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Simple Summary: Septic shock is a life-threatening disease caused by a dysregulated host response
to infection, affecting millions of people every year and killing more than 25% directly despite
advances in modern medicine. This pathology is characterized by apoptosis-induced depletion of
immune cells and immunodepression. Many alterations in the expression of surface markers of
neutrophils and monocytes have been described in septic patients. There is no specific treatment
but the early identification and diagnosis of the pathology as well as timely treatment can greatly
improve patient outcomes. The aim of this study was to inspect the recently published literature to
inform the clinician about the most up-to-date techniques for the study of immune cell phenotypes
and on the function of leukocytes of extracorporeal and non-blood purification treatments proposed
for sepsis were also analyzed. The most important alteration observed in septic neutrophils is
the activation of a survival program capable of resisting apoptotic death. As regards adaptive
immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and this
process involves all types of T cells (CD4, CD8 and Natural Killer), except for regulatory T cells,
favoring immunosuppression. Several promising therapies that target the host’s immune response to
sepsis are currently under evaluation.

Abstract: Innate and adaptive immune system cells play a critical role in the host response to sepsis.
Sepsis is a life-threatening disease characterized by apoptosis-induced depletion of immune cells and
immunodepression, which contribute to morbidity and mortality. Many alterations in the expression
of surface markers of neutrophils and monocytes have been described in septic patients. The aim
of this study was to inspect the recently published literature to inform the clinician about the most
up-to-date techniques for the study of circulating leukocytes. The impact on cell phenotypes and
on the function of leukocytes of extracorporeal and non-blood purification treatments proposed for
sepsis were also analyzed. We conducted a systematic review using Pubmed/Medline, Ovid/Willey,
the Cochrane Library, the Cochrane Controlled Trials Register, and EMBASE, combining key terms
related to immunological function in sepsis and selected the most relevant clinical trials and review
articles (excluding case reports) published in the last 50 years. The most important alteration
in neutrophils during sepsis is that they activate an anti-apoptotic survival program. In septic
monocytes, a reduced characteristic expression of HLA-DR is observed, but their role does not seem
to be significantly altered in sepsis. As regards adaptive immunity, sepsis leads to lymphopenia and
immunosuppression in patients with septic shock; this process involves all types of T cells (CD4,
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CD8 and Natural Killer), except for regulatory T cells, which retain their function. Several promising
therapies that target the host immune response are currently under evaluation. During the worldwide
pandemic caused by SARS-CoV-2, it was useful to study the “cytokine storm” to find additional
treatments, such as the oXiris® filter. This therapy can decrease the concentration of inflammatory
markers that affect the severity of the disease.

Keywords: blood purification; flow cytometry; immune cells; inflammation; lymphocytes; monocytes;
neutrophils; sepsis; COVID-19

1. Introduction

Sepsis is an important public health issue globally. Septic shock is a life-threatening
disease caused by a dysregulated host response to infection, affecting millions of people
every year and killing more than 25% directly despite advances in modern medicine. Maybe
this reflects the increasing age of the population with more comorbidities [1–3].

Given the large percentage of elderly patients worldwide, it is likely that sepsis will
become an even greater problem in the future.

A consensus conference in 1991 defined “sepsis” as the combination of an infection
with two or more features of the “systemic inflammatory response syndrome” (SIRS): a
high or low body temperature, an elevated respiratory and pulse rate and anomalies in the
white blood cell count.

According to the Third International Consensus Definition for Sepsis and Septic Shock
(Sepsis-3), the criteria are expanded, and sepsis is now defined as a life-threatening organ
dysfunction characterized by a complex series of cellular changes in response to an infection
or other dangerous signs [4–6] (Tables 1 and 2). This was very important because it shifted
attention to the immune system reaction for the first time, rather than remaining on the
pathogen responsible for the infection.

Table 1. Suspected Infection Variables and definition of sepsis and septic shock.

GENERAL VARIABLES CUT-OFF

Fever >38.3 ◦C

Hypotermia <36 ◦C

Heart Rate >90 min or more than two S.D. above the
normal value for age

Tachypnea >20 rr/min

Altered Mental Status impairment

Significant Edema or positive fluid balance >20 ml/kg over 24 h

Hyperglycemia pGluc > 140 mg/dl in the absence of diabetes

INFLAMMATORY VARIABLES CUT-OFF

Leukocytosis WBC count > 12,000/µL

Leukopenia WBC count < 12,000/µL

DISEASE DEFINITION (SEPSIS-3)

Sepsis Suspected/confirmed infection+≥2 criteria of
SOFA

Septic Shock
Sepsis+ fluid refractory Hypotension_

- Lactate 2 mmol/l
- Vasopressor for MAP ≥ 60 mmHg
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Table 2. Sequential Organ Failure Assessment (SOFA) Criteria. Adrenergic agents administered for
at least one hour (doses given are in µg/kg/minute). Norepi = norepinephrine; dpx = dopamine;
dbx = dobutamine; epi = epinephrine. ** PaO2/FiO2 = arterial partial pressure of oxygen/fraction of
inspired oxygen + MAP = mean arterial pressure # With respiratory support.

SOFA 0 1 2 3 4

RESPIRATION (P/F) ** ≥400 <400 <300 <200 # <100 #

COAGULATION (plts) ≥150 <150 <100 <50 20

LIVER, BILIRUBIN
(mg/dL) 1.2 1.2–1.9 2.0–5.9 6–11.9 >12

CARDIOVASULAR Map+ ≥ 70 Map+ < 70 any dose dpx or
dbx

dpx > 5 or
epi ≤ 0.1 or
norepi ≤ 0.1

dpx > 15 or
epi > 0.1 or norepi

≤ 0.1

GLASGOW COMA
SCORE 15 13–14 10–12 6–9 <6

CREATININA (mg/dL) <1.4 1.4–1.9 2.0–3.4 3.5–4.9 >5.0

We do not fully understand the pathogenesis of sepsis and there is no specific treatment
but it is clear that the early identification and diagnosis of the pathology as well as timely
treatment can greatly improve patient outcomes.

The cellular changes during sepsis are triggered by some receptor patterns—Toll-like
receptors (TLR), NOD-like receptors (NLRs), RIG-I helicases, and C-type lectin receptors,
expressed on most types of cells [7]. These receptors are activated through the expression or
inhibition of many immune and metabolic genes, and through post-translational changes
in the main intracellular proteins involved in signaling and transcriptional regulation.

The cells of the innate and adaptive immune system are important in the host’s
response to infection, and so in sepsis. Furthermore, leukocytes may be a good parameter
for the evaluation of the altered immune response in sepsis, because they are involved in
the response to acute injury and they are quite easy to sample in peripheral blood.

2. Materials and Methods

We conducted a systematic review using Pubmed/Medline, Ovid/Willey, the Cochrane
Library, the Cochrane Controlled Trials Register, and EMBASE, combining key terms re-
lated to immunological function in sepsis and selected the most relevant clinical trials and
review articles (excluding case reports) published in the last 50 years.

After that research, we have focused on 5 key immunological issues that physicians
need to consider when assessing sepsis:

1. Characteristic changes in neutrophil and monocyte function in sepsis.
2. Characteristic functional and phenotypic changes in adaptive immune system cells

during sepsis.
3. Techniques that are useful for the study of circulating cells in sepsis and to understand

if immune cells act as a “biopsy sample”.
4. Can extracorporeal and non-blood purification therapies alter cell phenotypes and/or

change the function of leukocytes?
5. COVID-19 and a “cytokine storm”: the role of blood purification.

To address these issues, we searched for evidence using the Cochrane Controlled Trials
Register, the Cochrane Library, Medline, Embase, and Scopus from 1966 to more recently.
Finally, we reviewed the results with the group and used the Delphi method to obtain
unanimous consensus.
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3. Discussion
3.1. Characteristic Changes in Neutrophil and Monocyte Function in Sepsis

Polymorphonuclear neutrophils (PMNs) and monocytes are predominant circulating
phagocytic cells of the innate immune system; they are derived from common bone marrow
precursors and their biological destiny differs in the bloodstream [8,9], where they play a
fundamental role in regulating innate and adaptive immunity.

Some studies show a reduction in monocyte count that seems to be correlated with
the severity of sepsis, the risk of mortality, the rate of bacteriemia and organ dysfunction.
Hyunwoo Chung et al. enrolled 2012 patients with severe sepsis and showed that the
neutrophil counts were significantly increased and the lymphocyte counts were significantly
decreased in both survivors and non-survivors (p < 0.01, respectively). On the other hand,
the monocyte counts were significantly increased in survivors and decreased in non-
survivors (p < 0.01, respectively). In this latter group of patients, there were significantly
higher rates of bacteremia, mechanical ventilation, and crude 28-day mortality (p < 0.001).
This was probably due to low monocyte counts corresponding to poor local infection
control and spreading to systemic evolution [10].

On damage, neutrophils can extrude their DNA to create extracellular neutrophilic
traps (NETs), which serve to trap bacteria and activate local coagulation mechanisms [11].

Ahmed and colleagues studied neutrophil migration and behavior at the inflammation
site on skin samples. Neutrophils had less capacity to migrate from peripheral blood, but
the phagocytic, bactericidal capacities increased and oxidative capacity was unmodified
if compared to healthy controls [12]. Others have shown that while basal neutrophil
activation is enhanced in sepsis, the ability to respond to a de novo stimulus is reduced [13].

Among the most important changes observed in septic neutrophils is their ability
to activate a survival program that counteracts the apoptotic pathway they encounter
after leaving the bone marrow [14]. While 50% of resting neutrophils will show the
typical morphological changes in the apoptosis process after 24 h of in vitro culture, the
corresponding rate for septic neutrophils is only 5–10% [15].

De novo gene expression is necessary to prolong neutrophil survival and interleukin-
1b is necessary for this process [16] in addition to PBEF/Nampt—a protein that represents a
break for the biosynthesis rescue pathway of NAD [17]. The reduced expression of the main
HLA-DR histocompatibility antigen is a characteristic finding on septic monocytes [18].
This is related to an increased risk of complications from infection and death [19], so it has
been suggested to use HLA-DR levels as a potential biomarker to estimate the success of
the therapies used for sepsis [20,21] (Figure 1).

Evidence suggests that immature neutrophils in the circulatory stream during sepsis
may undergo a differentiation process in monocytic cells [22], underlining the plasticity of
the response of myeloid cells to an acute insult and in sepsis. Two alterations in the cellular
phenotype deserve special mention.

Myeloid-derived suppressor cells (MDSCs) circulate as CD34+ and CD11b+ and can
inhibit the adaptive immune response, in particular the activation of T cells [23,24]. Their
ability is to generate reactive oxygen species (ROS) and arginase products. MDSCs are
protective in animal sepsis models [25,26]: instead, their role in the human body during
sepsis is unclear; their presence is associated with lymphopenia and increased mortality [27]
(Figures 2 and 3).

As mentioned, PMNs are modified in number or function [28]; in several animal
models, they are involved in non-selective tissue damage [29], releasing ROS and proteases
such as elastase [30].

To confirm what has been said, sepsis in the human body is associated with delayed
neutrophil apoptosis, as mentioned from Taneja et al. [31,32].



Biology 2022, 11, 1626 5 of 20
Biology 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. T lymphocyte alteration in sepsis. 

 
Figure 2. MDSCs suppress antitumor immunity through a variety of mechanisms. T cell activation 
is suppressed by the production of arginase and ROS, cysteine deprivation and the induction of 

Figure 1. T lymphocyte alteration in sepsis.

Biology 2022, 11, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 1. T lymphocyte alteration in sepsis. 

 
Figure 2. MDSCs suppress antitumor immunity through a variety of mechanisms. T cell activation 
is suppressed by the production of arginase and ROS, cysteine deprivation and the induction of 

Figure 2. MDSCs suppress antitumor immunity through a variety of mechanisms. T cell activation is
suppressed by the production of arginase and ROS, cysteine deprivation and the induction of Tregs.
Innate immunity is impaired by the down-regulation of macrophage-produced IL12, the production
of IL10 and the suppression of NK cells.
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Figure 3. MDSCs are induced and/or activated by multiple proinflammatory mediators. MDSCs ac-
cumulate in the blood, bone marrow, lymph nodes and at tumor sites in response to proinflammatory
molecules produced by tumor cells or by host cells in the tumor microenvironment.

Furthermore, neutrophils extracted from the blood of patients who have suffered from
sepsis or polytrauma can induce the apoptotic death of other cells by the dephosphorylation
of Caspase-8 on the epithelial cell [33]. The expression of PDL-1 is increased on septic
neutrophils and, through interaction with PD-1 lymphocytes, it can induce the apoptotic
death of CD4+ lymphocytes [34].

3.2. Characteristic Functional and Phenotypic Changes in Adaptive Immune System Cells
during Sepsis

Functional and phenotypic changes in the adaptive immune system in sepsis can be
summarized as follows: the cooperation between innate and adaptive immune systems;
the mechanism and the phenotypic changes observed over time.

The adaptive immune system is composed of T and B lymphocytes and uses antigenic
receptors to solve their function. This is possible thanks to the recognition by the innate
immune system of microbial patterns (PRRs). An important role is represented by “antigen-
presenting cells” (APCs). After processing microbial antigens, APCs present the antigen
to native T cells via major histocompatibility complex (MHC) molecules. In addition,
activation of T cells requires a series of stimulating signals and an environment rich in
cytokines. The activation of B cell receptors, which can take place through different
pathways, leads to the production of specific antibodies in the organism (Figure 4).
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Then, whatever the pathogen detected, the direct activation of the dendritic cells (DCs)
by the PRR activates the response of the T cells. The organization of the immune response
changes over time after the initial insult and follows different scenarios. The immediate
response is identified by “an inflammatory storm”, which sees the release of both pro-
and anti-inflammatory factors, activation and cellular cooperation in order to eradicate
the infection.

The immune system can sometimes exceed this response, and this can lead to organ
failure, which is responsible for the early death in at least 50% of septic shock cases [35,36].

Adaptive immunity changes that occur during this early phase (i.e., 5–7 days) have
been studied less but remain a great challenge in the research for an innovative therapy [37]
(Figures 5 and 6).

The pioneering work of Zahorec et al. showed that surgical stress as well as systemic
inflammation and sepsis determine important changes in the white blood cell count, char-
acterized by neutrophilia and lymphopenia in correlation with the severity of the clinical
course [38]. The neutrophil/lymphocyte ratio was used as a “stressor” to predict severity
and/or outcome.

In 2002, Tschaikowsky et al. demonstrated that marked lymphopenia at sepsis onset
was more pronounced in survivors on days 2, 3, 5 and 7 than in non-survivors [39].
Compared to healthy subjects, the reduction was 50% for CD4+ and CD8+ T cells in
non-survivors and 75% in survivors. On days 1, 2 and 5, the percentage of both T cell
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subpopulations was approximately 2 fold that in non-survivors compared to survivors
with a CD4/CD8 T cell ratio on days 1 and 2 significantly higher than the normal value
(1.95 + 0.21). This ratio returned to normal on day 14, with no difference between survivors
and non-survivors.
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Figure 5. Overview of cellular changes occurring during sepsis. The first line shows the correct
activation of the immune system during infection. If the innate and adaptive immune systems fail
to contain the ongoing infection locally, the infection spreads systemically, triggering a hyperin-
flammatory innate and adaptive immune response. Further progression of infection and spread
of the dysfunctional and altered cellular responses, including changed surface receptor expression,
inappropriate inflammatory mediator secretion, and untimely apoptosis of immune cells, lead to
the development of sepsis (middle panel). To regulate hyperinflammatory immune cell activities,
the body goes through a loss of balance between inflammatory and anti-inflammatory response
and a generalized immunosuppressive stage (bottom panel). As described in the figure, different
phenotypic and molecular changes take place in immune cells as sepsis progresses. Thus, a host
response that is designed to protect against pathogens causes tissue-damaging events, leading to
multi-organ system failure and death. (Legend: ↑: increase; ↓ : decrease).

In the literature, there are few articles describing changes in lymphocyte subpop-
ulations during sepsis. In 32 septic patients with purulent meningitis [40], a decrease
in the absolute number of total T lymphocytes at hospitalization and rapid recovery af-
ter 7 days were observed. This lymphopenia involved CD4+ , CD8+ and NK cells and
was more pronounced with a Gram-positive infection. Compared to healthy volunteers,
the reduced number of circulating B lymphocytes correlated well with the incidence of
nosocomial infection.
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The role of B cells in both innate and adaptive immune responses has become more
important recently, especially after a mice study conducted by Scumpia ed al. in 2011, where
an attenuated inflammatory response was shown to be linked to B cell deficiency [41].
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Figure 6. Stages of sepsis. Early in sepsis, both inflammation and immunosuppression occur
concurrently. If inflammation is uncontrolled, this leads to organ failure and death. Those that avoid
early death will either return to immune homeostasis, or progress to prolonged immunosuppression
that continues after discharge. Prolonged immunosuppression predisposes survivors to infections,
rehospitalizations, and ultimately to death. This phenomenon is marked by impaired cytokine
secretion, dysfunctional T cells, and cellular reprogramming. Expansion of regulatory T cell and
myeloid-derived suppressor cell (MDSC) populations also occurs early in sepsis and persists after
sepsis, suggesting their role in maintaining this immunosuppressive phenotype.

Monserrat et al. enrolled 52 patients with septic shock and demonstrated that B
cell activation and regulation markers at the time of admission seemed to be associated
with a better outcome, with markers of apoptosis significantly lower in survivors than in
non-survivors [42].

Several theories have been presented regarding the immune profile: elderly patients
with numerous comorbidities can develop a limited initial hyperinflammatory phase,
followed by an immunosuppression pattern; patients with early hyperinflammation some-
times experience immunosuppression until healing; others develop a state of prolonged
immunosuppression that exposes them to secondary infections or to a recurrence of the
initial unresolved infection [43].

Although the mechanisms behind these differences have not been fully identified,
post-aggressive immunodepression (PAID), particularly for adaptive immunity, has been
described several times in many inflammatory scenarios. The evolution towards PAID
seems to be more frequent in septic patients [18].

Various threads of clinical evidence fit well with this theory: patients with sepsis
and trauma lost the delayed hypersensitive response, a finding correlated with a higher
mortality rate [44,45]; in sepsis, the reactivation of latent viruses such as cytomegalovirus
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and herpes simplex virus or secondary infections caused by relatively poorly virulent
pathogens may also develop [18,46]. Blood tests during the late phase of sepsis show
increased regulatory T cell counts (immunosuppressants) and an increase in the production
of PD-1 and its L1 ligand [47,48]. The absolute number of all T cell types was reduced in
septic or septic shock patients, except for regulatory T cells (circulating CD4+, CD25+, and
Treg cells) [49]. Adaptive immunity cells up-regulate the expression of selected inhibitor
receptors such as PD-1, with an expansion in the number of T suppressor and myeloid-
derived suppressor cells in the tissues of different organs [50]. The clinical consequence of
this delayed and prolonged PAID was recently published in a monocentric retrospective
study [51].

Lymphopenia observed at the beginning of sepsis was equally present at 28 days in
survivors and non-survivors, with no difference between the two groups. As of day 4, the
absolute mean lymphocytic count was higher in survivors than non-survivors and was
independently associated with 28-day survival and increased development of secondary
infections.

Multiple mechanisms can explain this adaptive immunity depression. The key point
was the demonstration that apoptosis causes marked exhaustion of CD4, CD8 and B T cells
in various organs in patients who die from septic shock, with no difference associated with
age and type of pathogen. Sepsis-induced apoptosis can be activated either by the pathway
triggered by the death receptor or by the metabolic pathway [43,52,53].

Immune cell activation is also regulated by metabolic pathways, so we can talk about
“immune metabolism” [54]; in fact, mitochondrial ATP is obtained with these pathways,
which is necessary to support immune function.

The energy needed is gained through two routes: first, via glycolysis and the tricar-
boxylic acid (TCA) cycle [55,56]; secondly, via the oxidation of fatty acids as a source for
specific cell subgroups of T lymphocytes [54].

Therefore, metabolic changes in sepsis may be responsible for modifications in the
immune system, but also may be a consequence of the disease. Unlike innate immunity
cells, T cells can proliferate quickly and massively after activation, a process that uses
Warburg’s metabolism (a high aerobic glycolysis rate). Activated T lymphocytes use
oxidative phosphorylation and glycolysis, producing pyruvate, and they activate the
pentose phosphate pathway, which can produce reactive oxygen species.

Memory T cells and Treg cells use oxidation of fatty acids to survive and support their
functions [55].

When a naive T cell recognizes an antigen, it triggers a development program char-
acterized by rapid growth, proliferation, and acquisition of specific functions and this
requires metabolic reprogramming. This metabolic modification may influence the devel-
opment and activity of T cell subgroups, as suggested for the proposed strict glycemic
control [57,58]. A key question to be resolved is to understand if the PAID phenomenon
described during sepsis is a “normal” adaptive response that follows the acute phase or if
it represents immune system failure that must be treated.

3.3. Techniques That Are Useful for the Study of Circulating Cells in Sepsis and to Understand If
Immune Cells Act as a “Biopsy Sample”

Various cellular and molecular biology techniques are currently available to study the
immune status of patients with sepsis. For example, C-reactive protein (CRP) and procalci-
tonin (PCT) are often used in the clinical setting as parameters to manage infection and
response to antibiotic therapy since they are indirect biomarker of infection, although their
value is increased in other pathological conditions, such as trauma or major surgery [59,60].

ELISA has been used to evaluate plasma levels of molecules involved in inflammation
and apoptosis, describing their association with mortality and disease scores.

Other molecules are involved in predicting the severity of sepsis, such as presepsin
and serum angiopoietin (Ang)-2 [61,62].
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The soluble CD40 ligand (sCD40L) shows pro-thrombotic and pro-inflammatory prop-
erties after binding to the CD40 cell receptor. Circulating levels of sCD40L are significantly
higher in septic patients than in controls and non-survivors [63].

Huttunen et al. evaluated the prognostic value of apoptosis markers such as soluble
Fas (sFas), Fas ligand (FasL) and the sFas/FasL ratio in patients with bacteremia, describing
the direct association between these mediators and a high SOFA score [64].

Another technique used for the study of the immune status is fluorescence-activated
cell separation (FACS). FACS enables the simultaneous determination of multiple antigens,
highlighted with different fluorochromes, and can be used as a first tool to determine the
quantity of specific immune cells (leukocyte typing). Specific staining of surface antigens
can identify helper T cells, 1 or 2, and various lymphocyte subpopulations [65–67] (Figure 7).
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FAC can be used to evaluate many parameters involved in sepsis—for example, inte-
grin molecules whose expression is increased on leukocyte surfaces during inflammation,
or the reduction in HLA-DR expression on monocytes, considered a predictor for mortality
in severe sepsis [68,69].

In NK cells, the FACS analysis of NKG2D is used as a marker of cellular activation and
the expression of CD107 to identify degranulation [70,71]. FACS is also able to distinguish
between the expression of surface molecules and intracellular antigens: the intracellular
levels of TLR2 and TLR4 in the NK cells of septic patients increased compared to those of
healthy subjects [69]. Mariam Onsy F. Hanna et al. [72] demonstrated that the determination
of CD64 expression on neutrophils by flow cytometry is useful for predicting sepsis in
critically ill patients (OR = 1.04; p = 0.028). The specificity of neutrophil CD64 for sepsis
was 91%, with an AUC of 0.66, at the optimal cut-off of 54 MFI. In contrast, neutrophil
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CD16 and monocytes CD64 and CD14 lost the capacity to predict sepsis in critically ill
patients. Moreover, they demonstrated that the neutrophil CD64/monocyte CD64 ratio
can predict sepsis, with an OR of 91.55, although it did not reach statistical significance
(p = 0.075), probably due to the poor campion size. Neutrophil CD16 expression achieved
significance for prediction of mortality risk measured by the APACHE II score among all
patients (sepsis and no sepsis patients; p = 0.025) using linear regression. Multi-variate
regression analysis with sepsis as the dependent variable and patient parameters including
neutrophil CD64, CRP and SOFA as well as the sepsis score as independent predictors
showed that the score was independently associated with sepsis and was significant as a
predictor of sepsis (OR = 47.5, p = 0.003).

Additional strategies are used—for example the new frontier of “OMICS” technology
(genomics, transcriptomics, proteomics and metabolomics) may improve new approaches
as a sort of “molecular microscope” to develop new diagnostic tools [73]. Studies examining
single-nucleotide polymorphisms (SNPs) in sepsis have generated mixed results. However,
the TNF SNP functional gene rs1800629 was strongly associated with susceptibility to
sepsis [74].

Microarray analysis of genes and quantitative RT-PCR are now being used to advan-
tage in the study of genes implicated in inflammation to confirm gene modulation [75];
RT-PCR has also been used to examine the gene-level reduction in HLA-DR expression in
monocytes, with promising results [76]. In fact, gene profiling of leukocytes in the blood
is being considered in the relationship between encoding of gene expression and related
protein levels during sepsis.

Furthermore, RT-PCR in used in the measurement of mitochondrial or cell-free DNA.
Recent studies have highlighted the importance of epigenetics in immune dysfunction
associated with sepsis, through DNA methylation and histone acetylation in inflammatory
genes [77]. Among epigenetic mechanisms, microRNAs, small non-coding RNAs capable
of modifying gene expression in target cells, are modulated in plasma during sepsis.
MicroRNAs are analyzed and identified by RT-PCR; miR-15a, miR-16, miR-122, miR-133,
miR-193, miR-223 and miR-483-5p are all increased in human sepsis and are associated
with a higher mortality rate [78–80].

In the future, research is based on the study of exosomes/circulating extracellular
micro vesicles (EVs); EVs are potential emerging biomarkers of diseases, because they seem
to be involved in the transfer of material between cells (for example of proteins, receptors,
bioactive lipids and genetic material as mRNA and microRNA). EVs can also be detected
in plasma by FACS or with specific techniques such as Nanotrack analysis [81]. Circulating
vesicles may also appear to be involved in the tissue damage of the myocardium and
endothelium caused by sepsis [82,83].

In conclusion, the possibility of analyzing the genome and the continuous develop-
ment of new technologies will broaden knowledge of the immune status in septic patients in
the coming years. This will allow the development of new effective personalized molecular
treatments for this disease.

3.4. Can Extracorporeal and Non-Blood Purification Therapies Alter Cell Phenotypes and/or
Change the Function of Leukocytes?

Therapeutic modulation of the host’s immune response during sepsis has always been
a challenge. In recent decades, several attempts have failed to demonstrate any benefit in
terms of improving patient outcomes [84,85].

Currently, it appears that extracorporeal therapies are giving good results. Among
these strategies, the whole panel of extracorporeal blood purification therapies appears to
be among those with the best impact on the septic patient’s immune system: they manage
to change the phenotype of immune cells and/or their function.

Several new molecules have recently shown very promising effects in this field and are
also currently being tested. More traditional strategies such as high-volume hemofiltration
and its variants (high-volume pulsed hemofiltration and cascade hemofiltration) have
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concentrated their action on the possibility of removing inflammatory mediators from
the blood, a phenomenon that can subsequently lead to a change in the phenotype of
leukocytes and in their function. In a pig model, Yekebas et al. reported that high-volume
endotoxin hemofiltration in vitro may prevent the sepsis-induced hyporesponsiveness [86].

Among extracorporeal blood purification strategies, there is also hemoperfusion, based
on the removal of target molecules from the blood by filtering. The filter using polymyxin-B
affects endotoxins and has been shown to restore the expression of HLA-DR on monocytes
and CD16 on granulocytes with a decrease in IL-10 levels [87].

Opinions on this technique are still divergent. In fact, Payen et al. have recently
reported a negative opinion on this therapy [88]; instead, Kumagai et al. have pointed out
another ability of this type of sorbent, which is that it is able to selectively remove activated
neutrophils which express high levels of CD11b/CD64 and low levels of CXCR1/CXCR2.
Removal of this cell has been associated with an ex vivo reduction in the ability of circulating
cells to cause damage to single-layer endothelial tissue [89].

Srisawat N et al. [90] conducted a randomized controlled trial in patients with blood
endotoxin activity assay levels treated with polymyxin-hemoperfusion and compared
with a group who received a standard treatment. They enrolled 55 patients (PMX-HP vs.
standard treatment) and an improvement in “leukocyte reprogramming” was observed.
PMX-HP therapy enables a higher expression of mHLA-DR compared to in patients who
received the standard treatment (p = 0.027). The PMX-HP treatment improves outcomes of
sepsis/septic shock in patients, significantly reducing CD11b expression on neutrophils,
and should be considered a potential treatment strategy.

Hemoperfusion with Cytosorb technology can remove both activated leukocytes and
cytokines from circulation [91,92]. Furthermore, the removal of cytokines and chemokines
through this technique is likely to modify the local chemokine gradients between the
infection site and the plasma, and thus lead to greater enrollment of leukocytes [93].

The hybrid blood purification technique called plasma filtration adsorption (CPFA)
plays an important role as it adsorbs inflammatory mediators through a special resin
that functions as a filter. In fact, Ronco et al. reported that CPFA may restore leukocyte
responsiveness to LPS in a prospective crossover clinical trial in which patients with septic
shock were enrolled [94].

We know that one of the most serious damages during sepsis occurs at renal tubular
cells, caused by circulating inflammation mediators [95]. In septic patients with acute renal
damage, the use of filters with high cut-off membranes is able to reduce the phagocytosis
of polymorphonuclear neutrophils and restore the peripheral proliferation of mononuclear
blood cells [96,97].

In a randomized, double-blind, placebo-controlled pilot study, Leentjens et al. reported
that interferon-γ may attenuate the LPS-induced reduction in the TNF-a response and may
increase the expression of HLA-DR on monocytes [98]. Meisel et al. have demonstrated in
a randomized controlled trial that GM-CSF is also able to reverse monocyte inactivation
(demonstrated by the increase in the expression of HLA-DR on the monocyte) and to
restore induced pro-inflammatory monocytic cytokine production ex vivo from TLR-2/4.
Interestingly, some positive clinical effects were also observed, such as a shorter time of
mechanical ventilation and a shorter ICU stay in the GM-CSF group [99]. In vitro blockade
of the PD-1/PD-L1 pathway can also have an impact on the phenotype of immune cells and
on the function of leukocytes with a decrease in lymphocytic apoptosis and the restoration
of the ability of immune effector cells to produce cytokines such as interferon γ and IL-2,
which are essential for host immunity [100]. Finally, Venet et al. have shown that ex
vivo treatment with recombinant human IL-7 can improve lymphocyte function, with
an increase in the proliferation of CD4+ and CD8+ T cells, an increase in the production
of interferon-γ by lymphocytes, an increase in the phosphorylation of the molecule key
signaling called STAT5 (signal transducer and transcription activator 5) and an increase in
the induction of B cell lymphoma 2 [101] (Table 3).
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Table 3. Graphical overview of the current available devices to perform blood purification in critically
ill patients affected by septic shock.

Extracorporeal Blood Purification

Convection Therapies Adsorption Therapies Combination Therapies Other Therapies

Continuous Renal Replacement
(CRRT)

Immobilized Polimixin B
(PMX)

Coupled Plasma Filtration
Adsorption (CPFA) Plasma exchange

High-Volume Hemofiltration
(HVHF)

Hemadsorption
(e.g., CytoSorb)

Combined Filtration and
Adsorption (e.g., oXiris) Renal Assist Device (RAD)

High Cut-Off Membranes (HCO)

In conclusion, there are many promising techniques capable of acting on the immune
system and on a patient’s immune response. It is important to underline that these potential
strategies can have effects on the three different levels that we have discussed: the number
of immune cells, the proportion of cellular subpopulations through the modification of
surface markers expressed on leukocytes, and cellular expression and function.

3.5. COVID-19 and “Cytokine Storm”: The Role of Blood Purification

In December 2019, a series of unexplained pneumonia cases appeared in Wuhan. The
new disease was defined as coronavirus disease-19 (COVID-19), an infectious pathology
caused by the SARS-CoV-2 virus, by the World Health Organization (WHO). In most cases,
SARS-CoV-2 presents with fever and mild respiratory symptoms [102,103] but 13.8–25.5%
of patients may develop more serious manifestations due to increased lung damage with
possible development of acute respiratory distress syndrome (ARDS); among these patients,
approximately 5–6% require admission to intensive care units [104,105]. The latter patients
were characterized by the presence of severe respiratory insufficiency requiring mechanical
ventilation, or shock, or multi-organ failure syndrome.

Multi-organ involvement was also found in patients with severe disease such as
gastrointestinal [106], coagulation [107], and kidney [108]. On the other hand, according
to the available literature, it seems that the percentage of AKI does not increase among
patients with COVID-19. In a Chinese cohort of 1099 patients with COVID-19, 93.6%
were hospitalized, 91.1% had pneumonia, 5.3% were admitted to the ICU, 3.4% had acute
respiratory distress syndrome (ARDS) and only 0.5% had AKI. However, COVID-19 in
combination with AKI resulted in higher mortality [109].

In the peripheral blood of patients with COVID-19, modifications of PMNs have been
found. Lymphopenia was found in 83.2% of COVID-19-positive patients and the prognosis
of the disease was directly related to a decrease in circulating lymphocytes [109].

Numerous studies confirmed the reduction in CD4 and CD8 T lymphocytes, but an
increasing number of inflammation indices were observed at the same time, e.g., inter-
leukin (IL)-6, tumor necrosis factor a (TNF-a), IL-2, monocytes chemokine-1 (MCP-1), and
macrophage inflammatory protein 1a (MIP1A).

This huge release of cytokines into the blood is defined as a ‘cytokine storm’. Cy-
tokine release syndrome (CRS) [110–112] leads to MODS and ARDS [113,114]; this is also
responsible for multi-organ dysfunction and sepsis [115,116].

Considering the knowledge acquired on the treatment of sepsis using blood purifica-
tion, it was decided to apply the same treatment to septic COVID-19 patients.

The Chinese National Health Commission proposed blood purification therapies for
COVID-19-positive patients with a strong immune response. Furthermore, studies con-
ducted in patients with increased cytokine levels and imaging indicative of inflammatory
status demonstrated the importance of early treatment with continuous renal replacement
therapy (CRRT) and immunoadsorption [117]. Treatment with CRRT in patients with
severe MERS demonstrated effectiveness [118].

On the one hand, CRRT therapy has not achieved unanimous results; on the other
hand, blood purification therapies seem to be successful in severe COVID-19. Initially,
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blood purification studies were conducted on critical patients with unstable circulatory
status, also advising their use in severe COVID-19 [119–121].

Further, the literature reminds us to regularly monitor the inflammatory status of
severe COVID-19 patients, determine the clearance level of crucial inflammatory factors
that have a life of a few minutes, and consider the combination of other dialysis modes
in addition to conventional CRRT. Early application of blood purification therapies in
severe COVID-19 patients may achieve better efficacy and realize therapeutic goals such as
stabilizing hemodynamics and improving MODS.

Another group of researchers, Padala et al., reported on their experience of using
the oXiris® filter in the treatment of COVID-19 patients. They demonstrated that early
initiation of CVVHDF with the oXiris® filter with systemic heparin anticoagulation may
result in a decline in inflammatory markers [122]. OXiris® is a particular and innovative
membrane, which has the ability to remove both endotoxins and cytokines; it also replaces
renal function and has antithrombogenic properties. The oXiris® membrane is therefore
made of three different layers, and this unique design enables the combination of four
properties in one device: renal support, cytokine removal, endotoxin removal, and local
anticoagulant treatment [123].

4. Conclusions

The most important alteration observed in septic neutrophils is the activation of a
survival program capable of resisting apoptotic death. In septic monocytes, a reduced
characteristic expression of HLA-DR is observed, but the antimicrobial function of these
cells does not seem to be significantly altered in sepsis. As regards adaptive immunity,
sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and this
process involves all types of T cells (CD4, CD8 and Natural Killer), except for regulatory T
cells, which retain their function. Several promising therapies that target the host’s immune
response to sepsis are currently under evaluation. These potential treatments can influence
the count of immune cells, the percentage of cell subtypes and their function. During the
worldwide pandemic caused by SARS-CoV-2, it was useful to study the ‘cytokine storm’
in order to find the best treatment. In fact, an additional treatment using the oXiris® filter
with systemic heparin anticoagulation was proposed. This treatment can decrease the
concentration of inflammatory markers that affect the severity of the disease.

Other clinical studies are now awaited to confirm the promising preliminary results
obtained from these therapies.
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