/7 (43%) sampling
sites in Louisiana, and 6/7 (86%) sampling sites in Florida (Table 2). All Burkholderia isolates,
based upon a MLST maximum parsimony tree shown in Fig 2 (tree length: 1479 steps, consis-
tency index: 0.3960, retention index: 0.8650), were members of the B. cepacia complex, includ-
ing B. cenocepacia (n = 2), B. cepacia (n = 3), B. contaminans (n = 1), B. diffusa (n = 2), B.
metallica (n = 1), B. seminalis (n = 2), and B. vietnamiensis (n = 22), and two other Bcc (Table 2
and Fig 2).

The state that yielded the most Burkholderia isolates was Florida with a total of 30 isolates,
followed by Louisiana with three isolates, and Arizona with two isolates (S1 Fig). Since B. pseu-
domallei prefers moist soil [22] it was not surprising that Arizona, with the lowest average
annual rainfall among these three states (Table 1), yielded the smallest number of isolates. All
Burkholderia were cultured from sandy soils except for one strain that was isolated from a clay
site in LA (Table 1). Both sampling depths yielded about equal numbers of Bcc isolates. One of
the Florida sites in particular (site 2, Fox Lake, FL) provided a significant proportion (10/35, or
28%) of the total isolates. One explanation as to why more Burkholderia were isolated from
Florida than Louisiana could be due to the pH of the soil. Burkholderia has been shown to have
a higher tolerance for acidic soil than other bacteria found in soil [23, 53], and Florida has the
greatest extent of low pH soil among the three states we sampled [54]. Although we did not col-
lect pH data at our specific sampling locations, it is possible that the acidic soils in Florida
could contribute to a higher abundance of Burkholderia compared to the other two states with
higher soil pH. Of course, there will be local variations in soil pH within each of the states,
which can influence the bacterial community on a fine scale.
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A better understanding of U.S. soil microbial communities and their environmental condi-
tions may provide important information about the presence and environmental preferences
of opportunistic pathogens. A number of the Bcc species we recovered have been described as
opportunistic pathogens, particularly in cystic fibrosis (CF) patients and other immunocom-
promised individuals [9, 11, 16–18]. In Florida, we isolated the two of the top three Bcc species
responsible for the greatest number of infections in CF patients (B. cenocepacia and B. vietna-
miensis) [10, 18–20]. Interestingly, we did not recover any B.multivorans from our soil samples
despite the greater occurrence of this species in CF patients compared to all other members of
the Bcc [18]. Based on the large number of CF clinical cases caused by these three species
throughout the U.S., these Burkholderia spp. could be present in a wide range of soils through-
out the U.S.

B. vietnamiensis clade
Our study suggests that B. vietnamiensismay be a common component of the soil bacterial
community in the southern U.S. We isolated B. vietnamiensis in all three states and it was the
most common species in our survey (n = 22/35). As mentioned above, B. vietnamiensis is an
opportunistic pathogen particularly in CF patients. However, it is also a beneficial species that
can fix nitrogen in association with rice plants [12], and at least one strain (G4) is capable of
degrading a common organic pollutant, trichloroethylene [13, 55]. The same sampling location
that yielded B7020 (FL, site 2, sampling hole 3) also provided two other B. vietnamiensis strains
with unique sequence types (STs) (B7019 FL-2 and B7021 FL-2), indicating that genetic diver-
sity within a single soil collection hole can be quite high; a similar pattern has been found with
B. pseudomallei [56]. Other members belonging to the Bcc could also be common components
of the soil but we may have not sampled them due to our methods used for the preferential iso-
lation of B. pseudomallei.

Diversity within the B. cepacia complex
The MLST maximum parsimony tree (Fig 2) provided species-level resolution and demon-
strated a substantial amount of diversity among our soil samples. Of the 35 Burkholderia iso-
lates, six were assigned to currently defined STs whereas the other 29 represented 28 previously
uncharacterized STs (Table 2). We obtained species-level identification for all isolates except
two (B6994 and B7043). It appears that B6994 may represent a new lineage within the
PubMLST database because its closest match was an undescribed member of the Bcc
(QLD039) that shared the same allele at only three of seven MLST loci. The other exception,
B7043, also had a closest match with an unknown member of the Bcc (AU7004) that shared
alleles at five loci (Table 2 and Fig 2).

A short fragment from one of the MLST loci (recA) was capable of providing the same spe-
cies identification as MLST loci in nearly all cases (33/35; see S2 Fig). Sequencing this smaller,
relatively variable fragment of recA provides a more rapid and inexpensive tool for species

Fig 2. Maximum parsimony analysis of BurkholderiaMLST gene sequences (2778bp) with 1,500
bootstrap replicates. All samples in bold font are isolates from this U.S. study and are labeled with a sample
ID, collection state, and collection site. PubMLST sequences are labeled with species, PubMLST number,
strain ID, genomovar (when available), collection country (when available), sample type (when available),
and year (when available). Only bootstrap values�50%were reported. This tree was rooted with B. gladioli.
The most parsimonious tree had a tree length of 1479 steps, a consistency index of 0.3960, and a retention
index of 0.8650. Collection state: AZ = Arizona (orange text), FL = Florida (green), LA = Louisiana (purple).
The tree is drawn to scale, with branch lengths calculated using the average pathway method and are in the
units of the number of changes over the whole sequence. The analysis involved 75 nucleotide sequences.

doi:10.1371/journal.pone.0143254.g002
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Table 2. All Burkholderia spp. isolated from U.S. soil during this study.

ID Pub
MLST #

State a Site Sample Depth
(cm)

species b atpD gltB gyrB recA lepA phaC trpB Sequence
type

recA
accession #

B6993 1658 AZ 3 1 30 B.
vietnamiensis

27 20 15 22 12 11 17 200 KR011892

B6994 1662 AZ 4 2 10 Other BCC 106 274 302 339 68 295 205 1038* KR011893

B7013 1863 FL 1 2 10 B.
vietnamiensis

27 233 248 96 363 131 81 996* KR011897

B7014 1864 FL 1 2 30 B.
contaminans

89 422 113 71 39 54 70 1037* KR011898

B7015 1870 FL 2 1 10 B.
vietnamiensis

27 231 173 23 36 56 81 980* KR011895

B7016 1872 FL 2 2 10 B.
vietnamiensis

27 350 248 174 363 187 81 1033* KR011899

B7017 1897 FL 2 2 30 B.
vietnamiensis

27 231 248 23 163 131 81 984* KR011900

B7018 1899 FL 2 3 10 B. cepacia 4 386 49 3 2 1 21 961* KR011901

B7019 1900 FL 2 3 10 B.
vietnamiensis

27 233 248 96 363 131 81 996* KR011897

B7020 1901 FL 2 3 10 B.
vietnamiensis

27 350 248 48 363 180 81 1031* KR011902

B7021 1902 FL 2 3 30 B.
vietnamiensis

27 350 223 174 36 131 188 1009* KR011903

B7022 1904 FL 2 4 30 B.
vietnamiensis

27 350 221 174 363 132 81 1005* KR011903

B7023 1905 FL 2 5 10 B.
vietnamiensis

27 19 16 22 12 187 17 969* KR011904

B7024 1908 FL 2 5 30 B.
vietnamiensis

27 19 107 23 12 11 268 974* KR011895

B7025 1917 FL 4 2 10 B. cepacia 6 52 3 113 5 5 3 962* KR011905

B7026 1922 FL 5 1 10 B.
vietnamiensis

27 233 248 209 163 131 188 1000* KR011906

B7028 1923 FL 5 2 10 B.
vietnamiensis

27 19 15 22 36 11 17 63 KR011907

B7029 1924 FL 5 2 10 B.
vietnamiensis

27 20 15 23 49 56 17 978* KR011895

B7030 1925 FL 5 3 30 B.
cenocepacia

67 175 326 49 94 8 122 1036* KR011908

B7031 1926 FL 5 4 10 B. seminalis 165 161 328 144 156 123 45 1039* KR011909

B7032 1927 FL 5 5 10 B. seminalis 165 161 328 144 156 123 45 1040* KR011909

B7033 1928 FL 6 2 30 B.
cenocepacia

15 11 487 14 11 6 147 964* KR011910

B7034 1929 FL 6 3 10 B. cepacia 1 195 45 1 1 279 21 960* KR011911

B7035 1930 FL 6 5 30 B. metallica 167 189 400 187 202 153 242 1041* KR011912

B7036 1931 FL 7 1 10 B.
vietnamiensis

27 231 15 22 12 56 17 979* KR011904

B7037 1932 FL 7 2 10 B. diffusa 259 284 503 267 74 32 41 1042* KR011913

B7038 1933 FL 7 2 10 B.
vietnamiensis

27 231 202 22 49 56 17 600 KR011907

B7039 1934 FL 7 3 30 B.
vietnamiensis

27 231 202 22 49 56 17 600 KR011904

B7040 1935 FL 7 4 10 B.
vietnamiensis

27 231 202 22 49 56 17 600 KR011904

(Continued)
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identification of Burkholderia isolates compared to MLST. All SNPs within recA were synony-
mous mutations, as might be expected for a gene that is essential for DNA recombination and
repair. Although MLST is a high resolution tool capable of recovering within-species diversity,
recA by itself is able to provide adequate species-level resolution for molecular surveys of Bur-
kholderia from environmental and clinical samples.

The isolates found in this study do not represent the overall community of Burkholderia
species found in U.S. soils for two main reasons. First, we utilized a selective medium designed
to isolate B. pseudomallei and it is likely that not all members of the Bcc grow on this medium.
Second, the primary goal of this study was to attempt to isolate B. pseudomallei and, as a result,
we preferentially selected colony morphologies similar to B. pseudomallei. During this selection
process other members of the Bcc with less similar colony morphologies to B. pseudomallei
could have been missed.

Conclusions
All the Burkholderia species isolated from this study (with the exception of B.metallica) have
been described frommultiple continents and have world-wide distributions (see http://pubmlst.
org/bcc/) [51]. We expected to find more Burkholderia in Florida and Louisiana than in Arizona
since both states receive more than five times the amount of annual rainfall than Arizona
(Table 1). A surprising result was that Florida yielded ten times as many Burkholderia isolates as
Louisiana, as well as greater species diversity, although sampling sizes were low. One possible
explanation to the dissimilarity in the number of Burkholderia isolates between Florida and Loui-
siana may be primarily due to soil type. Most soils sampled in Louisiana were of a heavy clay
composition and probably had a neutral pH, whereas the Florida soils were predominantly sandy
and more likely to be acidic. Clay-based soils are more likely to result in anaerobic conditions
that are not ideal for the growth of Burkholderia, whereas an increased fraction of sand may
increase the available oxygen and favor the survival of Burkholderia. Some soil dwelling bacteria
have difficulty inhabiting soil with a lower pH whereas Burkholderia can tolerate a wide range of
soil pH [23]. This provides Burkholderia with an advantage to survive in soils where other soil
bacteria cannot and may be a contributor to why the majority Burkholderia isolates in this study

Table 2. (Continued)

ID Pub
MLST #

State a Site Sample Depth
(cm)

species b atpD gltB gyrB recA lepA phaC trpB Sequence
type

recA
accession #

B7041 1936 FL 7 4 30 B.
vietnamiensis

27 19 107 23 12 56 81 976* KR011895

B7043 1937 FL 7 5 30 Other BCC 53 38 398 38 56 212 46 1034* KR011914

B7044 1938 FL 7 5 30 B.
vietnamiensis

27 233 248 23 12 180 81 987* KR011895

B6997 1665 LA 2 3 30 B. diffusa 57 41 68 40 26 32 41 1035* KR011894

B6998 1666 LA 5 5 30 B.
vietnamiensis

27 19 16 23 12 56 17 380 KR011895

B6999 1695 LA 6 3 30 B.
vietnamiensis

27 350 248 96 363 187 81 1032* KR011896

a AZ = Arizona, FL = Florida, LA = Louisiana
b Species identified by placement within MLST phylogenetic tree (Fig 2).

* Represents a novel ST from this study

doi:10.1371/journal.pone.0143254.t002
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were from Florida. Due to the lack of melioidosis cases in the U.S., we did not expect B. pseudo-
mallei to be prevalent in our samples, especially considering our relatively small sample sizes.
However, if B. pseudomallei is indeed present in isolated regions in the U.S., we hypothesize that
Florida is the most likely of these three southern states to contain B. pseudomallei, based upon
rainfall, soil type, and the results from this study.

Supporting Information
S1 Fig. Maps of soil sampling sites in the southern United States. Specific locations at which
Burkholderia species were recovered are shown as red markers. Images generated in ArcMap
10.2 [57].
(DOCX)

S2 Fig. Maximum parsimony analysis of Burkholderia recA gene sequences with 1,500
bootstrap replicates. All samples in bold font are isolates from this U.S. study and are labeled
with a sample ID, collection state, collection site, and accession number. GenBank sequences
are labeled with species, collection location (when available), sample type (when available),
accession number, and strain ID. Only bootstrap values�50% were reported. This tree was
rooted with B. xenovorans. The most parsimonious tree had a tree length of 217 steps, a
consistency index of 0.4874, and a retention index of 0.8832. Collection state: AZ = Arizona
(orange text), FL = Florida (green), LA = Louisiana (purple). Sample type: Cl = clinical,
En = environmental. The tree is drawn to scale, with branch lengths calculated using the aver-
age pathway method and are in the units of the number of changes over the whole sequence.
The analysis involved 65 nucleotide sequences.
(TIF)

S1 Text. SEQSLOWD cycle conditions used for recA PCR.Modified version of previously
described “slowdown PCR” designed for GC-rich template [40, 41].
(DOCX)
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