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Abstract

The ascending arousal system plays a crucial role in individuals' consciousness.

Recently, advanced functional magnetic resonance imaging (fMRI) has made it possi-

ble to investigate the ascending arousal network (AAN) in vivo. However, the role of

AAN in the neuropathology of human insomnia remains unclear. Our study aimed to

explore alterations in AAN and its connections with cortical networks in chronic

insomnia disorder (CID). Resting-state fMRI data were acquired from 60 patients with

CID and 60 good sleeper controls (GSCs). Changes in the brain's functional connec-

tivity (FC) between the AAN and eight cortical networks were detected in patients

with CID and GSCs. Multivariate pattern analysis (MVPA) was employed to differen-

tiate CID patients from GSCs and predict clinical symptoms in patients with CID.

Finally, these MVPA findings were further verified using an external data set

(32 patients with CID and 33 GSCs). Compared to GSCs, patients with CID exhibited

increased FC within the AAN, as well as increased FC between the AAN and default

mode, cerebellar, sensorimotor, and dorsal attention networks. These AAN-related

FC patterns and the MVPA classification model could be used to differentiate CID

patients from GSCs with 88% accuracy in the first cohort and 77% accuracy in the

validation cohort. Moreover, the MVPA prediction models could separately predict

insomnia (data set 1, R2 = .34; data set 2, R2 = .15) and anxiety symptoms (data set

1, R2 = .35; data set 2, R2 = .34) in the two independent cohorts of patients. Our

findings indicated that AAN contributed to the neurobiological mechanism of insom-

nia and highlighted that fMRI-based markers and machine learning techniques might

facilitate the evaluation of insomnia and its comorbid mental symptoms.
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1 | INTRODUCTION

Insomnia is a common sleep disorder characterized by difficulty in fall-

ing asleep, staying asleep, or waking up too early in the morning, with

significant impairment of daytime functioning. Insomnia affects

approximately 10–20% of the people, with about half of those suffer-

ing from a chronic course of the disease (Buysse, 2013), known as

chronic insomnia disorder (CID). Recurrent insomnia is associated with

a worse quality of life, a high rate of comorbidity with mental disorders,

and an increased risk of depression and anxiety (Gong, Shi, et al., 2021;

Gong, Yu, et al., 2021; Morin et al., 2015). Although insomnia is ranked

as the second most common neuropsychiatric disorder (Wittchen

et al., 2011), the understanding of the neurobiological mechanisms

underlying CID is limited (Riemann et al., 2015; Van Someren, 2021).

Hyperarousal is commonly mentioned as the core subjective

experience and persistent characteristic of patients with insomnia

(Blanken et al., 2019; Pavlova et al., 2001). Recently, the brain hyper-

arousal process model has provided critical insights into the central

pathogenesis of insomnia (Nofzinger et al., 2004; Riemann

et al., 2010). In a positron emission tomography study, insomnia

patients revealed higher brain metabolism across waking and sleep

states, with the ascending reticular activating system failing to dimin-

ish metabolism during the transition from awake to asleep (Nofzinger

et al., 2004). An electroencephalogram study also reported high levels

of arousal in patients with insomnia during wakefulness and sleep

(Colombo et al., 2016; Perlis et al., 2001). Using the resting-state func-

tional connectivity (FC) approach, it has been observed that the

insomnia-related hyperarousal state is particularly pronounced among

the broadly cortical networks, including the default mode network

(DMN), salience network (SN), sensorimotor network (SMN), dorsal

attention network (DAN), and frontoparietal control network (FPN)

(Y. Cheng et al., 2021; Fasiello et al., 2022; Schiel et al., 2020; Yu

et al., 2018). Despite extensive studies on the functional brain net-

works of CID, limited neuroimaging studies have focused on the

ascending arousal system in patients with insomnia.

The ascending arousal network (AAN) is defined as the subcortical

neural network that supports human consciousness (Steriade, 1996).

The AAN is located in the brainstem and connects the brainstem

extensively to the hypothalamus, thalamus, basal forebrain, and cortex

and activates cortical awareness networks (Edlow et al., 2012). The

main neurotransmitters involved in AAN include noradrenergic neu-

rons (locus coeruleus [LC]), serotonergic neurons (raphe nuclei), dopa-

mine neurons (periaqueductal gray matter [PAG]), glutamatergic

neurons (parabrachial complex [PBC]), and cholinergic neurons (ped-

unculopontine tegmental nucleus [PPN]), which are essential for sleep

and circadian rhythms (Edlow et al., 2012; Saper et al., 2005). In

recent years, using in vivo mapping of the human AAN, researchers

have found that patients with acute and chronic disorders of con-

sciousness (Snider et al., 2019; Snider et al., 2020) exhibit altered

AAN connectivity. More recently, Guardia et al. investigated the

effect of age on the AAN and found that AAN-cortical connectivity is

significantly disrupted with age and that these connections could

predict cognitive performance (Guardia et al., 2022). In our previous

study, we found a disrupted LC (one nucleus of the AAN) FC network

in patients with CID, and the alteration in FC connectivity was associ-

ated with symptoms of anxiety in patients (Gong, Shi, et al., 2021;

Gong, Yu, et al., 2021). Although progress has been made in character-

izing the brain hyperarousal network in insomnia, to the best of our

knowledge, a complete understanding of the intranetwork and inter-

network FC patterns between the AAN and cortical networks in

human insomnia is still unavailable.

The primary purpose of this study was to explore the patterns of

altered FC within the AAN and between the AAN and eight cortical

networks in patients with CID, using resting-state functional magnetic

resonance imaging (fMRI) data. We hypothesized that FC within the

AAN and FC between the AAN-cortical networks would be altered in

patients with CID. The second purpose was to examine the accuracy

and reliability of a classification model based on AAN-cortical network

features and machine learning methods (i.e., multivariate pattern anal-

ysis [MVPA]) to distinguish between patients and healthy individuals

using two independent data sets. Furthermore, given the common

comorbidity of depressive and anxiety symptoms in CID and our pre-

vious work confirming the association between the LC network and

anxiety symptoms (Gong, Shi, et al., 2021; Gong, Yu, et al., 2021), the

third purpose was to develop a predictive model of mental symptoms

in patients with CID. We hypothesized that AAN-related connectivity

would be important in distinguishing insomniacs from good sleepers

as well as in predicting the severity of insomnia and anxiety symptoms

in patients with CID.

2 | METHODS

2.1 | Participants

A total of 60 patients with CID and 60 demographically matched

good sleeper controls (GSCs) were enrolled in this study. All partici-

pants were recruited from the outpatients of Chengdu Second Peo-

ple's Hospital and underwent a series of neuropsychological tests

and MRI scans. The study was approved by the Institutional Review

Board Ethics Committee of Chengdu Second People's Hospital

(ethics approval number: 2020021), and written informed consent

was obtained from each subject. Seven participants (three patients

with CID and four GSC) were excluded because of excessive head

motion artifacts (above 2 mm or 2�, as detailed in the preprocessing

of fMRI data). The final analysis included 57 patients with CID and

56 GSCs.

We also included an independent data set of 32 patients with

CID and 33 GSCs for classification and regression model validation.

Individuals in the independent data set were recruited from outpa-

tients, and all provided written informed consent at the Third Affili-

ated Hospital of Anhui Medical University (ethics approval number:

2019-010-1). Five participants (two patients with CID and three

GSCs) were excluded because of excessive head motion artifacts. The
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final analysis included 30 patients with CID and 30 GSCs in the inde-

pendent data set.

The inclusion criteria for patients with CID were as follows:

(1) meeting the diagnostic criteria for CID as outlined in the Interna-

tional Classification of Sleep Disorders, third version (Sateia, 2014);

(2) a Pittsburgh Sleep Quality Index (PSQI) score higher than 7 (X. Liu

et al., 1996; Mollayeva et al., 2016); (3) not taking any hypnotic medi-

cation 2 weeks prior to the neuropsychological test and MRI scan;

and (4) between 18 and 65 years of age. The inclusion criteria for

GSCs were similar to those for CID, but without sleep complaints and

with a PSQI score below 7. The exclusion criteria for all participants

included: (1) history of other neuropsychiatric disorders and serious

chronic diseases (e.g., diabetes, heart disease, and cancer); (2) other

sleep disorders, such as sleep-related breathing disorders (sleep apnea

syndrome), central disorders of hypersomnolence, circadian rhythm

sleep–wake disorders, sleep-related movement disorders, parasomnia,

and hypersomnia; (3) a history of substance addiction (e.g., drugs, nic-

otine, alcohol); (4) contraindications to MRI; and (5) brain lesions or

white matter hyperintensities detected by routine T2-weighted MRI

scans.

2.2 | Clinical evaluation

The PSQI scale was used to assess subjective sleep quality and the

severity of insomnia (Backhaus et al., 2002). Zung's Self-Rating

Depression Scale (SDS) and Zung's Self-Rating Anxiety Scale (SAS)

were used to evaluate depression and anxiety (Zung, 1971; Zung

et al., 1965). All neuropsychological tests were performed before the

imaging scan.

2.3 | Imaging data

The imaging of data set 1 was performed at Chengdu Second People's

Hospital using a GE 3.0-Tesla scanner (GE Healthcare Discovery Pio-

neer, General Electric, Milwaukee, WI). Imaging of data set 2 was per-

formed at the Third Affiliated Hospital of Anhui Medical University

using a Siemens 3.0-Tesla scanner (Siemens, Erlangen, Germany). The

same MRI scan parameters were used for both data sets. Structural

images were acquired using a high-resolution spoiled gradient-recalled

echo sequence with the following parameters: repetition time/echo

time (TR/TE), 7.06/3.04 ms; flip angle (FA), 12�; acquisition matrix,

256 � 256; field-of-view, 240 � 240 mm; thickness, 1.0 mm; gap,

0 mm; number of slices, 192; and number of excitations, 1.0. Func-

tional images were obtained using an 8-min gradient-recalled echo-

planar imaging pulse sequence with the following parameters: TR/TE,

2000/30 ms; FA, 90�; acquisition matrix, 64 � 64; thickness, 3.5 mm;

number of slices, 33; and number of time points, 240. All participants

were instructed to relax and keep their eyes closed during the scan,

and stabilizers were used to immobilize their head. After the scan,

each participant was asked if they were awake, and all participants

claimed to be awake during the study.

2.4 | Imaging preprocessing

The two data sets underwent the same imaging preprocessing. The

imaging data were preprocessed using SPM12 (http://www.fil.ion.ucl.

ac.uk/spm) and the DPABI 6.0 (Data Processing & Analysis of Brain

Imaging; http://rfmri.org/dpabi) implemented in MATLAB 9.0 (The

MathWorks, Inc., Natick, MA) (Yan et al., 2016). Preprocessing

included the following steps: removal of the first five initial volumes,

slice time correction, reorientation, realignment, co-registration with

T1-weighted structural images, normalization to standard stereotactic

Montreal Neurological Institute space (resampled to 3 � 3 � 3 mm3

voxels), detrending, filtering (0.01–0.08 Hz), regression out of white

matter/cerebrospinal fluid/whole brain signals, 24 head motion-

related covariates, 24 head motion-related covariates, and smoothing

(full-width at half-maximum, 6 mm). Participants with head motions

exceeding 2 mm or 2� were excluded from the imaging analysis. There

was no significant difference in the mean framewise displacement

between the groups in the two data sets.

2.5 | Region of interest definition and network
construction

The structure of the AAN was acquired from the Ascending Arousal

Network Atlas (Martinos Center for Biomedical Imaging, Charlestown,

MA; https://www.nmr.mgh.harvard.edu/resources/aan-atlas) (Edlow

et al., 2012). Nine regions of interest (ROIs) were defined in the AAN

atlas (Figure 1): the dorsal raphe nucleus, LC, mesencephalic reticular

formation (MRF), median raphe nucleus (MR), PAG, PBC, pontine

nucleus oralis (PO), PPN, and ventral tegmental area. The 32 nodes of

the eight cortical networks were obtained from the FSL Harvard-

Oxford atlas available in the Conn Toolbox v.21 (https://web.conn-

toolbox.org/) (see Table S1 for details). The eight cortical functional

networks included DMN, four nodes; SN, seven nodes; DAN, four

nodes; FPN, four nodes; SMN, three nodes; visual network (VN), four

nodes; language network (LN), four nodes; and cerebellar network

(CBN), two nodes. For each participant, Pearson's correlation analyses

were conducted to obtain the correlation coefficients between the

preprocessed fMRI time series of each ROI and all other ROIs (Wang

et al., 2018). In addition, Fisher's Z-transformation was applied to

improve the correlation coefficients so that they approached a normal

distribution [Z = 0.5ln (1 + CC)/(1 � CC)] (F. Liu et al., 2017). Finally,

a 41 � 41 FC matrix (intra- and inter-ANN and eight cortical net-

works) was obtained for each participant and used for subsequent

analyses (Xu et al., 2020).

2.6 | Statistical analysis

2.6.1 | Clinical data analysis

For demographic and clinical information, two-sample t tests and chi-

square tests were employed to compare the differences between the
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CID and GSC groups (SPSS 24.0, SPSS Inc.). The significance threshold

was set at p-value <.05.

2.6.2 | Functional brain network analysis

For the AAN and cortical networks, two-sample t tests were utilized

to determine group differences in the FC matrix between CID patients

and GSCs, after controlling for the effects of age, gender, and years of

education. The significance level was set at p-value <.05, and the false

discovery rate method was used for multiple comparison correction.

2.6.3 | Multivariate pattern analysis

The toolbox of MVPA of Neuroimaging Data ( http://funi.tmu.edu.cn/

index.php?c=article&a=type&tid=444) was employed for machine

learning analysis with fMRI data, based on MATLAB 9.0 platform

(Peng et al., 2020). In rs-fMRI research, support vector machine (SVM)

is one of the most widely used machine learning algorithms and is

well-generalized (James et al., 2013; Meier et al., 2012). Hence, we

chose the SVM algorithm to construct a classification model (support

vector classification [SVC]) and regression model (support vector

regression [SVR]) in this study (Chang & Lin, 2011).

The SVC was employed for the classification of patients with CID

from GSCs, and the FC matrix for each participant was used as the

input feature. A 10-fold cross-validation was performed to avoid over-

fitting the training set. The C-SVC with linear kernel and default SVC

parameters (penalty coefficient c = 1, gamma g = 0.1, degree d = 3,

coefficient r = 0, nu n = 0.5, and epsilon in the loss function p = 0.1)

were set for the classification model. SVC results were reported in

terms of mean accuracy, specificity, sensitivity, and area under the

receiver operating characteristic curve (AUC).

For the prediction of clinical symptoms in the CID group, SVR

was employed, the FC matrix for each participant was used as input

features, and the clinical scores (i.e., PSQI, SAS, and SDS) were set as

labels. Leave-one-out cross-validation was used for the prediction

model to ensure separation between the training and testing samples.

The e-SVR with a linear kernel was used for regression analyses with

default SVR parameters. The squared prediction-outcome correlation

(R2) and mean absolute error (MAE) were calculated to assess the pre-

dictive power of SVR (Lindquist et al., 2017; Wager et al., 2013).

2.6.4 | Permutation testing and weight calculation

The statistical significance of the classification and regression models

was tested by using a permutation test (1000 times). In addition, the

corresponding mean weight of each FC was computed for each SVC

and SVR model.

2.7 | Validation analysis in an independent data set

We also tested the external validity of the SVC and SVR models using

the following steps. First, we tested whether the FC classifier features

in data set 1 could distinguish CID patients from GSCs in an indepen-

dent data set. The SVC model trained in the first data set was applied

to an independent sample of patients with CID and GSCs, without

model fitting. Second, we tested whether the FCs predictor feature in

data set 1 could predict clinical symptoms (PSQI, SAS, and SDS scores)

in patients with CID in the independent data set. The SVR model

trained with the first data set was applied to data set 2 without model

fitting.

3 | RESULTS

3.1 | Demographic and clinical features

Table 1 shows that there were no significant group differences

between patients with CID and GSCs in terms of sex, age, and years

of education (p > .05). The mean disease duration in the CID group

was 57.80 months. The CID group demonstrated worse sleep quality,

greater anxiety, and higher depression scores than the GSC

group (p < .001).

F IGURE 1 The nodes of Harvard ascending arousal network. DR, dorsal raphe nucleus; LC, locus coeruleus; MR, median raphe nucleus; MRF,
mesencephalic reticular formation; PAG, periaqueductal gray; PBC, parabrachial complex; PO, pontine nucleus oralis; PPN, pedunculopontine
tegmental nucleus; VTA, ventral tegmental area
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3.2 | Functional brain network results

The average FC matrix for each group is illustrated in Figure 2a,b. In

the GSC and CID groups, the FC patterns within the AAN and cortical

networks were positive, whereas most of the connections between

the nodes of the cortical functional network and AAN were negative.

Regarding group differences in FC matrices, the CID group exhib-

ited both increased and decreased FC compared to the GSC group

(Figure 2c,d). Notably, the FCs of AAN-SMN and AAN-DAN were

negative in the GSC group (Figure 2a). Thus, a decrease in the FCs of

AAN-SMN and AAN-DAN imply that FCs in patients with CID were

increased compared to GSCs. Detailed FC alteration results are pre-

sented in Table S2. Overall, compared to the GSC group, the

enhanced positive FCs in the CID group were located within the AAN,

between the AAN and DMN and between the AAN and CBN, while

the elevated negative FCs in the CID group were situated between

the AAN and SMN and between the AAN and DAN.

3.3 | SVC classification results

The SVC classification results are illustrated in Figure 3a. The classifi-

cation model showed a total accuracy of 88.33%, a specificity of

86.67%, and a sensitivity of 90.00%. The area under the curve of the

classification model was 0.93. The permutation test showed that the

classification model was significantly higher than the chance-level

classification accuracy (p < .001). The top 10 FCs that contributed to

SVC classification included FCs within the AAN and LN, AAN and

DMN, AAN and DAN, AAN and SMN, SN and VN, and DMN and VN

(Table 2). It should be noted that all the top 10 FCs in the classifica-

tion model were dysfunctional in the CID group.

3.4 | External validity of the SVC classification
model

The SVC classification model obtained from data set 1 was used to

discriminate patients with CID from GSCs in an independent cohort.

The SVC model yielded an accuracy of 77.34%, a specificity of

78.94%, a sensitivity of 75.44%, and an AUC of 0.84 (p = .001), indi-

cating good generalizability in the independent data set

2 (Figure 3b).

3.5 | SVR prediction results

The SVR prediction results showed that FC patterns could predict

the severity of clinical symptoms in patients with CID. Specifically,

FC patterns could predict sleep quality (R2 = .34; p = 1.96 � 10�6;

MAE = 1.62; permutation p = .005; Figure 4a), anxiety symptoms

(R2 = .35; p = 1.06 � 10�6; MAE, 6.41; permutation p = .003;

Figure 4b), and depressive symptoms (R2 = .38; p = 3.32 � 107;

MAE, 6.99; permutation p = .013; Figure 4c). The top 10 FCs con-

tributing to the SVR prediction model for PSQI scores included FCs

within the AAN and DMN as well as FCs between the FPN and

VN, DMN and LN, SN and VN, DAN and LN, and DAN and CBN.

The top 10 FCs contributing to the SVR prediction model for SAS

scores included FCs within the CBN and VN as well as FCs

between the AAN and FPN, FPN and DMN, FPN and SN, FPN and

LN, DAN and VN, SN and VN, and DMN and CBN. The top 10 FCs

that contributed to the SVR prediction model for SDS scores

included the FCs within the AAN, FPN, and SN as well as the FCs

between the DAN and VN, and between SN and VN. The top

10 FCs that contributed to the clinical symptom prediction models

are presented in Table 2.

3.6 | External validity of the SVR prediction model

The SVR predictive model obtained from data set 1 was used to pre-

dict the clinical symptoms of patients with CID in an independent

insomnia cohort. The SVR prediction model could predict insomnia

symptoms (R2 = .15; p = .04; MAE = 2.02) and anxiety symptoms

(R2 = .34; p = 1.07 � 106, MAE = 5.43) in independent data set

2. The SVR prediction model could not predict depressive symptoms

in patients with CID (R2 = .09; p = .07).

TABLE 1 Demographic, clinical characteristics, and brain volume for two groups

Characteristic

Data set 1

T/χ2 value p-Value

Data set 2

T/χ2 value T/χ2 valueCID (n = 57) GSC (n = 56) CID (n = 30) GSC (n = 30)

Age 34.49 ± 11.46 34.43 ± 8.81 0.03 .97 39.86 ± 11.39 39.10 ± 9.76 0.28 0.78

Gender (female/male) 37/20 36/20 0.01 .94a 19/11 18/12 0.07 0.79a

Year of education 15.73 ± 3.07 15.27 ± 3.41 0.77 .44 12.67 ± 3.99 11.13 ± 4.34 1.42 0.16

Duration (months) 57.80 ± 59.72 - - - 52.40 ± 54.02 - - -

PSQI 12.96 ± 2.63 3.58 ± 1.81 22.04 <.001 13.73 ± 1.92 3.56 ± 2.14 19.31 <0.001

SDS 44.05 ± 10.97 30.80 ± 7.81 7.39 <.001 44.00 ± 5.07 27.50 ± 12.07 6.90 <0.001

SAS 42.19 ± 9.68 27.19 ± 5.87 10.07 <.001 43.10 ± 8.56 24.75 ± 7.16 9.00 <0.001

Abbreviations: CID, chronic insomnia disorder; GSC, good sleep control; PSQI, Pittsburgh Sleep Quality Index; SAS, Zung's Self-Rating Anxiety Scale; SDS,

Zung's self-Rating Depression Scale.
aThe p value was obtained by chi-square test; other p values were obtained by a two-way t test.
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4 | DISCUSSION

The current study demonstrated abnormal FC patterns across the

AAN and eight resting-state cortical networks in patients with CID

and explored potential AAN-based biomarkers for discriminating

insomniacs from controls and predicting clinical symptoms in patients

with CID. First, we found that the AAN plays a critical role in informa-

tion transfer between the brainstem and cerebral cortex in patients

with CID, with elevated positive FCs found in AAN-DMN and AAN-

CBN and elevated negative FCs found in AAN-SMN and AAN-DAN.

Second, the cross-validation accuracy of the AAN-based FCs pattern

in discriminating patients with CID from GSCs was 88%, and there

was an independent validation accuracy of 77%. Third, the AAN-

based FCs pattern can predict clinical symptoms in patients with CID

and, in particular, the predictive models for insomnia and anxiety

symptoms can also be externally validated in the independent data

set. Cumulatively, we believe that AAN may serve as an important

network for the brain mechanisms underlying CID and its comorbid-

ities with mental symptoms.

4.1 | Disruption of AAN-cortical network coupling
patterns in patients with CID

In recent years, advances in in vivo neuroimaging have allowed us to

investigate the function of the ascending arousal system in human

brainstem nuclei (Beissner et al., 2014; Bianciardi et al., 2015; Singh

et al., 2022). The present study found that the ascending arousal

nuclei were positively connected to each other within the AAN. These

intranetwork results are consistent with those of recent studies on

the FC of ascending arousal nuclei using resting-state fMRI data

(Beissner et al., 2014; Guardia et al., 2022; Singh et al., 2022). In

F IGURE 2 The AAN and cortical networks FC patterns in each group and group differences between CID and GSC. (a) The average FC
pattern of GSC group; (b) the average FC pattern of CID group; and (c,d) the group difference of ANN and cortical networks between CID and
GSC. The result was illustrated with matrix (c) and Circos (d). AAN, ascending arousal network; CBN, cerebellar network; CID, chronic insomnia
disorder; DAN, dorsal attention network; DMN, default mode network; FC, functional connectivity; FPN, frontoparietal control network; GSC,
good sleep control; LN, language network; SMN, sensorimotor network; SN, salience network; VN, visual network
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addition, internetwork results showed increased positive FCs of AAN-

DMN, AAN-CBN, and MRF-PAG and increased negative FCs of AAN-

SMN and AAN-DAN in patients with CID compared to GSCs. Consid-

ered together, these findings indicate that AAN-based intranetwork

and internetwork functional coupling was altered in patients with CID,

that is, there was an increased information transfer between wake-

promoting brain regions (ascending arousal systems) and cortical

regions.

LC, MR, PBC, PO, and PPN were the major nodes that connected

the AAN to other resting-state networks. The LC in AAN produces

most of the brain's noradrenaline (NE), which is thought to be a crucial

neurotransmitter for brain wakefulness and arousal (Berridge

et al., 2012; Moruzzi & Magoun, 1949). Our previous fMRI study

found increased FCs in the somatosensory association cortex (supra-

marginal gyrus) and visual cortex (occipital cortex) of the LC in

patients with CID, and disruption of LC connectivity has also been

linked to the duration of insomnia (Gong, Shi, et al., 2021; Gong, Yu,

et al., 2021). In this study, we observed increased connectivity of the

LC to the SMN, DAN, and CBN in CID patients, suggesting that insuf-

ficient silencing of LC-NE activity may lead to disruption of overnight

adaptive processes and restless sleep (Swift et al., 2018).

MR is the core nucleus for GABA, hypocretin, and serotonin

transmission, and MR neurons are thought to be involved in the regu-

lation of fear response and sleep–wake activity (Hsiao et al., 2019;

Varga et al., 2002). This study found that patients with CID exhibited

increased intrinsic FC of the DMN, SMN, DAN, and CBN with MR,

indicating an abnormal modulation of serotonin and GABA transmis-

sion from the ascending arousal system to the cortical cortex. The

PBC receives visceral afferent information from the brainstem and

outputs this information to the hypothalamus, amygdala, and cortical

cortex (Herbert et al., 1990). Recent research has linked PBC to facili-

tating arousal in the cerebral cortex (Fuller et al., 2011) and to the

pathological mechanism of obstructive sleep apnea (Kaur et al., 2013).

In addition, PBC, PO, and PPN are considered to be involved in corti-

cal activation via the glutamatergic pathway (Pedersen et al., 2017).

The increased intrinsic FCs of the PBC, PO, and PPN with the DMN,

SMN, and CBN in the present study may indicate an abnormal mecha-

nism of glutamatergic pathway-promoted cortical arousal in CID.

Overall, the current study demonstrated increased communica-

tion between the major nodes in the AAN and multiple cortical net-

works in patients with CID. These findings confirm and extend

previous work (Fernandez-Mendoza et al., 2016; Nofzinger

F IGURE 3 The classification results of SVC analysis based on functional connectivity between AAN and cortical networks. (a) The SVC
classification performance in data set 1. (b) The classification performance in data set 2 based on the model obtained from data set 1. Left, the
classification performance. Right, the permutation tests results. AAN, ascending arousal network; SVC, support vector classification
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et al., 2004), demonstrating the importance of AAN in the hyperarou-

sal model of insomnia in humans. Specifically, the brainstem arousal

system contains multiple arousal-promoting neurotransmitters

(e.g., monoaminergic-, cholinergic-, and glutamate-related nuclei).

Thus, increased AAN-cortical network signaling in insomnia patients

may lead to increased cortical excitability, which ultimately affects

sleep initiation and maintenance.

4.2 | AAN-cortical network connectivity to
identify patients with CID from good sleepers

In recent years, the SVM algorithm combined with resting-state fMRI

data have been widely applied to identify brain signatures in several

neuropsychiatric diseases (Bleich-Cohen et al., 2014; Gong

et al., 2022; Khazaee et al., 2016; Zeng et al., 2012) and for treatment

response prediction (Pang et al., 2022). In our study, a classification

model based on AAN and intrinsic cortical network features success-

fully identified patients with CID from the control group. Notably,

seven of the top 10 classifying features contained AAN, indicating

that FC associated with AAN contributed substantially to classifying

patients with CID and GSCs. This SVC model implies that AAN-based

connectivity may serve as a brain marker for CID diagnosis to

distinguish insomniac brains from healthy ones. These results further

support the significance of AAN in the neuropathological mechanisms

of insomnia.

Compared to previous studies using machine learning to classify

insomnia from healthy brains (Dai et al., 2020; C. Li et al., 2019), our

model exhibited higher accuracy, from 81.5% (data-driven approach)

to 88.0%. This improvement in accuracy may be attributed to our fea-

ture selection method, which extracts an underlying set of meaningful

features, that is, AAN-related FC. More importantly, the classifier dis-

criminated insomnia in an independent cohort of participants, with an

accuracy of 77%. Thus, the above cross-validation and independent

validation results confirm the generalizability and reliability of the

AAN-related connectivity classifier for insomnia diagnosis.

The DSM-5 defines insomnia as the subjective experience of dif-

ficulty in initiating sleep, difficulty in maintaining sleep, and waking up

too early in the morning. In clinical practice, insomnia is diagnosed

mostly by self-reported symptoms that can be confused with the

symptoms of other disorders (Benjamins et al., 2017). For instance,

individuals with delayed sleep phase syndrome are commonly misla-

beled as having insomnia (Murray et al., 2017). In addition to subjec-

tive questionnaire assessment, polysomnography can serve as the

“gold standard” tool for the diagnosis of most sleep disorders, but the

complexity of its construction limits its clinical applicability. Hence,

TABLE 2 The top 10 FCs contribute to the SVC classification model and SVR prediction model

SVC classification PSQI prediction SAS prediction SDS prediction

FC Weight FC Weight FC Weight FC Weight

DMN.MPFC-VN.

Medial

1.74 AAN.DR-AAN.PPN 2.52 FPN.PPC(R)-SN.SMG(L) �4.20 FPN.PPC(R)-AAN.

PAG

3.97

SN.AInsula(R)-VN.

Medial

�1.27 FPN.LPFC(R)-VN.

Lateral(R)

1.78 VN.Lateral(L)-VN.

Occipital

�3.12 FPN.PPC(R)-AAN.DR 3.75

LN.pSTG(L)-LN.IFG(L) 1.13 DMN.LP(L)-DMN.

MPFC

�1.52 DAN.IPS(L)-VN.Lateral(L) 2.68 DAN.IPS(L)-VN.

Lateral(L)

3.73

AAN.MRF-AAN.PAG 1.07 LN.IFG(L)-DMN.PCC �1.41 CBN.Posterior-DMN.LP

(R)

�2.60 FPN.LPFC(L)-AAN.DR 2.59

DAN.IPS(R)-AAN.LC �0.81 SN.RPFC(R)-VN.

Occipital

�1.34 CBN.Posterior-CBN.

Anterior

2.47 SN.SMG(L)-VN.Lateral

(L)

2.54

DAN.IPS(R)-AAN.PO �0.75 LN.IFG(L)-DAN.IPS(L) 1.30 LN.IFG(R)-FPN.LPFC(R) 2.41 FPN.PPC(R)-AAN.

PBC

2.48

DMN.MPFC-AAN.

PBC

0.72 CBN.Anterior-DAN.IPS

(L)

�1.25 FPN.PPC(R)-AAN.VTA 2.11 DAN.IPS(R)-VN.

Lateral(L)

2.44

SMN.Lateral(L)-AAN.

PPN

�0.71 SN.AInsula(R)-VN.

Medial

1.15 FPN.PPC(R)-AAN.MR 2.05 SN.RPFC(L)-AAN.PAG 2.34

SMN.Lateral(L)-AAN.

PO

�0.64 LN.IFG(L)-DAN.IPS(R) 1.06 FPN.LPFC(L)-DMN.PCC �1.95 SN.RPFC(L)-AAN.DR 2.32

SMN.Lateral(L)-AAN.

MR

�0.60 DAN.IPS(L)-VN.

Occipital

�0.93 SN.SMG(L)-VN.Lateral(L) 1.61 SN.RPFC(L)-AAN.

MRF

2.23

Abbreviations: ACC, anterior cingulate cortex; CBN, cerebellar network; DAN, dorsal attention network; DMN, default mode network; DR, dorsal raphe

nucleus; FEF, frontal eye field; FPN, frontoparietal control network; IFG, inferior frontal gyrus; IPS, intraparietal sulcus; LC, locus coeruleus; LN, language

network; LP, lateral parietal; LPFC, lateral prefrontal cortex; MPFC, medial prefrontal cortex; MR, median raphe nucleus; MRF, mesencephalic reticular

formation; PAG, periaqueductal gray; PBC, parabrachial complex; PCC, precuneus cortex; PO, pontine nucleus oralis; PPC, posterior parietal cortex; PPN,

pedunculopontine tegmental nucleus; pSTG, posterior superior temporal gyrus; RPFC, rostral prefrontal cortex; SMG, supramarginal gyrus; SMN,

sensorimotor network; SN, salience network; VN, visual network; VTA, ventral tegmental area.
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the objective fMRI-based biomarkers identified by us show potential

as complements to the clinical diagnosis of CID. Therefore, the results

were consistent with the hypothesis that the functional brain network

contains valuable information reflecting the condition of patients with

CID and could be regarded as a biomarker to distinguish them from

GSC using the MVPA method. However, further studies are necessary

to assess the clinical scenarios and populations in which these markers

are suitable.

4.3 | AAN-cortical network connectivity may
attribute to predict clinical symptoms in patients
with CID

We also explored potential brain network features to predict clinical

symptoms. SVR models based on resting-state fMRI data have been

widely used to predict individual brain maturity (Dosenbach

et al., 2010), physical pain (Wager et al., 2013), and clinical responses

(Qin et al., 2015). Recently, Zhou et al. (2020) developed a prediction

model for sleep quality based on dynamic functional network connec-

tivity features in a healthy population using fMRI data from the

Human Connectome Project. A previous study found that CBN FC

strength is associated with anxiety and postpartum depression

(B. Cheng et al., 2022). Correlation analyses from our previous study

also confirmed that brain connectivity between the LC and dorsal

anterior cingulate cortex was associated with SAS scores in patients

with CID (Gong, Shi, et al., 2021; Gong, Yu, et al., 2021).

In the present study, we found that in two independent data sets,

the SVR model based on the AAN and cortical networks predicted

insomnia and anxiety symptoms but not depressive symptoms in CID.

The FCs between the AAN, VN, DMN, and FPN contributed more to

the prediction model. Thus, our study suggests that neural markers

based on AAN-related connectivity exhibit potential as early treat-

ment biomarkers for predicting treatment response, particularly for

insomnia and anxiety symptom improvement. Indeed, many fields,

from oncology and cardiology to internal medicine, have developed

biomarkers that indicate specific pathophysiological mechanisms. In

recent years, the combination of machine-learning-based MVPA

approaches and neuroimaging data features has yielded some encour-

aging diagnostic and predictive models for individual-level disease

diagnosis and efficacy prediction (H. Li et al., 2022; Pang et al., 2022;

Zhang et al., 2022). However, it is still in the early stages of brain bio-

marker development; future applications should extend our predictive

model to multiple time-visits longitudinal experimental designs, such

F IGURE 4 The SVR-based clinical prediction results. (a) Insomnia symptom prediction; (b) anxiety symptom prediction; and (c) depression
symptom prediction; left, the weight of each regions in SVR model; middle left, the actual clinical scores and predicted clinical scores for each
patient; middle right, the FC patterns predict the clinical performance in patients with CID; and right, the permutation tests of the prediction
model. AAN, ascending arousal network; CBN, cerebellar network; CID, chronic insomnia disorder; DAN, dorsal attention network; DMN, default
mode network; FPN, frontoparietal control network; LN, language network; MAE, mean absolute error; PSQI, Pittsburgh Sleep Quality Index;
SAS, Zung's self-rating anxiety scale; SDS, Zung's self-rating depression scale; SMN, sensorimotor network; SN, salience network; SVR, support
vector regression; VN, visual network
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as predicting the effect of pharmacological and non-pharmacological

therapies on insomnia by collecting data from two time points

observed before and after treatment.

4.4 | Limitations

Certain limitations should be considered when interpreting our find-

ings. First, because cross-sectional fMRI studies limit the inference of

causality, future longitudinal research should investigate whether dis-

rupted AAN connectivity is a consequence or cause of sleep distur-

bances, especially in the different stages of insomnia. Second, the

existence of insomnia subtypes such as difficulty in initiating sleep,

difficulty in maintaining sleep, and early morning awakening has been

supported by several studies (Benjamins et al., 2017). Hence, it would

be interesting to study the specific and common neural mechanisms

underlying the different subtypes of CID and provide individual neu-

roimaging markers for the identification of CID subtypes. Third, we

did not assess arousal status before and after the fMRI scan, and

future studies should consider whether an individual's arousal state

affects classification performance. Fourth, sleep quality was not moni-

tored using subjective (i.e., sleep log) and objective (i.e., actigraphy

and polysomnography) tools. Future studies that assess sleep quality

are warranted to extend our findings. Fifth, we used a supervised

learning algorithm (SVM) for classification and regression, and future

research may use unsupervised learning algorithms (i.e., hidden Mar-

kov models) to verify the role of AAN in insomnia. Finally, the resting-

state fMRI data in this study were acquired using a 3.0 Tesla MRI

scanner. Hence, our results should be validated in additional work

using 7.0 Tesla fMRI data to ensure the reproducibility of the small

seed region connectivity map (Singh et al., 2022).

5 | CONCLUSION

To the best of our knowledge, our observations provide the first

in vivo evidence of strong connections between AAN and cortical net-

works across the DMN, CBN, SMN, and DAN in patients with CID.

Furthermore, combining the machine learning approach of MVPA and

AAN-cortical network features, a classification model that could dis-

criminate CID patients from good sleepers and a prediction model

that could predict insomnia and anxiety symptoms in patients with

CID were identified in two independent data sets. Collectively, the

findings of our study highlight the involvement of the AAN in the

pathophysiology of human insomnia and the comorbidities of mental

symptoms.
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