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Purpose: This study conducted an phenotypic and whole-genome sequencing analysis with Klebsiella aerogenes to elucidate its 
clinical epidemiological characteristics, antimicrobial resistance (AMR) phenotype, biofilm formation ability and hemolytic activity 
testing, AMR genes and phylogenetic relationships, so as to provide a further understanding of the intra-hospital strain 
transmission.
Methods: Samples were collected from a hospital in Beijing between 2020 and 2022. All strains underwent bacterial identification, 
antimicrobial susceptibility testing (AST) using the VITEK-2 compact system. Biofilm formation ability and hemolytic activity were 
tested. Second-generation sequencing was applied to all strains, with those carrying the blaKPC gene were selected for third-generation 
sequencing. Whole-genome analysis identified resistance genes, plasmid types, MLST typing, and phylogenetic relationships. 
Plasmids were assembled to detect plasmid structures and AMR gene location.
Results: Among the 42 K. aerogenes isolates, 21 were carbapenem-resistant K. aerogenes (CRKA). All strains exhibited strong 
biofilm formation and no hemolytic activity. Most were sourced from sputum (83.3%). CRKA demonstrated extensive resistance to 
antibiotics, particularly β-lactamase inhibitors and Cefotetan. This resistance pattern was closely associated with the presence of an 
IncFII(pHN7A8) plasmid, which carried multiple resistance genes, including blaKPC-2, blaCTX-M-65, blaTEM-1, rmtB and a large number 
of mobile elements. The majority of CRKA strains clustered within the same branch of the phylogenetic tree, exhibiting minimal 
single nucleotide polymorphism (0–13 SNPs) differences, and they shared the same sequence type (ST292), resistance genes, and 
plasmids, originating from different departments, suggesting clonal transmission among the hospital.
Conclusion: Our research reveals that the clonal transmission of CRKA occurs across various departments within the hospital. The 
widespread resistance observed in CRKA, attributed to the presence of blaKPC and ESBLs genes, underscores the need for heightened 
vigilance to prevent the further dissemination of CRKA within the hospital and, potentially, throughout the wider community.
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Introduction
Klebsiella aerogenes, formerly known as Enterobacter aerogenes, belongs to the Enterobacteriaceae family and is 
classified as a Gram-negative facultative anaerobic bacterium. It is a prevalent opportunistic pathogen associated with 
various infections, including urinary tract infections, pneumonia, and bacteremia.1,2 K. aerogenes are often associated 
with nosocomial infections, and prolonged use of broad-spectrum antibiotics, especially in immunocompromised 
patients, represents a critical risk factor for acquiring these infections.3 Carbapenem antibiotics are considered one of 
the most effective broad-spectrum β-lactam antibiotics for the treatment of multidrug-resistant Enterobacteriaceae 
infections.4 However, the widespread clinical use of carbapenems has led to the global dissemination of carbapenemase- 
producing Enterobacteriaceae (CRE) strains, resulting in a serious clinical challenge, treatment failure, and high 
mortality rates, and thus posing a significant public health threat.5,6 The primary mechanism of resistance to carbapenem 
antibiotics is the production of carbapenemase enzymes. Carbapenemases are a type of β-lactamase enzyme capable of 
hydrolyzing penicillins, cephalosporins, monobactams, and carbapenems.7 The genes encoding carbapenemases in 
Enterobacteriaceae mainly include Class A carbapenemases (blaKPC, blaSME, blaIMI) and Class B carbapenemases 
(blaNDM, blaIMP, blaVIM).8 In K. aerogenes and various other Enterobacteriaceae bacteria, carbapenem resistance is 
still primarily driven by blaKPC gene.9 The prevalence of carbapenem-resistant Klebsiella strains, particularly those 
expressing blaKPC-2 has been increasing in clinical specimens submitted from various departments.10 Due to the presence 
of CRE isolates, these bacterial strains typically display extensive resistance. This trend poses new challenges for clinical 
antimicrobial therapy in the management of infections caused by these multidrug-resistant strains.11

The aim of this study was to investigate the localized transmission of K. aerogenes within the hospital setting. The 
main objectives of the research included conducting antimicrobial susceptibility testing, biofilm formation ability and 
hemolytic activity testing, whole-genome sequencing (WGS), and bioinformatics analysis. By exploring the epidemio-
logical characteristics, antibiotic resistance profiles, and genomic features, we aimed to delineate the transmission- 
evolutionary relationships and population structure among the strains. Additionally, we sought to identify the presence 
and location of carbapenemase genes within the strains.

Methods
Bacterial Strain Collection
This research involves a retrospective analysis conducted on K. aerogenes strains obtained from a Beijing Hospital 
between 2020 and 2022. We collected a total of 42 distinct strains of hospital-acquired K. aerogenes from a diverse range 
of patients across various departments and specimen sources, as detailed in Supplementary Table S1.

Antimicrobial Susceptibility Testing (AST) and Species Identification
In this study, the VITEK-2 compact system, manufactured by bioMérieux in Marcy l’Étoile, France, was employed for 
identifying bacterial strains and assessing their susceptibility to antimicrobial agents. The interpretation of these results 
followed the guidelines outlined in document M100-S32 by the Clinical and Laboratory Standards Institute (CLSI).12 To 
determine susceptibility to tigecycline, we used the E-test from bioMérieux. It’s important to note that CLSI does not 
establish specific breakpoints for tigecycline. Therefore, we adopted the breakpoints defined by the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST), as provided on their website (http://www.eucast.org/).

Biofilm Detection
The 42 strains of K. aerogenes were inoculated onto LB agar plates and incubated for 16–18 hours at 37°C in an inverted 
incubator. Then, 1 μL of the inoculation loop was used to pick individual colonies into 2 mL of API 0.85% NaCl medium 
and the turbidity was adjusted to 0.5 MacFarland. 980 μL of clean liquid LB medium and 20 μL of 0.5 MacFarland 
bacterial suspension were added to the CORNING 24-well plates and each strain was subjected to three parallel 
treatments simultaneously. A negative control group was established and each group was also subjected to three parallel 
treatments. The well plates were incubated in a constant temperature incubator at 37°C for 24 h. Then the well plates 
were removed, the bacterial liquid was aspirated, and each well was washed three times with sterile water. 1 mL of 
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crystal violet solution at a concentration of 0.1% was added to each well and then placed in a room temperature shaker at 
low speed and slow agitation for 20 minutes. The staining solution was gently pipetted out along the wall of the wells, 
and each well was washed three more times with sterile water, dried at room temperature, and then decolorized by adding 
1.5 mL of 95% ethanol to each well. The 24-well plate was placed on a shaker and shaken slowly for 20 minutes. The 
absorbance value at the wavelength of 600 nm (OD600), was read on the Microplate reader, manufactured by Molecular 
Devices in California, the United States, and the measurement was made three times in each well, and the measurement 
results were recorded. Clean LB liquid medium was used as the negative control, and two times of the OD600 value of the 
negative control group was used as the cut-off value (Dc), and the experimental data were taken as the average of three 
times (D value). If the D value is less than Dc, the strain does not form a biofilm. If the D value is greater than Dc but less 
than twice Dc, it is considered a weak biofilm indicator. If the D value exceeds twice Dc, it is considered a strong biofilm 
indicator.

Hemolytic Activity Assay
Hemolytic activity of K. aerogenes strains was evaluated. All strains were cultured in an LB liquid medium overnight. 
Then, they were subjected to the streak plate method on Blood Agar Plate and cultured at 37°C for 24 h to observe the 
hemolytic cycle of colonies on plates. Hemolytic activity can be divided into α-hemolysis, β-hemolysis, and γ- 
hemolysis.13

Whole Genome Sequencing
In this study, we sequenced the entire genomes of 42 K. aerogenes strains. Bacterial DNA was extracted using the 
QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), and sequencing was conducted on Illumina MiSeq platforms 
following the manufacturer’s guidelines (Illumina, San Diego, CA, USA). Raw genome sequences were processed for 
quality by trimming and filtering to eliminate adapter sequences and low-quality paired-end reads using Trimmomatic 
(v0.3.13).14 Subsequently, we employed SPAdes (v3.15.2)15 for de novo assembly, reconstructing sequence reads into 
draft continuous sequences contigs. Additionally, we selectively chose two strains carrying blaKPC-2 and blaKPC-3 for 
long-read genome sequencing using an Oxford Nanopore MinION sequencer. Third-generation sequencing data under-
went filtration using Filtlong software to exclude reads shorter than 500 base pairs and eliminate low-quality reads and 
adapter sequences, yielding a high-quality dataset. A hybrid assembly of both second-generation and third-generation 
sequencing data was performed using Unicycler v0.4.8,16 enabling us to obtain complete chromosomal and plasmid 
sequences of the bacterial strains.

Phylogenetic and Bioinformatics Analysis
To explore the evolutionary propagation relationships among the K. aerogenes strains, we constructed a phylogenetic tree 
comprising 42 strains obtained in our study. Moreover, to determine the global evolutionary position of K. aerogenes 
strains from China, we expanded our analysis by including 679 sequences previously assembled and downloaded from 
NCBI (Supplementary Table S1). By integrating these additional sequences, we gained a broader perspective on the 
phylogenetic placement of Chinese K. aerogenes strains within a global context. The identification of single-nucleotide 
polymorphisms (SNPs) within the core genome was carried out using the snippy v4.6.0 pipeline (https://github.com/ 
tseemann/snippy), with the K. aerogenes strain Ka37751 (NCBI accession number: NZ_CP041925.1) serving as the 
reference genome. Alignment of the genomes to the reference genome was accomplished using BWA-mem v1.2.0. SNPs 
were detected using SAMtools v1.1217 and FreeBayes v1.3.5.18 The identification and removal of homologous recombi-
nation events were performed using Gubbins v2.4.1.19 Core SNPs were extracted using SNP-sites v2.5.1.20 For the 
construction of the phylogenetic tree, IQ-TREE v1.6.1021 was employed. The general time-reversible nucleotide 
substitution model and the gamma rate estimation model (GAMMA) were selected, with 1000 bootstrap samplings 
conducted for robustness estimation. The resulting phylogenetic tree was visualized and customized using the online 
ITOL platform (https://itol.embl.de/).

To ensure that all 42 strains belong to the K. aerogenes species, we performed species homogeneity identification 
using the Average Nucleotide Identity (ANI).22 According to the PubMLST typing scheme,23 the assembled genomes 
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were subjected to multilocus sequence typing (MLST) analysis using MLST tool v2.19.0.24 The presence of antimicro-
bial resistance (AMR) genes was predicted using the ABRicate in conjunction with the Comprehensive Antibiotic 
Resistance Database (CARD),25 while the assembled sequences were compared against the PlasmidFinder database26 to 
enable the identification of plasmid replicon types. The pairwise SNP distance matrix for each pair of strains was 
computed using the SNP-dists software, based on the FASTA sequence alignment generated by Snippy. The Plasflow 
v1.127 was employed to predict plasmid sequences within the assembled genome sequences using the Third Generation 
sequencing. The predicted plasmid sequences were further analyzed by conducting online Basic Local Alignment Search 
Tool (BLAST) searches on the National Center for Biotechnology Information (NCBI) website to identify plasmids that 
exhibited similarity to the plasmids in our study. The locations of plasmid replicons, IS sequences and AMR genes were 
determined using PlasmidFinder v2.0.1,26 ISfinder,28 and ResFinder v4.0.15,29 respectively. The complete plasmid 
sequences were annotated using Prokka v1.14.6.30 The comparative analysis of plasmids was visualized using the 
BRIG,31 which generated plasmid comparison circular diagrams. Genomic assemblies were mapped against the selected 
plasmids using BLAST32 to determine whether the strains carried the corresponding plasmids.

Data and Statistical Analysis
Statistical descriptions of the epidemiological characteristics were conducted separately for CRKA and Non-CRKA. The 
differences in antibiotic resistance between the two groups were assessed using the chi-square test. For cases where the 
chi-square test assumptions were not met, the Fisher’s exact test was employed. All the aforementioned analyses were 
performed using the R software. A P-value less than 0.05 was considered statistically significant.

Results
The Epidemiological Characteristics of the K. Aerogenes Strains
In this study, 42 K. aerogenes strains were collected, comprising 21 CRKA strains and 21 Non-CRKA strains (Table 1). 
The collections were exclusively located in Beijing, and the sampling period spanned from 2020 to 2022. In terms of 
department distribution, the majority of cases originated from the Cardiovascular Internal Medicine Department (n=14) 

Table 1 The Epidemiological Characteristics of 42 K. Aerogenes Strains in This 
Study

Distribution No. Isolates (%)

CRKA 
(n=21)

Non-CRKA  
(n=21)

Total 
(n=42)

Year
2020 2(9.5) 5(23.8) 7(16.7)

2021 2(9.5) 9(42.9) 11(26.2)
2022 17(81.0) 7(33.3) 24(57.1)

Source
Urine 1(4.8) 5(23.8) 6(14.3)

Sputum 19(90.5) 16(76.2) 35(83.3)

Bronchoalveolar Lavage Fluid 1(4.8) 0(0.0) 1(2.4)
Department
Department of Respiratory Medicine 6(28.6) 8(38.1) 14(33.3)

Department of Cardiovascular Medicine 6(28.6) 8(38.1) 14(33.3)
Department of Gastroenterology 1(4.8) 2(9.5) 3(7.1)

Department of General Surgery 0(0.0) 1(4.8) 1(2.4)

Department of Surgical Intensive Care 0(0.0) 1(4.8) 1(2.4)
Department of Oncology 3(14.3) 1(4.8) 4(9.5)

Department of Neurology 4(19.0) 0(0.0) 4(9.5)

Department of Nephrology 1(4.8) 0(0.0) 1(2.4)
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and the Respiratory Internal Medicine Department (n=14). The isolated strains were mainly sourced from sputum 
(83.3%), followed by urine (14.3%), and bronchoalveolar lavage fluid (2.4%).

Antimicrobial Susceptibility Testing
Antimicrobial sensitivity results are shown in Table 2. Among the 42 strains, the resistance rate to ticarcillin/clavulanic acid 
was the highest (83.3%), followed by cefotetan (81.0%), piperacillin/tazobactam (76.2%) and amoxicillin (69.0%), and only 
one isolate was resistant to trimethoprim/sulfamethoxazole. According to the antibiotic resistance profile, 30 strains (71.4%) 
were classified as multidrug-resistant (MDR), and 21 strains (50%) were resistant to at least one of the carbapenem 
antibiotics (imipenem or meropenem), which were defined as CRKA. Excluding trimethoprim/sulfamethoxazole, ciproflox-
acin and levofloxacin, CRKA exhibited significantly higher resistance rates to various antibiotics compared to Non-CRKA. 
Notably, CRKA displayed complete resistance to ticarcillin/clavulanic acid, piperacillin/tazobactam, ceftazidime/avibactam, 
and cefotetan, along with high-level resistance to cefepime (95.2%) and amoxicillin (95.2%).

Biofilm Detection
The biofilm detection results (Supplementary Table S2) show that the D values for all strains exceed twice the Dc value, 
thereby classifying them as strong biofilm formers. Further comparison between CRKA and Non-CRKA strains revealed 
no significant difference (P = 0.29) in the Dc values between the two groups (Supplementary Figure S1).

Hemolytic Activity
The results, as shown in Supplementary Figure S2, indicate that all the K. aerogenes strains exhibited γ-hemolysis, 
meaning that they do not exhibit hemolytic activity.

Table 2 Comparing Differences in Antibiotic Resistance Rates Among 42 
K. Aerogenes Strains

Antibiotic Resistance, n (%)

CRKA 
(n=21)

Non-CRKA  
(n=21)

Total 
(n=42)

χ2 P

Amikacin 16(76.2) 1(4.8) 17 (40.5) 22.235 <0.05

Tobramycin 16(76.2) 1(4.8) 17(40.5) 22.235 <0.05
Amoxicillin 20(95.2) 9(42.9) 29(69.0) 13.480 <0.05

Tigecycline 14(66.7) 3(14.3) 17(40.5) 11.958 <0.05

Trimethoprim/ 
sulfamethoxazole

0(0.0) 1(4.8) 1(2.4) - >0.05

Ciprofloxacin 8(38.1) 6(28.6) 14(33.3) 0.429 >0.05
Levofloxacin 7(33.3) 3(14.3) 10(23.8) 2.100 >0.05

Ticarcillin/ 

clavulanic acid

21(100.0) 14(66.7) 35(83.3) 6.171 <0.05

Piperacillin/tazobactam 21(100.0) 11(52.4) 32(76.2) 13.125 <0.05

Ceftazidime/avibactam 21(100.0) 5(23.8) 26(61.9) 25.846 <0.05

Imipenem 21(100.0) 0(0.0) 21(50.0) 42.000 <0.05
Meropenem 21(100.0) 0(0.0) 21(50.0) 42.000 <0.05

Doxycycline 17(81.0) 8(38.1) 25(59.5) 8.005 <0.05

Minocycline 17(81.0) 10(47.6) 27(64.3) 5.081 <0.05
Cefotetan 21(100.0) 13(61.9) 34(81.0) 7.566 <0.05

Cefepime 20(95.2) 3(14.3) 23(54.8) 27.776 <0.05

MDR 21(100.0) 9(42.9) 30(71.4) 16.800 <0.05

Note: The choice between Pearson’s chi-squared test, Yates’ corrected chi-squared test, or Fisher’s exact 
probability method depends on total and expected frequencies. If chi-squared test conditions are not met 
(“-”), Fisher’s exact probability method is used.
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Detection of AMR Gene Determinants
CRKA strains exhibited a higher average carriage rate of AMR genes compared to Non-CRKA strains (Table 3). The β- 
lactamase resistance genes detected include blaTEM-1, blaCTX-M-3, blaCTX-M-65, blaKPC-2, blaKPC-3, blaDHA-1, blaNDM-5, 
and blaLAP-2. Notably, blaKPC-2 was widely found in 76.2% of CRKA strains, and the carriage rates of blaTEM-1 and 
blaCTX-M-65 in CRKA were significantly greater than in Non-CRKA. The study identified several aminoglycoside 
resistance genes, including aac(3)-IId, aadA16, aph(3’)-Ia, and rmtB. Notably, rmtB had a high detection rate of 
76.2% in CRKA, while only one Non-CRKA strain was found to harbor it. aac(3)-IId, and aadA16 were detected in 
a small number of Non-CRKA strains. Additionally, tetracycline resistance, represented by the tet(A) gene, was found in 
four Non-CRKA strains. Nine strains were found to have the fluoroquinolone resistance genes qnrS1, with one strain 
possessing aac(6’)-Ib-cr and another strain possessing qnrB4 among the Non-CRKA strains. Additionally, a few 
sulfonamide resistance genes, including sul1, sul2, dfrA14, and dfrA27, were detected. Only one CRKA strain was 
found to carry mcr-1.

Phylogenetic Analysis of K. Aerogenes Strains
We drew a maximum-likelihood phylogenetic tree based on 721 genomes (42 genomes in this study and 679 globally 
distributed strains, as detailed in Supplementary Table S1) to investigate the population structure and evolutionary 
position of the K. aerogenes strains in this study (Figure 1). The strains were primarily sourced from six countries, 
including Brazil, Canada, China, Germany, Singapore, and the United States. The phylogenetic tree was divided into six 

Table 3 Antimicrobial Resistance Genes of CRKA and Non-CRKA Isolates

Resistance genes The number of resistance genes (N, %)

CRKA 
(n=21)

Non-CRKA  
(n=21)

Total 
(n=42)

χ2 P

aac(3)-IId 0(0.0) 2(9.5) 2(4.8) 0.525 >0.05

aac(6’)-Ib-cr 0(0.0) 1(4.8) 1(2.4) - >0.05

aadA16 0(0.0) 1(4.8) 1(2.4) - >0.05
aph(3’)-Ia 2(9.5) 4(19.0) 6(14.3) 0.194 >0.05

arr-3 0(0.0) 1(4.8) 1(2.4) - >0.05

bacA 3(14.3) 10(47.6) 13(31.0) 5.459 <0.05
catII 7(33.3) 1(4.8) 8(19.0) 3.860 <0.05

blaCTX-M-3 2(9.5) 3(14.3) 5(11.9) 0.000 >0.05

blaCTX-M-65 16(76.2) 1(4.8) 17(40.5) 22.235 <0.05
dfrA14 1(4.8) 0(0.0) 1(2.4) - >0.05

dfrA27 0(0.0) 1(4.8) 1(2.4) - >0.05

blaDHA-1 0(0.0) 1(4.8) 1(2.4) - >0.05
blaKPC-2 16(76.2) 0(0.0) 16(38.1) 25.846 <0.05

blaKPC-3 1(4.8) 1(4.8) 2(4.8) 0.000 >0.05

blaLAP-2 0(0.0) 3(14.3) 3(7.1) 1.436 >0.05
mcr-1 1(4.8) 0(0.0) 1(2.4) - >0.05

mdtB 2(9.5) 6(28.6) 8(19.0) 1.390 >0.05
blaNDM-5 1(4.8) 0(0.0) 1(2.4) - >0.05

qnrB4 0(0.0) 1(4.8) 1(2.4) - >0.05

qnrS1 4(19.0) 5(23.8) 9(21.4) 0.000 >0.05
rmtB 16(76.2) 1(4.8) 17(40.5) 22.235 <0.05

sul1 0(0.0) 2(9.5) 2(4.8) 0.525 >0.05

sul2 0(0.0) 1(4.8) 1(2.4) - >0.05
blaTEM-1 18(85.7) 5(23.8) 23(54.8) 16.243 <0.05

tet(A) 0(0.0) 4(19.0) 4(9.5) 2.487 >0.05
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lineages, with Lineage 1 being the predominant branch. Among the 42 strains in this study, all lineages were represented 
except Lineages 2 and Lineages 6, but they were mainly distributed in Lineage 1 (n=31) and Lineage 5 (n=8).

K. aerogenes carrying the blaKPC gene exhibit two predominant types: blaKPC-2 and blaKPC-3. The distribution of 
these types spans diverse lineages and countries. Specifically, there are 82 strains (11.4%) characterized by the presence 
of blaKPC-2, and 22 strains (3.1%) identified with blaKPC-3.

The Average Nucleotide Identity among the isolates was greater than 95%, indicating that they belonged to 
K. aerogenes species (Supplementary Figure S3). A phylogenetic tree was constructed based on 122,864 core genome 
SNPs, incorporating the 42 self-tested strains and the reference strain, Ka37751. The tree revealed four distinct branches 
(C1-C4) within the population (Figure 2). Branch C1 comprised 18 strains, C2 had 8 strains, C3 contained 14 strains, and 
C4 was consisted of 2 strains. Notably, branch C1 emerged as the dominant branch, representing 42.8% of the total 
strains. The MLST analysis revealed five major sequence types (STs): ST292, ST14, ST12, ST311 and ST435. A new ST 
type was identified, which was a variant of ST192. Compared to ST192, there is a change in the pryG housekeeping 
gene, with the base at position 231 transitioning from T to C. The branches showed a close correlation with specific ST 
types, with all ST292 strains belonging to C1 and all ST311 strains belonging to C2. The phylogenetic tree reveals that 
most of the CRKA strains (highlighted in red) clustered in the main branch C1. Compared to other lineages, this lineage 

Figure 1 Phylogenetic tree of the global K. aerogenes strains displaying the position of Chinese KA strains. The rings, from inner to outer, labeled with different colors 
indicate lineage, used strains, country and blaKPC gene, respectively.
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commonly carries resistance genes such as rmtB, blaCTX-M-65, blaKPC-2, and blaTEM-1. Among these, rmtB belongs to the 
aminoglycoside resistance gene family, while the other three genes belong to the β-lactamase family. Particularly, the 
presence of the blaKPC-2 resistance gene is closely associated with carbapenem resistance.

The branch C1 strains exhibit minimal SNP variations, with discrepancies ranging from 0 to 13 SNPs (Supplementary 
Figure S4). They display a high degree of concordance in terms of antibiotic resistance genes and resistance patterns. 
Notably, with the exception of KaeR21 obtained in 2021, all of these strains were obtained in 2022, underscoring 
a pronounced trend of clonal dissemination among these isolates. Importantly, these strains were sourced from patients 
across diverse hospital departments, indicative of the prevalent cross-departmental transmission of this particular clone 
within the healthcare facility. Notably, KaeS15 exhibits distinct characteristics within this group. Unlike the others, it 
does not carry the blaKPC resistance gene and displays sensitivity to carbapenem antibiotics.

Plasmid Analysis
Two CRKA strains KaeR16 and KaeR21, which carry the blaKPC resistance gene, were selected for third-generation 
sequencing to investigate the plasmid structure. Three complete plasmids pKaeR16-2, pKaeR16-3 and pKaeR21-2 were 
obtained in this study. Characteristics of the plasmids are shown in Supplementary Table S3.

The plasmid structures of pKaeR16-2 and pKaeR21-2, both carrying the blaKPC gene, exhibit a high degree of 
similarity. Furthermore, they share a high similarity with a plasmid designated pBSI057-KPC2 (NCBI accession number: 
MT269835), which was isolated from a blood infection in China. These three plasmids belonged to IncFII plasmid 
replicon. Almost all of the blaKPC-carrying strains contained pKaeR16-2-like IncFII plasmid (Figure 3). From circular 
comparisons image of plasmids, it can be seen that the pKaeR16-2 plasmid contains a large number of insertion 
sequences, which is closely related to the transfer of drug resistance genes (Figure 4A). Numerous insertion sequences 
are found near the blaKPC gene. Specifically, the ISKpn27 insert is situated upstream of the blaKPC gene. In comparison to 
the pKaeR21-2 plasmid, the pKaeR16-2 plasmid carries additional resistance genes, including blaCTX-M-65, blaTEM-1, and 

Figure 2 Phylogenetic tree of the 42 self-tested K. aerogenes strains with a heatmap showing the distribution of antimicrobial resistance and AMR determinants. The red text 
background indicates the CRKA strain, and the blue text background indicates the Non-CRKA strain. The three bands at the left of the heatmap indicate the information of 
the branch, MLST, department and source of the strains, respectively.
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rmtB. The acquisition of these resistance genes is closely associated with transferable sequences. Particularly, the 
pKaeR16-2 plasmid contains repetitive acquisition of gene sequences: IS26-ISSbo1-IS26-tnpR-blaTEM-1-rmtB-IS26- 
IS903.

In the plasmid pKaeR16-3, the qnrS1 gene was identified, which is a plasmid-mediated quinolone resistance gene 
(Figure 4B). The pKaeR16-3 was highly similar to pCFSAN027384 (NCBI accession number: CP074250.1). Compared 
with pCFSAN027384, pKaeR16-3 had an additional ISEc63-IS26-qnrS1-hin-IS26 sequence at the position of 22,038 to 
32627bp. Two additional sequences annotated as putative proteins were found at positions 78,661–78,966 and 80,355– 
81,053.

Discussion
The increasing global prevalence of β-Lactamase-Producing Pathogens, particularly Carbapenemase-producing 
Enterobacteriaceae, poses a serious threat to public health worldwide.6,33 The blaKPC gene, which is one of the most 
common carbapenemases identified globally, exemplifies this danger.34 The blaKPC resistance gene was first discovered 
in 1996 in a Klebsiella pneumoniae isolate from a patient in the eastern United States.35 Since then, it has rapidly spread 
globally, affecting numerous regions, including coastal areas of China such as Zhejiang and Shanghai.36 In China, the 
prevalence of blaKPC-producing strains is mainly due to the blaKPC-2 variant.37,38 These strains are often associated with 
K. pneumoniae, a nosocomial pathogen commonly found in healthcare environments.36 Isolates carrying the blaKPC gene 
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Figure 4 Circular comparisons image of plasmids. (A) Circular comparisons image of plasmids, pKaeR16-2, pKaeR21-2 and pBSI057-KPC2; (B) Circular comparisons image 
of plasmids, KaeR16-3 and pCFSAN027384.
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typically exhibit resistance to a wide variety of drugs, including β-lactams, especially to carbapenem antibiotics. A study 
found that 92% (11/12) of CRKA carries the blaKPC-2 gene, confirming its pivotal role in carbapenem resistance 
mechanisms.10 Furthermore, these pathogens often carry additional resistance determinants such as ESBLs, resulting 
in a highly resistant phenotype. Recent clinical surveillance efforts in China reveal a concerning trend: a rapid increase in 
carbapenem resistance among K. pneumoniae and other Enterobacteriaceae species, with rates exceeding 11%.39 The 
increasing resistance to carbapenems not only reduces their therapeutic effectiveness but also limits the options available 
to clinicians, making it difficult to manage severe Gram-negative bacterial infections. The consequences of this resistance 
are significant, requiring immediate and coordinated global action to control the spread and impact of these dangerous 
pathogens.

This study reports the prevalence and transmission of CRKA carrying the blaKPC-2 gene within a hospital setting. 
Infected patients primarily originated from the Cardiovascular Internal Medicine Department (33.3%) and the 
Respiratory Internal Medicine Department (33.3%). The spread of strains in these departments may be associated with 
mechanical ventilation or invasive surgeries, particularly surgical procedures. CRKA demonstrated extensive antibiotic 
resistance compared to Non-CRKA, notably exhibiting complete resistance to β-lactamase inhibitors and cefotetan. This 
underscores the limited therapeutic options available for treating infections caused by CRKA and emphasizes the severity 
of the multidrug resistance exhibited by CRKA.

The antibiotic resistance of bacterial strains is closely related to the resistance genes they carry. CRKA exhibits 
extremely high resistance to β-lactam antibiotics such as Piperacillin/tazobactam and Cefotetan. This resistance is closely 
associated with the widespread presence of blaTEM-1 and blaCTX-M-65 resistance genes in CRKA. blaKPC-2 and blaKPC-3 

can directly lead to resistance to carbapenem antibiotics like Meropenem and Imipenem. The prevalence of blaKPC-2 

/blaKPC-3 in CRKA reaches 81.0%. KaeR10 does not contain the blaKPC resistance gene but carries the blaNDM-5 

resistance gene. blaNDM-5 gene is a type of metallo-β-lactamase that can hydrolyze almost all β-lactam antibiotics, 
including carbapenems. Compared to Non-CRKA, CRKA exhibits extremely high resistance to aminoglycoside anti-
biotics such as Amikacin and Tobramycin. The observed difference is primarily attributed to the presence of the rmtB 
resistance gene. This gene modifies the binding site of aminoglycoside antibiotics on the bacterial 16S rRNA ribosome, 
resulting in bacterial resistance to aminoglycoside antibiotics.40 Additionally, rmtB can be transferred horizontally among 
different bacteria, further complicating the issue of aminoglycoside resistance. Common hospital infection bacteria, such 
as Pseudomonas aeruginosa, Escherichia coli, and K. pneumoniae, are often found to carry this gene. Plasmid-mediated 
quinolone resistance genes (PMQR), such as qnr and aac(6’)-Ib-cr, can lead to bacterial resistance to ciprofloxacin.41 

Among the 14 ciprofloxacin-resistant bacterial strains studied, 8 were found to carry the qnrS1 resistance gene. 
Tigecycline, as a third-generation tetracycline, is considered the “last line of defense” against multi-drug resistant 
Enterobacteriaceae, including carbapenemase-producing strains.42 Currently, tigecycline resistance mechanisms identi-
fied in Enterobacteriaceae include mutations in the ribosomal protein binding site, modifying enzyme genes, and active 
efflux pump transport systems. Plasmid-borne transferable modifying enzyme genes such as tet(X) and its variants can 
mediate high-level resistance to tigecycline. The efflux pumps include the RND family (AcrAB-TolC, OqxAB)43 and 
mutations in Tet(A) and Tet(L) efflux pumps in the MFS family.44 Efflux pumps are widespread in Enterobacteriaceae 
bacteria, and the overexpression of efflux pump-related genes is a significant mechanism contributing to bacterial 
multidrug resistance.45 It is reported that the AcrAB efflux pump is a major resistance mechanism for tigecycline in 
Enterobacteriaceae bacteria.46 In this study, four Non-CRKA strains carried the tet(A) resistance gene, but only one 
strain showed resistance to tigecycline, and no mutation was observed in the tet(A) gene. The presence of the AcrAB- 
TolC efflux pump was observed in all strains, with a higher tigecycline resistance rate (66.7%) in carbapenem-resistant 
strains. The underlying factors contributing to the disparity in tigecycline resistance rates between CRKA and Non- 
CRKA are not yet well-defined, necessitating further investigation.

Bacterial biofilms enhance the resistance of bacteria, enabling them to adapt to harsh environments and exhibit 
antibiotic resistance, which can lead to the emergence of multidrug-resistant, extensively drug-resistant, or even totally 
drug-resistant bacteria.47,48 Bacteria can form and grow biofilms on the surface of medical devices (such as sutures, 
catheters, and dental implants) through the production of extracellular polymeric substances,47 causing persistent chronic 
infections and posing a significant threat to human health.49 In this study, all 42 strains of K. aerogenes demonstrated 
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strong biofilm formation capabilities, with no significant difference in biofilm strength between CRKA and Non-CRKA 
strains. The strong biofilm-forming ability may facilitate the long-term colonization and growth of K. aerogenes, 
especially CRKA strains, on hospital equipment and pipelines, potentially leading to further spread of these strains 
within the hospital environment. Moreover, the study found that some antibiotic-resistant strains, despite lacking relevant 
resistance genes, might have their resistance influenced by their biofilms.

The production of hemolysins by bacteria is capable of disrupting the cell membranes of host erythrocytes, resulting 
in the release of cellular contents, particularly hemoglobin. This feature, shared by many pathogenic bacteria such as 
Streptococcus50 and Staphylococcus aureus,51 also interferes with the host immune system by inducing an immune 
response and inflammation, which in turn facilitates bacterial invasion and spread.52 K. aerogenes does not normally have 
hemolytic activity, but may develop hemolytic activity under certain specific pathogenic factors or stressful 
environments.53 Although direct hemolytic events caused by K. aerogenes are rare in clinical practice, its potential 
hemolytic capacity should not be completely ignored, especially in immunosuppressed or high-risk patient populations.

Research has found that in the Enterobacteriaceae family, blaKPC-2 genes are often located on IncFIIK2-type 
plasmids.54 The genes expressing blaKPC are frequently present in the form of the composite transposon Tn4401. In 
a blaKPC-2-carrying K. aerogenes strain isolated from Taiwan, the blaKPC-2 resistance gene in the pKPC-LK30 plasmid 
was adjacent to a disrupted Tn3 and ISKpn8, followed by blaKPC-2 and ISKpn6-like elements. The region containing 
blaKPC-2 and a part of the downstream ISKpn6-like gene is similar to Tn4401.55 In the pPAEC79 plasmid extracted from 
Pseudomonas aeruginosa, the blaKPC-2 gene environment includes korC-ΔISKpn6-blaKPC-2-ISKpn27, where the blaKPC-2 

gene is closely related to the ISKpn6 family transposon and ISKpn27 family transposon.56 Plasmid structures often 
undergo recombination during their transmission. In a multidrug-resistant K. aerogenes strain isolated in Guangzhou, 
China, it carries multiple resistance genes including fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, blaTEM-1, and rmtB. Detailed 
comparisons suggest that the pKP1034 plasmid might have evolved through recombination of the blaKPC-2 carrying 
plasmid pKPC-LK30 from Taiwan and the plasmid carrying the prevalent fosA3 gene, pHN7A8, from mainland China.57 

The pCT-KPC334 plasmid shares a highly similar gene structure with pKP1034 but has experienced slightly different 
recombination events.58 These findings highlight the complexity and dynamism of plasmid evolution, especially con-
cerning the mechanisms by which resistance genes are acquired, recombined, and propagated among various bacterial 
species and geographical locations. Understanding these processes is crucial for developing strategies to mitigate the 
spread of antibiotic resistance. In this study, the majority of carbapenem-resistant K. aerogenes strains carried ColRNAI, 
IncR, and IncFII(pHN7A8) plasmid replicon types, with the blaKPC-2 resistance gene situated on the IncFII(pHN7A8) 
plasmid. The blaKPC-2 gene structure was determined to be IS26-blaKPC-2-ΔTn3-IS26, with the Tn3 disrupted by the 
inserted IS26 sequences. Plasmids pKaeR16-2 and pKPC-LK30 (93% query coverage and 99.98% nucleotide identity), 
as well as pKP1034 (94% query coverage and 99.98% nucleotide identity), demonstrate very high similarity, indicating 
a similar environment for the blaKPC-2 gene. Additionally, on the pKaeR16-2 plasmid, there is the blaCTX-M-65 gene 
mediated by Tn3, along with a complete insertion of the IS26-ISSbo1-IS26-tnpR-blaTEM-1-rmtB-IS26-IS903 segment, 
which further enhances the antibiotic resistance of the bacteria, including resistance to β-lactam antibiotics and ESBLs.

Fourteen sequence types (STs) were identified in this study, with ST292 being the most prevalent in CRKA. 
Furthermore, there was a novel ST type identified, which is closely related to ST192, indicating genetic diversity 
among K. aerogenes. Malek et al identified ST4 and ST93 as major ST clones associated with human infections of 
K. aerogenes.59 A previous study comprehensively characterized 91 isolated strains of K. aerogenes using whole-genome 
sequencing data from GenBank. The findings indicated that the prevalent sequence types (STs) for K. aerogenes were 
ST93 and ST440.60 To our knowledge, this is the first reported study on the epidemic spread of CRKA clones within the 
ST292. In light of the emergence of extensively drug-resistant strains within this ST, there is a pressing need to enhance 
focused surveillance and monitoring for this particular ST.

Malek’s research indicated that CRKA isolates tend to form a tight monoclonal cluster, suggesting prolonged 
intraward transmission.59 In our study, the clonally transmitted CRKA clustered on the C1 branch of the phylogenetic 
tree, with core SNP differences within 13 bp, carrying similar resistance genes, plasmids, and resistance phenotypes. 
These isolates originated from different departments, indicating the occurrence of a clonal spread phenomenon within the 
same or different wards during the same period.
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In conclusion, our study sheds light on the alarming rise of MDR K. aerogenes strains, particularly those harboring 
carbapenemase genes. This clone transmission phenomenon within the hospital may lead to the further spread and 
dissemination of extensively drug-resistant CRKA in the population. The clonal dissemination of these strains within 
hospital settings underscores the pressing need for comprehensive infection control measures. Additionally, the role of 
excessive antibiotic use in fueling resistance highlights the importance of antibiotic stewardship to preserve the efficacy 
of available antibiotics. As MDR strains continue to evolve and spread, collaborative efforts between healthcare 
providers, researchers, and policymakers are essential to safeguard public health and address the growing threat of 
antibiotic resistance.
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