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Carcinogenicity testing plays an essential role in identifying carcinogens in environmental
chemistry and drug development. However, it is a time-consuming and label-intensive
process to evaluate the carcinogenic potency with conventional 2-years rodent animal
studies. Thus, there is an urgent need for alternative approaches to providing reliable and
robust assessments on carcinogenicity. In this study, we proposed a DeepCarc model to
predict carcinogenicity for small molecules using deep learning-based model-level
representations. The DeepCarc Model was developed using a data set of 692
compounds and evaluated on a test set containing 171 compounds in the National
Center for Toxicological Research liver cancer database (NCTRlcdb). As a result, the
proposed DeepCarc model yielded a Matthews correlation coefficient (MCC) of 0.432 for
the test set, outperforming four advanced deep learning (DL) powered quantitative
structure-activity relationship (QSAR) models with an average improvement rate of
37%. Furthermore, the DeepCarc model was also employed to screen the
carcinogenicity potential of the compounds from both DrugBank and Tox21.
Altogether, the proposed DeepCarc model could serve as an early detection tool
(https://github.com/TingLi2016/DeepCarc) for carcinogenicity assessment.
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INTRODUCTION

It is crucial to assess the carcinogenic potency for chemicals, an important factor that triggers
regulatory actions for both new and existing chemicals. In 1995, the ICH′ Guideline on the Need for
Carcinogenicity studies of Pharmaceuticals was introduced and outlined the need, study design, and
interpretation for carcinogenicity studies. Essentially, since carcinogenicity studies are time-
consuming and resource-intensive, they should only be performed when human exposure
warrants the need for information from lifetime studies in animals to assess carcinogenic
potential (ICHS1A, 1995) (Guideline, 1996). Generally, the experimental approach requires a
long-term carcinogenicity study (104 weeks) in the rodent plus one other study that
supplements the main study (ICHS1B, 1997) (Guideline, 1998), which can be a second-long
term study or a shorter study (29 weeks) in a second species. This more concise study could use
a transgenic mouse bioassay or a model based on initiation-promotion (ICHS1B, 1997) (Guideline,
1998).
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Irrespective of the choices around carcinogenicity studies,
each of these studies, on average, requires ∼500 rodents and
costs around $1.1 m. Moreover, there is evidence of flawed
extrapolation for carcinogenicity. There have been many
endeavors to address this issue, such as developing
biomarkers for use in shorter-term studies as predictors of
outcome (Yamamoto et al., 1998; Venkatachalam et al., 2001;
Morton et al., 2002). However, these approaches still rely
heavily on experimental animals and do not address the 3Rs
(replacement, reduction, and refinement of animals in
toxicology testing). Programs such as Horizon 2020, The
Seventh Framework Programme 7 (FP7), Tox21, Horizon
2020 Precision Toxicology, and other public-private
partnerships (Vinken et al., 2021) have offered innovative
thinking on developing animal-free methodologies and offer
improved translation to humans. These new approach
methodologies combine in silico and in vitro approaches
such as read-across (Shah et al., 2016), toxicogenomics
(Yauk et al., 2020), and adverse outcome pathways (AOPs)
(Yang et al., 2020).

Several studies have investigated the prediction of
carcinogenic potency (Lee et al., 2003; Morales et al., 2006;
Tanabe et al., 2010; Caiment et al., 2014; Toropova and
Toropov, 2018). The use of the quantitative structure-
activity relationship (QSAR) model has become
increasingly important for risk assessment because it can
provide a fast and economic evaluation of the toxicity of a
molecule using only the chemical structure. Some of the
QSAR models were developed for carcinogenicity
assessment for particular chemical classes (i.e., aromatic
amines, food-relevant phytochemicals, polycyclic aromatic
hydrocarbon) (Franke et al., 2001; Benigni and Passerini,
2002; Franke et al., 2010; Glück et al., 2018; Li et al., 2019).
Although the predictions of these models can vary with
interpretation, the application of these models was limited
to specific domains. Models for non-congeneric chemicals
include various classes of chemicals, which are of great
interest for regulatory use (Fjodorova et al., 2010; Zhang
et al., 2016a; Zhang et al., 2017; Wang et al., 2020). For
example, Zhang et al. (2016b) built a naïve Bayes classifier on
1,042 compounds with rat carcinogenicity and yielded an
overall accuracy of 0.90 ± 0.008 and 0.68 ± 0.019 for the
training set and external test set, respectively. Zhang et al.
(2017) developed an ensemble XGBoost model using 1,003
compounds with rat carcinogenicity and reported an
accuracy of 0.7, sensitivity of 0.65, and specificity of 0.77
in external validation. Wang et al. (2020) constructed a novel
sparse data deep learning (DL) tool based on the 1003
compounds from Zhang’s study (Zhang et al., 2017) and
yielded an accuracy of 0.85, sensitivity of 0.82, and
specificity of 0.88. These models covered a wide range of
chemical classes. However, the annotation of carcinogenicity
was only based on the rat in these studies. Since the animal
carcinogenicity assessment was required to be conducted at
least on two rodent species, it would give a more robust
annotation by combining the carcinogenicity signal from
both rats and mice. Therefore, we used the National

Center for Toxicological Research liver cancer database
(NCTRlcdb) (Young et al., 2004), which compressed the
carcinogenicity information from both genders of rats
and mice.

Deep learning (DL) has been successfully applied to predict
complex endpoints, such as drug-induced liver injury (DILI)
(Hwang et al., 2020; Li et al., 2020; Semenova et al., 2020) and
cardiovascular toxicity (Wang et al., 2017; Maher et al., 2020;
Rashed-Al-Mahfuz et al., 2021; Zeleznik et al., 2021). We
proposed the DeepDILI model to incorporate model-level
representations produced by five different machine learning
algorithms into a neural network framework for DILI
prediction (Li et al., 2021). The proposed DeepDILI
outperformed the publicly available chemical-based DILI
prediction models developed from different machine learning
(ML) algorithms. However, the DeepDILI study only applied one
arbitrary strategy for base classifier selection. The more
sophisticated and automatic base classifier selection strategies
that should be implemented may further improve the DeepDILI
model architecture for other toxicity assessments.

In this paper, we proposed a DeepCarc model to predict
carcinogenicity for small molecules using DL based model-
level representations. The carcinogenicity annotation was
obtained from the NCTRlcdb, incorporating the
carcinogenicity signals from both rats and mice. In addition to
the previous arbitrary base classifier selection strategy, we also
explored a new strategy to select robust base classifiers based on
the training set and development set performance. The developed
DeepCarc model was comprehensively compared with the
optimized 5 ML classifiers, two state-of-the-art ensemble
classifiers, and four DL models. In addition, we also employed
the DeepCarc model in prioritizing chemicals for carcinogenic
potency in the DrugBank and Tox21 chemical databases.

MATERIALS AND METHODS

Data Preparation
To curate a list of compounds for DeepCarc model development,
we employed the NCTRlcdb with liver-specific carcinogenicity
(Young et al., 2004). The NCTRlcdb provided a single
carcinogenicity call per compound, summarizing multiple
records representing each gender, species, route of
administration, and organ-specific toxicity from the
Carcinogenic Potency Database (CPDB) (Gold et al., 1999).
Additionally, NCTRlcdb removed inorganic compounds,
mixtures, and organometallics from the CPDB to facilitate
QSAR model development. In total, NCTRlcdb contained 999
compounds with seven carcinogenicity categories. We excluded
compounds from four categories without clear carcinogenicity
information, including associated, probable, equivocal, and no
opinion. We only employed the compounds from the other three
categories, including cancer-liver, cancer-other and negative. The
compounds from cancer liver and cancer-other were considered
as carcinogens, while compounds from negative were classified as
non-carcinogens. More specifically, the non-carcinogens were the
compounds without carcinogenic potency observed during
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reasonably thorough, chronic long-term tests (Gold et al., 1991).
Duplicate compounds were removed by comparing their InChI
keys. The final data set consisted of 863 compounds, of which 561
were carcinogens and 302 were non-carcinogens
(Supplementary Table S1).

To assign the chemical structures uniformly and avoid
potential data bias, we applied the Kennard-Stone (KS)
(Kennard and Stone, 1969) algorithm to split the whole data
set (i.e., 863 compounds) into the training set, development set,
and test set. Consequently, the training set included 554
compounds (360 carcinogens/194 non-carcinogens), the
development set contained 138 compounds (90 carcinogens/48
non-carcinogens), and the test set consisted of 171 compounds
(111 carcinogens/60 non-carcinogens). The structure description
file (SDF) of compounds was downloaded from PubChem
(https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi) for
molecular descriptor calculation (Kim et al., 2021).

Chemical Representation
Three different types of descriptors were calculated for each
compound: Mol2vec (Jaeger et al., 2018), Mold2 (Hong et al.,
2008), and Molecular ACCess System (MACCS) (Durant et al.,
2002) structural keys.

Mol2vec is an unsupervised ML approach trained on a
corpus containing 19.9 million compounds to learn vector
representations of molecular substructures (Jaeger et al.,
2018). For chemical-related substructures, their vector
representations point to similar directions in the high
dimensional space. Compounds can be represented as
vectors that add up from the vectors of the individual
substructures. 300-dimensional vector representations were
constructed for all compounds.

Mold2 (https://www.fda.gov/science-research/bioinformatics-
tools/mold2) is a publicly available software for calculating
777 chemical-physical based 1D/2D descriptors from chemical
structure (Hong et al., 2008). The Mold2 software enables a rapid
calculation of these large and diverse descriptors. Compared with
commercial software packages (Hong et al., 2008), it requires low
computing resources to generate the Mold2 descriptors, which
contain a similar amount of information.

MACCS is a substructure of keys-based fingerprints encoded
as SMART patterns (Durant et al., 2002). Two versions are
available, one with 960 structural keys and the other with 166
structure keys. The shorter one is more popular as it can be
calculated by several software packages and includes most of the
chemical features for drug discovery and virtual screening. A
single binary bit value of the bit string indicates the presence or
absence of a substructure in the compound.

Two steps of descriptor preprocessing were applied to these
three chemical representations. First, we removed the descriptors
with zero variance. Secondly, we only kept one descriptor if two
descriptors had a pairwise correlation coefficient of more than
0.9. Consequently, 297 of 300 Mol2vec descriptors, 330 of 777
Mold2 descriptors, and 138 of 166 MACCS descriptors were kept
for model development (Supplementary Table S2).

Discrimination Ability of Chemical
Representations
To investigate whether the three chemical representations
have a discrimination ability to distinguish between
carcinogens and non-carcinogens, we calculated the
pairwise compound similarity within carcinogens and non-
carcinogens in training and development sets, respectively.
We applied the Tanimoto coefficient to calculate the degree of
similarity of any two compounds, as it is an appropriate
choice for similarity calculation (Willett, 2006; Bajusz
et al., 2015). All three chemical representations, Mol2vec,
Mold2, and MACCS, were used to calculate the similarity.
The Tanimoto coefficient SA,B of molecules A and B is
calculated by Eq. 1 for the continuous variables (e.g.,
Mol2vec and Mold2) and Eq. 2 for dichotomous variables
(e.g., MACCS).

SA,B � ∑n
j�1 XjAXjB

∑n
j�1 (XjA)2 + ∑n

j�1 (XjB)2 − ∑n
j�1 XjAXjB

(1)

SA,B � c

a + b − c
(2)

WhereXjA is the value of the j th feature inmolecule A,XjB is the
value of the j th feature in molecule B, a is the number of bits with
value 1 in molecule A, b is the number of bits with value 1 in
molecule B, and c is the number of bits with value 1 in both
molecule A and B.

DeepCarc Model Development
DeepCarc model employed the same model architecture as
DeepDILI (Li et al., 2021) by implementing a novel base
classifier selection strategy (Figure 1). The input of NN is the
probabilities output of the base classifiers (model-level
representation). We hypothesized that no single learning
algorithm could fit any modeling circumstance while
different algorithms may provide complementary
information. Therefore, the ensemble classifiers’
performance can improve to some extent.

Base Classifier Development
Base classifiers were developed from five algorithms,
including KNN, LR, SVM, RF, and XGBoost. The
description of these five algorithms is as previously
described (Cox, 1958; Cortes and Vapnik, 1995; Guo et al.,
2003; Svetnik et al., 2003; Chen and Guestrin, 2016; Li et al.,
2021). Comprehensive hyperparameter optimization was
conducted for every algorithm using a bootstrap
aggregating strategy (Breiman, 1996) (Supplementary
Table S3). Specifically, 100 base classifiers were developed
for each hyperparameter combination with randomly
selected compounds from the training set (80%) and then
validated on the development set. The best hyperparameter
combination was obtained when the 100 base classifiers
achieved the highest average Matthews correlation
coefficient (MCC).
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Two base classifier selection strategies were proposed, named
original strategy and supervised strategy:

1) The original strategy was the base classifier selection approach
used in the DeepDILI model. Specifically, 100 classifiers
generated by each of the five algorithms with the best
hyperparameters were rank-ordered based on MCC values.
Only the ones with their MCC in the range of 5–95%
percentile were chosen as optimized base classifiers for the
meta-classifier development.

2) In the supervised strategy, we developed 1,000 base classifiers for
each algorithm with the best hyperparameter combination from
the training set. For each algorithm, the performance of every base
classifier and the average performance of these 1,000 models was
evaluated on both the training set and development set. Only the
base classifiers with MCC values higher than the average MCC of
both the training set and the development set were selected as the
optimized base classifiers. Then, the optimized base classifiers
selected from the five algorithms were combined for the meta-
classifier development.

FIGURE 1 |Overall workflow for the DeepCarc model including: (1) Data preparation. 863 compounds were split into training (554 compounds), development (138
compounds), and test (171 compounds) sets based on the Kennard-stone algorithm. (2) Base classifiers development. Five algorithms were used to develop the base
classifiers from three different chemical representations, including Mol2vec, Mold2, and MACCS. Two base classifiers selection strategies were employed to select the
optimized classifiers for meta classifier development. (3) Meta classifier development. With three chemical representations and two selectionmethods, six groups of
base classifiers, including Mol2vec_supervised, Mol2vec_original, Mold2_supervised, were used Mold2_original, MACCS_supervised, and MACCS_original. The
probability prediction from selected base classifiers was used to train the neural network. (4) Model evaluation. The DeepCarc model was evaluated on the independent
test set.
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Meta-Classifier Development
The meta-classifier NN aims to find the underlying
relationship that transfers the optimized base classifiers’
information to target through linear or non-linear
mathematical expression. In this study, a three-layer NN
was developed as the meta-classifier for carcinogenicity
prediction. Specifically, the input of NN came from the
probabilities output of the optimized base classifiers
(model-level representation) on the development set,
which means a compound was represented by a vector of
probabilities output from the optimized base classifiers. The
hidden layer included 10 nodes with rectified linear unit
(Relu) activation, stochastic gradient descent optimization,
batch normalization, and a dropout of 0.5. The output layer
used the sigmoid function to project the hidden layer
information to probabilistic values of carcinogenicity
prediction. The meta-classifier method was employed to
develop six DeepCarc candidate models from the
combination of three chemical representations (Mol2vec,
Mold2, and MACCS) and two base classifiers selection
strategies (original and supervised). For example, the
candidate DeepCarc model of Mol2vec_original indicates
the base classifiers were developed with the chemical
representation of Mol2vec and filtered by the original base
classifier selection method.

DeepCarc Model Evaluation
The developed DeepCarc model performance was evaluated in
the test set, including 171 compounds (111 carcinogens/60 non-
carcinogens). The DeepCarc model was assessed by six
performance metrics, including MCC, F1, accuracy, balanced
accuracy (BA), sensitivity, and specificity, which were
calculated using the following equations.

MCC � TP pTN − FP pFN������������������������������������������(TP + FP) p (TP + FN) p (TN + FP) p (TN + FN)√
(3)

F1 � 2TP
2TP + FP + FN

(4)

accuracy � TP + TN

TP + TN + FN + FP
(5)

BA � sensitivity + specificity

2
(6)

sensitivity � TP

TP + FN
(7)

specificity � TN

TN + FP
(8)

The TP, TN, FP, and FN denote true positive, true negative, false
positive, and false negative, respectively. In addition, the area
under the receiver operating characteristic (ROC) curve (AUC)
was also computed, where the ROC curve presents the
performance of the classification model by measuring the
relationship between true positive rate (TPR) against false
positive rate (FPR) (Fawcett, 2006).

To investigate whether the probabilistic values yielded by
DeepCarc could prioritize the compounds regarding

carcinogenetic potential, we employed the Chi-Square test in
different probabilistic thresholds (i.e., probabilistic value cut-off
values were from 0.1 to 0.9 with a step of 0.1). Meanwhile, we
calculated the positive predictive value (PPV) and negative
predictive value (NPV) to investigate the discrimination power
of probabilistic values for true positive and true negatives
carcinogens, as shown in the following formulas:

PPV � TP

TP + FP
(9)

NPV � TN

TN + FN
(10)

Comparative Analysis With Other Modeling
Approaches
To further evaluate the proposed DeepCarc model, we compared
DeepCarc with the optimized base classifiers developed from five
algorithms, including KNN, LR, SVM, RF, and XGBoost.
Furthermore, two ensemble methods, including the majority
voting and average probability methods, were employed to
justify the extra value of the proposed DeepCarc model over
the conventional ensemble approaches. In the majority voting
method, a consensus call of carcinogen/non-carcinogen was
derived by the majority calls of the optimized base classifiers.
In the average probability method, a new call was given to the
non-carcinogen if the average probability of the optimized base
classifiers was <0.5 and vice versa.

In addition, we compared the DeepCarc model against four
other molecular-based DL models, including Text
Convolutional neural network (CNN) from DeepChem (DC-
TEXTCNN) (Wu et al., 2018), Chemistry Chainer-Neural
Fingerprint (CH-NFP) (Duvenaud et al., 2015), Edge
Attention-based Multi-relational Graph Convolutional
Networks (EAGCNG) (Shang et al., 2018), and Convolutional
Neural Network Fingerprint (CNF) (Tetko et al., 2019). The DC-
TEXTCNN implemented the TEXTCNN based on chemical
information, where the TEXTCNN was constructed to classify
sentence tasks based on word representations. In the DC-
TEXTCNN, the Simplified Molecular Input Line Entry
System (SMILES) strings of molecules are the “sentence”
input with the characters of the string represented as vectors.
In the CH-NFP, the neural fingerprints are extracted from
graphs of molecules and forwarded to a multilayer perceptron
to make a classification prediction. The EAGCNG learns node
features and attention weights in a graph convolutional network,
where a molecular graph is represented by a real-valued
attention matrix instead of a binary adjacency matrix. The
CNF improves the molecule prediction by combining the
synergy effect between CNN and the multiplicity of SMILES,
which is used for feature extraction and data augmentation,
respectively. These four DL models were developed from the
Online Chemical Modeling Environment (OCHEM) website
(https://ochem.eu/home/show.do). We used our training set
and development set together to develop the models and then
evaluated them on the independent test set.
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DeepCarc for Screening Carcinogenicity
Potential of Compounds
The developed DeepCarc model was used as a screening tool for
carcinogenicity risk detection in two external datasets, including
DrugBank and Tox21. First, we collected 10,741 compounds from
DrugBank database version 5.1.7 (Wishart et al., 2018), including
approved and investigational drugs. After removing organometallics,
heavy molecules, and the overlap compounds with our NCTRlcdb
datasets, 9,814 investigated and approved drugs were kept
(Supplementary Table S4). The output of predicted probabilistic
values from the DeepCarc model was used to measure the
carcinogenicity concern quantitatively. Second, we collected 8,410
compounds from the U.S. Tox21 program https://tripod.nih.gov/
pub/tox21/, including food-additives, household cleaning products,
medicines, and environmental hazard chemicals. The selection
criteria of DrugBank were employed in the Tox21 dataset, and
7176 compounds were kept for screening by the DeepCarc model
(Supplementary Table S5). We used the output of predicted
probabilistic values from the DeepCarc model to quantitatively
measure the carcinogenicity concern.

Code Availability
All the models introduced above were developed with the open-
source Python (version 3.6.5). The Mol2vec descriptors were

generated from the source code https://github.com/samoturk/
mol2vec. The open-source cheminformatics toolkit RDKit37
(version: 2020.09.1) was employed to construct the MACCS
fingerprints. The Keras library version 2.0 with TensorFlow
version 1.14 as the backend was used to develop NN
classifiers. The scikit-learn package version 0.22 (Pedregosa
et al., 2011) was applied to develop models with these four
algorithms of KNN, LR, SVM, and RF. The open-source
XGBoost library implemented on Python (version 3.6.5) was
used to build all the XGBoost models. The scripts of all themodels
in this study are available at https://github.com/TingLi2016/
DeepCarc.

RESULTS

Discrimination Power of Chemical
Representations
To investigate the discrimination power of different chemical
representations, we calculated the pairwise compound similarity
(i.e., Tanimoto coefficients) among the compounds belonging to
carcinogens (i.e., 450 compounds in training and development
set) and non-carcinogens (i.e., 242 compounds in training and
development set) with each chemical representation, respectively

FIGURE 2 | The distribution of the pairwise Tanimoto coefficients calculated from Mol2vec, Mold2, and MACCS: The pink and green indicate that the pairwise
Tanimoto coefficients were calculated from the carcinogenic molecules and noncarcinogenic molecules, respectively.
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(Figure 2). Within each chemical representation (e.g., Mol2vec,
Mold2, or MACCS), we observed a similar distribution of
Tanimoto coefficients for carcinogens and non-carcinogens.
For example, the average and standard deviation of Tanimoto
coefficients were 0.479 ± 0.187 and 0.505 ± 0.182 for carcinogens
and non-carcinogens based on Mol2vec chemical representation.
Furthermore, the average and standard deviations of Tanimoto
coefficients derived from Mold2 were 0.356 ± 0.297 and 0.401 ±
0.292 for carcinogens and non-carcinogens, whereas for MACCS
they were 0.217 ± 0.143 and 0.214 ± 0.123. TheMol2vec tended to
generate higher Tanimoto coefficients than Mold2 or MACCS,
suggesting higher discrimination power of Mol2vec to cluster the
compounds from the same category (i.e., carcinogens and non-
carcinogens).

Mol2vec With Supervised Selection
Outperformed Other Combinations
To overcome the shortcoming of the base classifier selection
strategy, we proposed a supervised classifier selection strategy by
considering the performance from both training and
development sets (see Material and Methods). Figure 3
depicted the development set performance using the proposed
supervised base classifier selection strategy with the three
chemical representations. The developed DeepCarc based on
the Mol2vec with the proposed supervised base classifier
selection strategy yielded the best performance across all the
performancemetrics (e.g., MCC � 0.811), which wasmuch higher
than that of Mold2 (i.e., MCC � 0.503) and MACCS (i.e., MCC �
0.469). Furthermore, the performance metrics of the DeepCarc
model based on the proposed supervised base classifier selection
strategy with Mol2vec were also much higher than those of the
original strategy across all the performance metrics
(Supplementary Figure S1). For example, the DeepCarc
developed by the Mol2vec and supervised base classifier
selection strategy had an improved rate of 18.57% compared
to that of the original base classifier selection strategy (e.g.,

MCC � 0.684). Eventually, The DeepCarc model developed
based on Mol2vec with the proposed supervised base classifier
selection strategy consists of 296 RF, 285 LR, 277 KNN, 266
XGBoost, and 254 SVM which was considered as the optimized
model for the following analysis.

DeepCarc Effectively Augmented the
Performance of Selected Base Classifiers
To evaluate whether the DeepCarc model could benefit from
complementary information provided by different conventional
machine learning algorithms, we compared the optimized
DeepCarc model to the selected base classifiers developed from
5ML algorithms (Table 1). For each machine learning algorithm,
the average and standard deviation of the seven-performance
metrics of the selected base classifiers were calculated for the
development set and test set, respectively. The DeepCarc yielded
the highest values in all the performance metrics except sensitivity
(i.e., MCC � 0.811, accuracy � 0.913, AUC � 0.955, F1 score �
0.933, Balanced accuracy � 0.909, sensitivity � 0.922 and specificity
� 0.896) compared to the selected base classifiers. For example, the
DeepCarc made approximately an improvement of 77–127% of
MCC over the selected base classifiers in the development set.
Although the selected base classifiers achieved high sensitivities,
they yielded very imbalanced performance regarding sensitivity
(e.g., 0.991 ± 0.007 for RF) and specificity (0.212 ± 0.035 for RF).
The performance followed the same trend in the test set, where the
DeepCarc model achieved the highest value in MCC (0.432),
accuracy (0.754), AUC (0.776), F1 (0.828), BA (0.688), and
specificity (0.467). For instance, the DeepCarc made
approximately 127–184% improvement in MCC over the
selected base classifiers. Furthermore, the DeepCarc provided
the most balanced performance regarding sensitivity (0.910) and
specificity (0.467), whereas the selected base classifiers generated
extremely lower specificity. In other words, the selected base
classifiers tended to predict all the samples in the test set as
carcinogens.

FIGURE 3 | The performance of the developed DeepCarc models based on the proposed supervised base classifier selection strategy with the three chemical
representations: the three chemical representations included Mol2vec, Mold2, and MACCS. (A): Seven performance metrics; (B): Area under the ROC curve.
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DeepCarc Outperformed the
State-of-the-Art Ensemble Classifiers
The comparison between DeepCarc and two state-of-the-art
ensemble classifiers (i.e., majority voting and average
probability) was also conducted on the test set (Figure 4).
Consequently, the DeepCarc yielded better performance than
the other two ensemble classifiers onMCC, accuracy, F1, BA, and
specificity with an average improvement of 195.89, 13.55, 4.48,
31.17, and 698.29%, respectively. Themajority voting and average
probability generated the highest sensitivity (0.991 and 0.991,
respectively), but with extremely low specificity (0.050 and 0.067,

respectively), suggesting the proposed DeepCarc model could
effectively optimize and combine the base classifiers.

DeepCarc With Model-Level
Representation Outperformed Molecule
Representation-Based Deep Learning
Models
To confirm the model-level representation and the molecule-based
representation in carcinogenicity prediction, we compared the
DeepCarc model with four other publicly available DL models,
including DC-TEXTCNN, CH-NFP, EAGCNG, and CNF
(Table 2). The model performance of these four DL models
varied. Among these four deep learning models, DC-TEXTCNN
resulted in the highest performance in the MCC of 0.392, accuracy
of 0.735, F1 of 0.829, and sensitivity of 0.982. CH-NFP yielded the
highest AUC of 0.776 and BA of 0.639, while EAGCNG achieved
the highest specificity of 0.400. The imbalanced performance in
sensitivity and specificity were also observed in these four deep
learning models. DeepCarc outperformed these four deep learning
models onMCC, accuracy, AUC, BA, and specificity. For example,
DeepCarc improved 10–134% in MCC over the other four deep
learning models.

Predicted Probabilistic Values of the
DeepCarc Model for Prioritizing
Compounds on Their Carcinogenic Risk
To investigate the potential use of the DeepCarc model as the
screening tool for prioritizing the carcinogenic risk, we employed the
Chi-Square test to examine the correlation between carcinogen

TABLE 1 | The comparison between the base classifiers and DeepCarc performance on the development set and test set.

Data
set

Model MCC Accuracy AUC F1 BA Sensitivity Specificity

Development set DeepCarc 0.811 0.913 0.955 0.933 0.909 0.922 0.896
XGBoost 0.458 ± 0.027 0.758 ± 0.011 0.785 ± 0.02 0.842 ± 0.006 0.659 ± 0.016 0.986 ± 0.007 0.331 ± 0.034
LR 0.412 ± 0.024 0.746 ± 0.009 0.772 ± 0.012 0.830 ± 0.007 0.657 ± 0.016 0.95 ± 0.0260 0.364 ± 0.051
SVM 0.408 ± 0.026 0.737 ± 0.010 0.754 ± 0.021 0.831 ± 0.005 0.626 ± 0.016 0.991 ± 0.012 0.261 ± 0.040
KNN 0.372 ± 0.029 0.726 ± 0.009 0.694 ± 0.029 0.825 ± 0.005 0.612 ± 0.014 0.987 ± 0.010 0.236 ± 0.032
RF 0.357 ± 0.032 0.720 ± 0.011 0.805 ± 0.018 0.822 ± 0.006 0.601 ± 0.016 0.991 ± 0.007 0.212 ± 0.035

Test set DeepCarc 0.432 0.754 0.776 0.828 0.688 0.910 0.467
XGBoost 0.187 ± 0.039 0.672 ± 0.007 0.715 ± 0.022 0.797 ± 0.004 0.536 ± 0.010 0.991 ± 0.003 0.081 ± 0.021
LR 0.176 ± 0.033 0.670 ± 0.007 0.663 ± 0.017 0.794 ± 0.004 0.538 ± 0.011 0.981 ± 0.012 0.096 ± 0.028
SVM 0.152 ± 0.039 0.665 ± 0.007 0.733 ± 0.020 0.793 ± 0.004 0.529 ± 0.009 0.986 ± 0.008 0.071 ± 0.020
KNN 0.190 ± 0.037 0.672 ± 0.007 0.586 ± 0.031 0.797 ± 0.004 0.534 ± 0.009 0.993 ± 0.005 0.076 ± 0.019
RF 0.163 ± 0.039 0.665 ± 0.006 0.700 ± 0.027 0.794 ± 0.003 0.524 ± 0.008 0.997 ± 0.004 0.051 ± 0.015

FIGURE 4 | Ensemble models performance on the test set.

TABLE 2 | The model performance of DeepCarc and four advanced DNN models on the test set.

Models MCC Accuracy AUC F1 BA Sensitivity Specificity

DeepCarc 0.432 0.754 0.776 0.828 0.688 0.910 0.467
DC-TEXTCNN 0.392 0.735 0.719 0.829 0.627 0.982 0.271
CH-NFP 0.353 0.725 0.776 0.814 0.639 0.928 0.350
EAGCNG 0.328 0.713 0.682 0.800 0.641 0.883 0.400
CNF 0.185 0.673 0.636 0.796 0.541 0.982 0.100
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potential and predicted probabilistic values (Table 3). The p values
yielded from the Chi-Square test were all less than 0.05 in
probabilistic threshold from 0.2 to 0.9 with a step of 0.1,
showing the strong correlation between the predicted
probabilistic values of DeepCarc and the carcinogen risk.
Furthermore, with the threshold increased, the PPVs increased
from 0.663 to 0.887, meaning 88.7% compounds predicted with
probabilistic values greater or equal to 0.9 were carcinogens.
Meanwhile, the NPVs decreased as the threshold increased. The
NPV yielded the highest value of 0.941 with the classification
threshold value of 0.3 on the test set, indicating 94.1% of
compounds predicted with a probabilistic value less than 0.3
were non-carcinogens. Altogether, the predicted probabilistic
values of the DeepCarc model could be used as the indicators for
prioritizing compounds regarding their potential carcinogenic risk.

DeepCarc Is Employed to Screen DrugBank
and Tox21 Compounds
The DeepCarc was used as a screening tool for identifying the
carcinogenicity potential of the compounds from DrugBank
(Figure 5A). The predicted probabilistic values ranging from 0
to 1 were split into 10 intervals with a size of 0.1. Of 9,814
compounds, there were 7,410 (i.e., 7410/9814 � 75.50%), 916
(9.33%), 440 (4.48%), 290 (2.95%), 188 (1.92%) compounds with
their predicted probabilities belong to the intervals of (0, 0.1), (0.1,
0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively, indicating low
carcinogenicity concern. In total, 570 compounds (5.81%) were
predicted with probabilistic values≥0.5, indicating compounds with
carcinogenicity risk. Of 570 compounds, there were 45 compounds
(0.46%) with the predicted probability ≥0.9, indicating high
carcinogenicity concern. The predicted probabilistic value of
each drug is included in Supplementary Table S4.

The DeepCarc further screened the carcinogenicity potential
of the compounds from the Tox21 (Figure 5B). Similarly, the

predicted probabilistic values were separated into 10 intervals. Of
the 7,176 compounds, there were 3731 (i.e., 3731/7176 � 51.99%),
787 (10.97%), 504 (7.02%), 442 (6.16%), 371 (5.17%) compounds
with their predicted probabilities belong to the intervals of (0,
0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), and (0.4, 0.5), respectively,
indicating low carcinogenicity concern. The other 1341 (18.69%)
compounds were predicted with probabilistic values ≥0.5,
suggesting the compounds possessed carcinogenicity risk.
There were 113 (1.57%) compounds with the predicted
probabilistic value ≥0.9, suggesting high carcinogenicity
concern (Supplementary Table S5).

DISCUSSION

Effectively evaluating the carcinogenicity of compounds is essential to
improve the regulatory efficacy and promote public health.
Performing a standard toxicity assay with two rodents (rats and
mice) is expensive and time-consuming. Only a small proportion of
compounds have been tested on carcinogenicity. Therefore, there is
an urgent need for developing alternative methods to test
carcinogenicity quickly and cost-effectively. A lot of computational
models have been developed for prediction of carcinogenic potency.
Some of thesemodels can only be applied to specific chemical classes,
and some were developed based only on rat’s carcinogenicity assay
results.We developed a DeepCarcmodel to fill the gap by combining
model-level representation generated from five conventional ML
classifiers into a DL framework with Mol2vec descriptor and
supervised base classifier selection strategy. The proposed
DeepCarc model outperformed the optimized 5ML classifiers,
two state-of-the-art ensemble methods, and four molecule-based
deep learning models. The developed DeepCarc model is publicly
available through https://github.com/TingLi2016/DeepCarc.

The DeepCarc model was developed from the NCTRlcdb,
which includes 863 compounds, and the carcinogenicity

TABLE 3 | The relationship between predicted probabilistic values of DeepCarc and carcinogen risk.

Probabilistic
threshold

DeepCarc prediction Carcinogen p Value Positive predictive
value

Negative predictive
valuePositive Negative

0.1 Predicted positive 110 56 5.188E-2 0.663 0.800
Predicted negative 1 4

0.2 Predicted positive 110 52 1.074E-3 0.679 0.889
Predicted negative 1 8

0.3 Predicted positive 110 44 1.51E-07 0.714 0.941
Predicted negative 1 16

0.4 Predicted positive 108 40 5.22E-08 0.730 0.870
Predicted negative 3 20

0.5 Predicted positive 101 32 4.22E-08 0.759 0.737
Predicted negative 10 28

0.6 Predicted positive 89 29 2.74E-05 0.754 0.585
Predicted negative 22 31

0.7 Predicted positive 81 22 7.18E-06 0.786 0.559
Predicted negative 30 38

0.8 Predicted positive 68 14 2.44E-06 0.829 0.517
Predicted negative 43 46

0.9 Predicted positive 47 6 9.85E-06 0.887 0.458
Predicted negative 64 54

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7577809

Li et al. DeepCarc: Deep Learning-Powered Carcinogenicity Prediction

https://github.com/TingLi2016/DeepCarc
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


classification was built based on the carcinogenicity results of
both rats and mice. The DeepCarc model was designed to predict
the general carcinogens, which are non-organ specific. We
investigated other reported machine learning-based prediction
models with the NCTRlcdb data set (Liu et al., 2011; Tung, 2013;
Tung, 2014; Beger et al., 2004). However, all the other reported
prediction models aim to discriminate liver-specific carcinogens
from others. Furthermore, samples used in these developed
models varied from each other. One of the significant
challenges of AI-based models towards real-world application
is explainability. Here, we employed the Uniform Manifold
Approximation and Projection (UMAP) to investigate the
driving force of the proposed supervised base classifier
selection strategy outperforming the original one (McInnes
et al., 2018) (Supplementary Figure S2). The UMAP is a
non-linear dimension reduction technique that captures the
local relationships within the groups and the global

relationships between different groups (Becht et al., 2019). We
found that the supervised selection method had better
discrimination power in distinguishing the carcinogens from
non-carcinogens than the original selection method.

The DeepCarc model was compared with the other four DL
carcinogenicity prediction models (DC-TEXTCNN, CH-NFP,
EAGCNG, and CNF) using the chemical representation as a
direct input. Different from the chemical descriptors used in the
DeepCarc development, we explored three other different types of
chemical representation, including SMILES strings (DC-
TEXTCNN, and CNF), molecular graphs (CH-NFP), and
molecular graphs with attention (EAGCNG). We also
evaluated the impact on carcinogenicity prediction by
enlarging the data set with the multiplicity of SMILES strings
in the CNFmodel. DeepCarc outperformed these four DLmodels
with the highest MCC of 0.432. The DC-TEXTCNN and CNF
with SMILES strings as input had the highest sensitivity but
lowest specificity. The CH-NFP and EAGCNG with the
molecular graph as input reached higher specificity than the
two DL models (DC-TEXTCNN and CNF) with SMILES string
as input. Enlarging the data set by the multiplicity of SMILES
string did not improve the performance in this carcinogenicity
prediction.

Considering a large proportion of compounds in DrugBank
and Tox21 without the carcinogenic test result, we employed the
DeepCarc model to assess the carcinogenicity risk for the
compounds from DrugBank and Tox21 to provide the
information for further prioritizing the compounds for
carcinogenicity assessment. We found that 1341 (1341/7176 �
18.69%) compounds were predicted with carcinogenicity risk in
Tox21, which is much larger than 570 (570/9814 � 5.81%) drugs
predicted with carcinogenicity risk in DrugBank. One of the
possible reasons is that Tox21 includes environmental chemicals
and household cleaning products, which are less likely to be
evaluated by the carcinogenicity bioassay. However, there is a
rigorous procedure to avoid carcinogens from getting marketed
in drug development. A drug is required to take the 2-years
carcinogenicity animal study if it will be used in treatment
continuously for 6 months or more or with some special
causes for concern, such as belonging to a class of the known
carcinogens, showing evidence of precancerous changes in the
chronic toxicity studies, and retaining in tissues for a long time
(Rang and Hill, 2013). We conducted a literature survey to collect
the compounds’ carcinogenic potential details with very high and
low probabilities. However, we found little information on the
carcinogenic testing results of these compounds. For example,
Osimertinib was predicted with the carcinogenic probability of
0.928 and a study reported that it induced autophagy and
apoptosis via reactive oxygen species generation in non-small
cell lung cancer cells (Tang et al., 2017).

To investigate the potential artifact yield in the data split
process, we randomly split the total 863 chemicals were into the
different training set, development set, and test data set for
10 times to develop DeepCarc models. The low specificity of
the test set compared to the development set is consistently
observed in every newly developed DeepCarc model
(Supplementary Figure S3). Identifying compounds with

FIGURE 5 | The probability distribution of the DeepCarc prediction of the
compounds from (A) DrugBank; (B) Tox21.
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potential carcinogenic risks is very costly, time-consuming, and
labor-intensive. A model with high sensitivity for detecting high
carcinogenic risk compounds could be beneficial to narrow down
a large number of compounds into a handled scale for further risk
assessment. Considering the relatively low specificity and high
sensitivity nature of the current DeepCarc model, we highly
recommended positioning the model on screening of
molecules in the early stage of development.

A low false-negative rate is one of the essential prerequisites to
warrant the practical application of the prediction model in
screening carcinogens. Therefore, we investigated the false-
positives cases in our proposed DeepCarc model. There were 10
of 111 carcinogens predicted as non-carcinogens in the test set. The
common structure analysis was employed for these 10 carcinogens.
However, we did not find any common substructure, indicating
only chemical information is insufficient to identify these
carcinogens. Therefore, we recommend applying alternative
approaches such as high-throughput in vitro toxicity assays (Li
et al., 2017; Chiu et al., 2018) to further screen the non-carcinogens
predicted by the DeepCarc to eliminate the false-negative cases in
the real-world application.

The development of animal-free models is a new trend of
modernized toxicity assessment. The 2-years bioassays in rats and
mice are impossible to assess the carcinogenic potential of every
compound efficiently and accurately. The DeepCarc model we
developed could help prioritize potential carcinogens in the early
stages of compounds development. Moreover, we hope our work
will attract more interest to further exploring advanced artificial
intelligence (AI) approaches for carcinogenic potency prediction.
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