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Abstract: There is concern regarding the heterogeneity of exposure to airborne particulate matter (PM)
across urban areas leading to negatively biased health effects models. New, low-cost sensors now
permit continuous and simultaneous measurements to be made in multiple locations. Measurements
of ambient PM were made from October to April 2015–2016 and 2016–2017 to assess the spatial
and temporal variability in PM and the relative importance of traffic and wood smoke to outdoor
PM concentrations in Rochester, NY, USA. In general, there was moderate spatial inhomogeneity,
as indicated by multiple pairwise measures including coefficient of divergence and signed rank
tests of the value distributions. Pearson correlation coefficients were often moderate (~50% of units
showed correlations >0.5 during the first season), indicating that there was some coherent variation
across the area, likely driven by a combination of meteorological conditions (wind speed, direction,
and mixed layer heights) and the concentration of PM2.5 being transported into the region. Although
the accuracy of these PM sensors is limited, they are sufficiently precise relative to one another
and to research grade instruments that they can be useful is assessing the spatial and temporal
variations across an area and provide concentration estimates based on higher-quality central site
monitoring data.
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1. Introduction

Ambient particulate matter (PM) has a variety of adverse effects on human health [1]. In the
United States, PM concentrations are measured at many fixed air quality stations in monitoring
networks managed by state, local, and tribal agencies to assess compliance with National Ambient Air
Quality Standards (NAAQS) for PM2.5, PM10, and other criteria pollutants. Solomon et al. [2] provide a
review of regulatory monitoring methods, which are designated as Federal “Reference” or “Equivalent
Methods” (FRM and FEM, respectively) in accordance with Code of Federal Regulations (40 CFR Part
53). FRM and FEM involve the use of scientific-grade instruments, which are generally expensive
to purchase, may be large, have substantial power demands, and require periodic maintenance
and/or handling by operators. These limitations typically mean that a limited number of stations are
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deployed within major cities, and there are few stations located in remote areas and close to hotspots
(e.g., industrial plants or high-trafficked roads) [3] except for current efforts to monitor the near-road
environment at a limited number of sites [4]. In urban areas, urban background stations are placed
in areas broadly representative of the city-wide pollution. However, the resulting limited spatial
and temporal resolution may be a limitation for epidemiological studies, which aim to represent the
inhalation exposure of people living across large areas with varying pollutant levels [5]. Lin et al. [6]
recently showed that hourly peak PM concentrations reflect health impacts better than daily averages.
Thus, it would be useful to obtain spatially resolved information on an hourly basis to provide
additional information for epidemiological studies.

The use of recently developed low-cost monitoring instruments (prices in 100 s of USD) can
be a useful option to improve the temporal resolution and spatial coverage of hourly PM data [7,8].
These low-cost instruments are physically small and light, have low power demands, and require less
handling and maintenance compared to scientific-grade FRM and FEM instruments. Consequently,
many sampling points can be monitored over wide areas to better elucidate the spatial variation of
the air pollutants, for example to identify hotspots in a polluted environment [9], to estimate personal
exposure [10], etc. However, low-cost monitors do not meet rigid performance standards and, therefore,
have limitations [7,11,12]. Because these low-cost monitors are being deployed by both researchers
and the general public, there is a need to assess both the advantages and the limitations of low-cost
instruments when determining their usefulness for large-scale studies [13].

Recently, several studies assessing low-cost PM monitors have been published for measuring
occupational PM in a laboratory setting (e.g., [14]), laboratory and ambient comparisons (e.g., [8,15]),
and field comparisons (e.g., [11,16]). The number of such studies, however, is low compared to the
number of low-cost devices produced globally, as many low-cost PM monitors are now on the market
and the manufacturers are not required to provide testing to validate them [13].

In previous studies, Manikonda et al. [17] and Zikova et al. [18] evaluated the performance of
several low-cost PM monitors, with further testing on one of the monitor types, the Speck (Airviz Inc.,
Pittsburgh, PA, USA). These monitors were tested under laboratory and field conditions and compared
to reference scientific-grade instruments in side-by-side collocated measurements. In the present study,
extended duration field measurements were performed to obtain information on monitors’ consistency,
stability, and durability of the sensing elements. The Speck units were deployed outdoors over two
winter sampling campaigns to estimate the spatial variability of urban and suburban PM2.5. This study
describes the results of two sampling campaigns and discusses the utility of low-cost instruments to
determine the spatial variability of hourly PM pollution across a large urban area for consideration of
their use in future studies.

2. Methods

2.1. Measurement Periods

The measurements were conducted during two heating season sampling campaigns across
Monroe County, NY, USA covering the period of late fall to early spring. These “heating seasons”
represent periods when ambient PM concentrations are affected by the emissions from space
heating [19], including residential wood combustion [20,21]. The first measurement period started in
early December 2015 (10 to 12 December) and ended in early April 2016 (4 to 10 April) since it took
several days to deploy and retrieve the monitors. The second measurement period started at the end
of October 2016 (27 October to 22 November) and lasted until early April 2017 (2 to 5 April). The
number of data points in each period is presented in Table 1 (with the names starting with V denoting
measurements during the first period, and names starting with P denoting measurements during the
second year).
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2.2. Instruments

During the two periods, PM2.5 measurements were made outdoors using low-cost PM monitors
at approximately 25 residential locations per year and at the NY State Department of Environmental
Conservation (DEC) air monitoring station in Rochester, NY using a tapered element oscillating
microbalance (TEOM) that has been designated as a Federal Equivalent Method for determining
compliance with the PM2.5 National Ambient Air Quality Standard (NAAQS).

2.2.1. Speck Monitors

The Speck air quality monitor (Airviz Inc., Pittsburgh, PA, USA) uses an infrared LED-based
Syhitech DSM501A dust sensor. This sensor works on a light scattering principle, estimating the mass
concentration from the detected scattered light, and measures particle concentrations in the size range
of 0.5 to 3 µm. A small fan pulls the air into the sensor and the concentrations are measured at an
adjustable time resolution from 30 s to 4 min. The data are stored in the internal memory and directly
uploaded to the manufacturer’s server when connected to a Wi-Fi network. The instrument was
previously tested with several other low-cost monitors under laboratory conditions [17] and under
residential indoor and outdoor ambient conditions [18]. The results of these previous studies showed
a linear response [17], high reproducibility of results, precision of 12% for outdoor data, and a positive
bias [18].

From the previous field comparison [18], a limit of detection (LOD) was assessed to be 10 µg/m3

for raw PM concentrations. Thus, from the measured data in this study, two datasets were derived.
The first dataset contains all the originally measured values. In the second dataset, the values below
LOD were replaced by the LOD/2 value, i.e., 5 µg/m3. The percentage of data above LOD is reported
in Table 1. From both datasets (LOD corrected and non-corrected), hourly and daily means were
calculated (mean values were considered only if at least 75% of data were available, i.e., 45 min for
each hourly average, and 18 h for each daily average) and a date- and time-matched dataset from the
Speck data was created.

Each outside Speck monitor was placed in an outdoor housing (Figure S1 in the Supplementary
Materials) protecting the instrument from water and extreme cold. Heat from a 6-W light bulb was
included in the housing. No negative influences of the housing on the bias, correlation with the
reference instrument, or precision were observed during a comparison made between the two periods.
The instruments were checked before, during (mid-term between January and March), and after each
sampling campaign. During these checks, the housing inlets were cleaned, the sensor was checked for
malfunctions or power outages, and the zero level was checked. The data were downloaded using a
USB connection to a computer if Wi-Fi was unavailable. During the 2016–2017 measurement period,
several monitors were replaced during the mid-term check with new units to allow the recovery of the
data by the manufacturer. In such locations, the data were corrected separately for each Speck, and the
corrected data were later merged into a single dataset.

A field comparison was performed after each measurement period where all the Speck
monitors were collocated with a Grimm 1.109 Aerosol Spectrometer (Grimm Technologies,
Douglasville, GA, USA). This collocation test was carried out both indoors and outdoors at a selected
residence with an operating wood burning appliance in Potsdam, NY. Bias corrections were calculated
from three days of field data by comparing the Speck monitors and Grimm instrument. The corrections
were calculated as a ratio of the mean PM2.5 concentration measured by the Grimm, and the mean
concentration measured by a Speck unit during the collocation experiment [18].

For the first measurement period, the data from the outdoor collocation campaign were used.
However, for the second period, the PM concentration during the outdoor collocation and the
associated correlations between the Speck units and Grimm were low probably because of the very low
ambient PM concentrations. Thus, the indoor correction factors, which were based on higher mean
instrument correlation, were chosen to normalize the data. For both periods, the bias corrections for
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indoor and outdoor were similar (R2 > 0.9). The bias corrections (ranging from 0.15 to 0.96 with mean
value of 0.36, Table 1) were applied to the data after the LOD correction and prior to the analyses.

Table 1. Number of measured data points (each corresponding to a 1-min measurement), data coverage
of the 50 low-cost measurement units, percentage of data over LOD, and a bias correction factor.
Units’ names starting with V denote units measuring during the first year, names starting with P units
measuring during the second year.

Unit # # Data Points Coverage
[%]

>LOD
[%] Corr. Factor Unit # # Data Points Coverage

[%]
>LOD

[%] Corr. Factor

V03 171319 100 83.2 0.41 P01 227379 100 20.0 0.18
V04 172430 100 16.3 0.47 P02 224369 100 51.0 0.20
V05 169578 99.5 5.5 0.40 P03 225808 100 39.7 0.22
V06 172710 100 34.7 0.29 P04 215369 95.9 13.0 0.29
V07 84731 92.3 81.6 0.41 P05 224224 100 58.1 0.25
V08 173872 100 4.3 0.53 P06 224292 100 37.8 0.27
V09 172299 100 51.4 0.41 P07 214569 100 66.7 0.27
V10 185767 100 82.8 0.41 P08 150726 66.7 0.8 0.72
V12 171244 100 15.2 0.31 P09 222425 100 18.6 0.28
V13 171412 100 1.8 0.41 P10 138294 63.8 15.9 0.25
V14 172625 100 90.3 0.34 P11 220149 98.6 95.3 0.24
V15 173688 100 4 0.46 P12 224304 100 55.8 0.36
V16 170445 100 3.8 0.52 P13 220931 100 19.6 0.29
V17 99435 57.8 100 0.30 P14 221274 99.2 55.0 0.21
V18 172537 100 17.3 0.47 P15 202146 98.3 63.3 0.25
V19 175178 92.9 3.7 0.67 P16 226502 97.1 64.5 0.27
V20 106170 94.2 0.4 0.59 P17 212246 97.3 59.4 0.26
V21 172716 100 39.9 0.3 P18 217567 100 90.9 0.24
V22 128105 71.3 13 0.35 P19 111800 100 12.7 0.34
V23 174482 100 4.8 0.49 P20 102458 98.9 79.9 0.16
V24 170041 100 56.2 0.39 P21 216764 99.1 1.5 0.56
V25 180491 100 74.9 0.36 P22 216647 99.9 3.7 0.27
V26 185397 100 8.9 0.44 P23 214108 99.2 1.7 0.96
V27 181548 100 44.7 0.27 P24 187046 100 27.0 0.33

P25 159439 99.8 67.5 0.15
P26 200203 91.5 99.9 0.17

2.2.2. Tapered Element Oscillating Microbalance (TEOM)

A Thermo Scientific (Waltham, MA, USA) 1405-DF TEOM™ at the Rochester NYS DEC site
was used as a reference measurement. The TEOM is a Federal Equivalent Method (FEM) for the
PM2.5 measurements. Data were downloaded from New York State Air Quality website (http://
www.nyaqinow.net/) in 1-h time increments for both periods and compared to the hourly averages
calculated from the collocated Speck monitor. Twenty-four-hour averages were calculated if at least
75% of data was available during that day. The 24-h averages were compared to daily averages from
Speck monitors located across Monroe County.

2.3. Study Area

The measurements were made in Monroe County, NY, which includes the city of Rochester
(43◦9′26′′ N, 77◦36′23′′ W, 154 m a. s. l.), at 27 and 26 residential locations during the 2015–2016
and 2016–2017 campaigns, respectively (Figure 1). The total land area of the county is ~1700
km2. In 2015, there were estimated to be 749,600 inhabitants [19]. The major primary emissions
sources include residential wood smoke, road traffic, other residential and commercial heating, and
a few industrial sources [20,21]. Road traffic includes major routes carrying traffic to and from
downtown (e.g., Route 96) as well as Interstate Highways I-90, I-390, I-490, and I-590. Natural
gas is the primary fuel for domestic and commercial heating, with oil accounting for most of the
remaining homes and buildings. Wood combustion in most Monroe County residences is recreational.
However, Wang et al. [21] found that wood smoke can represent up to 30% of the winter-time
PM2.5 concentrations. Industrial emissions were largely dominated by a coal-fired cogeneration
plant (Eastman Kodak complex) located in an area ~6 km NW from downtown, but its production
substantially decreased during recent years following the decline of film production. Other sources
may be different types of off-road transport (e.g., diesel rail, shipping on Lake Ontario, and emissions

http://www.nyaqinow.net/
http://www.nyaqinow.net/


Sensors 2017, 17, 1922 5 of 19

from the airport). Regional transport brings polluted air masses from Ontario, the Ohio River Valley,
and the highly populated east coast of the United States [22].
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Figure 1. Speck units’ locations across the Monroe County, NY, during the two heating seasons.
Background: Developed class defined in the USGS National Land Cover Database 2011.

2.4. Measurement Sites

Twenty-five units were deployed in the yards of selected volunteers across Monroe County during
the two seasons. One more Speck unit was co-located at the DEC site in Rochester (Figure 1), where FRM
and FEM instruments were available as well as additional data on air quality (CO, O3, SO2, and NOy

concentrations, downloaded from New York State Air Quality website http://www.nyaqinow.net/).
It was not possible to use a spatially optimal approach, as suggested by Kumar et al. [7], since

the study depended on volunteers and another part of this study required indoor measurements.
The number of available instruments limited the number of volunteers. The study volunteers were
recruited mostly from employees of the University of Rochester. Inclusion criteria for the study were
that homes had a wood-burning appliance or were in areas with wood smoke pollution based on the
volunteers’ own observations.

All measurement sites were located near single-family houses, preferably on the windward side
of the house based on the prevailing wind direction. The distance between the buildings and the Speck
units varied between 2 and 25 m, and the instruments were placed about 1.5 m above the ground.
The most common locations were fences, open porches, patios, and gardens using poles to elevate the
monitors. These units require connection to electricity. Most Speck units were not Wi-Fi-connected
during the sampling campaigns due to the distance of the measurement sites from the Wi-Fi routers in
the houses.

2.5. Meteorological Data

Meteorological records of precipitation, snowfall, temperature, relative humidity, dew point, wind
speed and direction, and weather types were retrieved from the National Climate Data Center for the
Greater Rochester International Airport (KROC) as hourly data to meteorologically characterize the
measurement period. The airport lies between 2 km and 29 km from the monitoring locations, and
10 km from the closest NY State DEC air monitoring station.

During the 2015–2016 measurement period, the average temperature was 1.1 ◦C, with minimum
and maximum hourly temperatures of −23.9 and 23.9 ◦C, respectively. During the 130 days of the
campaign, 375 mm of precipitation was measured. During the 2016–2017 measurement period, the
average daily temperature was 1.8 ◦C, with minimum and maximum hourly temperatures of −15.6
and 22.8 ◦C, respectively. During the 162 days of this campaign, 542 mm of precipitation was measured.

http://www.nyaqinow.net/
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Thus, the weather during the two measurement campaigns was somewhat different, with the second
heating season being warmer and wetter than the first.

2.6. Data Analyses

2.6.1. Wilcoxon Signed-Rank Test

Speck and TEOM data were compared using non-parametric Wilcoxon signed-rank test [23] to
test if the paired data were selected from populations having the same distribution. The paired version
of wilcox.test script, package ‘stats’, was run in R (version 3.1.2). Data during each measurement
period were considered separately.

2.6.2. Correlation Analysis

Hourly and daily averages calculated from each Speck instrument across the sampled domain
were compared to the TEOM values and presented with respect to the distance of the given Speck
from the TEOM irrespectively of the compass direction from the TEOM. The one-minute data were not
considered since the uncertainty in PM2.5 concentration on a 1-min scale were large and calculating
one-hour values averages out random noise. Pearson correlation coefficients were calculated. The two
measurement periods were evaluated separately. Speck monitor data were compared to the TEOM
data from only the corresponding period. The analysis of the correlation on the distance from the
TEOM was performed using the data from both periods.

Correlation coefficients were determined between each pair of Speck units resulting in a
correlation matrix based on hourly and daily data. The correlation matrix was calculated for each
measurement period separately, as both concentrations and locations of Speck monitors differed.

2.6.3. Coefficient of Divergence

The pairwise coefficients of divergence (COD) [24] were calculated as the relative spatial variability
assessment. The COD between two measurements is defined as:

CODjk =

√√√√ 1
p

p

∑
i=1

[(
xij − xik

)
/
(
xij + xik

)]2 (1)

where xij is the i-th averaged concentration measured by one of the units at the location j, j and k are
two different measurements (done at different locations), and p is the number of observations. “A COD
value equal to zero means the concentrations are identical at both sites, while a value approaching one
indicates substantial heterogeneity. COD values greater than approximately 0.20 indicate relatively
heterogeneous spatial distributions [25,26].” [19].

The COD values for Speck units and for the Specks and TEOM were also calculated based on
hourly and daily averages.

2.6.4. Spatial Interpolations

The PM concentrations within urban areas are strongly influenced by the spatial distribution of
anthropogenic activities, topography, and meteorology. Thus, one or few sampling sites complying
with FRM and/or FEM are not likely to be sufficient to describe the spatial variation of PM across large
urban areas. Spatial interpolations have been extensively used to model the small-scale intra-urban
variations of air pollution (e.g., [19,27,28]). The hourly and weekly averages (calculated over the whole
measurement periods), were interpolated using inverse squared-distance interpolation (IDW) with the
weight of power of 2, i.e., the influence of neighboring points is diminished as a function of increasing
distance d as of d2 [29]:

xgc =

[
∑

i

(
xi/d2

i

)]
/

[
∑

i

(
1/d2

i

)]
(2)
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where xgc is the interpolated value at a grid cell, xi is the value measured at the i-th nearest neighbor,
and di is the distance from the grid cell to the i-th neighbor. The IDW method was chosen for its
simplicity, method not requiring data pre-modeling or any assumption fulfillment. The interpolated
maps were created using R and a series of packages, including ‘rgdal’ and ‘spatstat’. The resulting maps
were animated into a video to show the spatial-temporal variations of PM concentrations measured by
the Specks and are available in the supplemental information.

2.6.5. Conditional Bivariate Probability Function

The conditional bivariate probability function (CBPF; [30]) is based on conditional probability
function (CPF, [31]) defined as:

CPF = mi/ni (3)

where mi is the number of samples in the wind sector i with mixing ratios greater than a given
concentration, and ni is the total number of samples in the same wind sector. The CBPF also takes
the wind speed into account by creating a continuous surface calculated through modelling using
smoothing techniques. As a threshold, the 50th percentile was considered, and the CBPF was calculated
both from Speck data and from TEOM data in each of the measurement periods.

3. Results and Discussion

3.1. Data Availability

The data completeness was high for most of the units. Of the 50 measurement locations, 46 had
data completeness of over 90%, and 31 had 100% data completeness (Table 1). Data losses were mostly
the result of power failures unnoticed by the study participants. Data from three additional units from
the first period were not recovered due to instrument failure, which required a reset of the units and
full data loss.

Although low-cost monitors have been designed for indoor purposes, their outdoor use
under adverse weather conditions (cold winter with frequent snow) in the housings resulted
in good durability of sensing elements, stable sensor sensitivity, limited hardware issues, and
consequent data loss. These monitors are therefore also suitable for outdoor use when installed
in a waterproof enclosure.

3.2. Mean PM2.5 Concentrations

The mean PM2.5 concentrations at the Monroe County measured by the TEOM at the DEC site
for the two heating periods were 8.0 ± 5.6 and 6.0 ± 4.7 µg/m3, respectively. The causes of the
lower concentrations during the second period (74% of the first period concentration, Figure S2 in
the Supplementary Materials) are unknown. During the second period, there were higher ambient
temperatures and thus a lower need for household heating. There was also higher precipitation during
the second period, which would remove PM via wet deposition.

A similar decrease in concentrations (71% of the first-period concentrations observed during
the second period) was observed in the Speck data, calculated as the average value over all units.
The absolute values measured by Specks (mean PM concentrations of 3.5 ± 0.9 and 2.4 ± 0.4 µg/m3

during the first and second period, respectively) are lower than those measured by the TEOM.
In both periods, the Specks measure about 40% of TEOM values (43% and 41%, respectively).
The underestimation in bias-corrected Speck results suggests the bias corrections were too large,
resulting from a different reference unit for the collocation than the TEOM. The comparison between the
instrument used for the bias estimation, the Grimm 1.109, and the TEOM, showed a 55% overestimation
by the Grimm compared to the TEOM, similar to the prior study [18]. Since the Speck underestimation
compared to TEOM was the same for the two periods, the original bias corrections were applied,
and relative metrics were used for the comparisons.
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Taking the bias into account, the TEOM data were compared to Speck data using the Wilcoxon
signed-rank test [23]. The null hypothesis was that the difference between each pair of datasets would
be symmetrical about the difference of mean values of the corresponding datasets, i.e., the datasets are
shifted by a constant value (mean TEOM—mean Speck value). The results differed by averaging time
and measurement period. For the daily average values, more Speck–TEOM pairs showed statistically
similar results compared to hourly averaged values (Table 2). This result suggests that daily averaging
reduces some of the random variation in the Speck data. During the second measurement period, there
were more similar Speck–TEOM pairs than during the first period. For both periods, however, the
most similarities between TEOM and Speck data were found in daily data corrected on bias and LOD
for Specks located in the city center (Table 2). If the constant shift between TEOM and Speck data was
not considered, independently on averaging time, period, or location of Speck, none of the Specks was
measuring data from an identical data distribution as TEOM.

Table 2. Number of TEOM–Speck monitors data pairs (out of 24 and 26 during the first and second
period) coming from identical populations, according to paired Wilcoxon Signed-Rank Test. Numbers
in brackets show the number of (TEOM–Speck) pairs located in the city center.

Hourly Hourly LOD Daily Daily LOD

First period 2 (1) 2 (1) 2 (1) 8 (5)
Second period 4 (2) 4 (2) 11 (4) 11 (5)

3.3. Temporal Correlations

Speck vs. TEOM Correlations

Hourly and daily mean TEOM concentrations were compared to averaged data from the Speck
monitors. The Speck data were calculated either from the original data or from data with values
below LOD replaced with LOD/2 values. Figure 2 shows the correlation coefficients between the
hourly- and daily-averaged concentrations measured by the Specks and the TEOM. The Speck units are
arranged on the x-axis to show the distances from the DEC site. The mean correlation between hourly
concentrations differed between the two periods. For the 2015–2016 measurement period, the mean
Pearson correlation coefficient was 0.34 (Figure 2a). However, the mean correlation coefficient was
only 0.21 during the second measurement period. The lower correlation may be due to the lower
absolute values measured during the second period, resulting in measurements that are below the
LOD and increasing the relative importance of local sources (e.g., vehicles, wood combustion) in the
vicinity the individual monitors. The dependence of the correlation coefficient on the distance from the
DEC site is not significant during either of the periods (slope of −0.002 ± 0.003 and −0.001 ± 0.003
during the first and second periods, respectively). For data with values below LOD replaced by the
LOD/2 value, the mean correlation is comparable to the original value (0.31 for the first period and 0.16
for the second period). The dependence of correlation on the distance is also comparable, with slopes
of −0.003 ± 0.002 and −0.001 ± 0.003 during the two periods.

When the direction of the Speck monitor is considered, some dependence was found in the
data. The mean correlation coefficient between DEC-site TEOM and Specks outside the city is lower
than between the TEOM and those monitors located within the city (estimated as the area inside the
RT590/RT390 highway loop), 0.31 vs. 0.39 during the first period and 0.19 vs. 0.24 during the second
period. Those units outside the city on the west side (upwind of the city based on prevailing wind
direction) show even lower correlations (0.28 in the first, and 0.17 during the second period) with the
TEOM located in the city. The few Specks east of the city (downwind of the city based on the prevailing
wind direction) show correlations comparable with those in the city. However, the distances between
monitors east of the city and the TEOM are smaller than for the units west of the city (Figure 3a).

For daily averages, the mean correlation between TEOM and Specks is higher during the first
period: 0.46 for all data (Figure 2b) and 0.47 with data below LOD replaced by LOD/2. Some of the
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units had correlation coefficients >0.6. During the second period, the daily values show lower mean
correlation coefficients; 0.23 for all data considered and 0.18 for data with the data below LOD replaced.
The correlation coefficient did not depend on the distance from the DEC site (slope of 0.001 ± 0.003
and −0.001 ± 0.004 for the original data, 0.002 ± 0.004 and −0.001 ± 0.004 for the LOD-corrected
datasets in respective periods).

The highest correlation coefficients with the TEOM were for Specks within the city (mean value
0.48) while Specks outside the city show mean correlation coefficient of 0.44 (Figure 3b). During the
second period, the mean correlation between Specks in the city (0.25) is also higher than outside
the central region (0.21). However, if only the units located to the west are considered, their mean
correlation coefficient with TEOM is higher, 0.30. There were only four units located to the west,
compared to 11 in the central city area. The correlation coefficients across the county are lower than
those calculated from the side-by-side collocations with the Grimm instrument (mean correlation
coefficients of 0.61 and 0.77 for hourly data during the first and second collocation experiments,
respectively), suggesting the lower correlations come from real differences in the concentrations,
and not from limitations of the monitors. Multiple distributed PM sources as well as differences in
deposition, dilution, and physicochemical transformations of the aerosol across the city result in high
spatial–temporal variability [5,19]. The DEC site is close to major roads, the railroad, and residential
areas with substantial recreational wood combustion [20,21] that would not necessarily covary with
other areas of the measurement domain. Therefore, a wide range of correlations with the TEOM is
not surprising.
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and the DEC site. (B) The same for daily averages.



Sensors 2017, 17, 1922 10 of 19
Sensors 2017, 17, 1922  10 of 19 

 

 
Figure 3. (A) Pearson correlation coefficient between hourly averaged concentrations measured by 
Speck units and TEOM located at the Rochester DEC site, dependent on the longitude of the Speck 
location (DEC site at −77.55°). The gray area highlights the Rochester city center. (B) The same for 
daily averages. 

3.4. Correlation Matrixes 

For the Speck monitor data only, Pearson correlation matrices were calculated based on hourly 
and daily data, from both the original and LOD-corrected dataset. The data in correlation matrices 
are presented according to Speck location, dividing the Speck monitors into three groups: Specks 
located west of the city center; in the city center; and east of the city center. The division was based 
on the prevailing wind direction, which was westerly during both years (wind roses are presented in 
Figure S3). In Figure 4, the three groups are highlighted with three squares. The numbering was given 
to Specks randomly during the installation and a close number does not mean a close position 
between the two units. The individual Speck positions are presented in Figure 1. 

The weak correlations observed during the second period between the Speck and TEOM data 
can be observed in the correlation matrixes (Figure 4). During the first period, 28% of the Speck pairs 
showed correlation >0.6 and almost 50% of the pairs show correlation >0.5 (Figure 4 and Table 3). 
Within the three groups, the largest variability in hourly correlation coefficients was found in the 
western group, where only the units located close to each other showed high correlations (for 
example V05 and V22). For most units, the correlation was <0.5, resulting in a mean correlation 
coefficient within the group of 0.41, probably due to the large distances between units, and limited 
PM sources, most of which would be local. In the city center, the distances between Speck units were 
smaller and with higher local source emissions, such as traffic, resulting in higher correlation 
coefficients. Approximately 20% of the coefficients in the city center are >0.7, and 55% are >0.6, with 
mean value of 0.6. Except for V17, which showed correlation coefficients <0.4, correlations >0.6 were 
observed between all units in the eastern group. Correlations outside the three groups were generally 
lower. In the dataset with data below LOD replaced, the correlations of hourly averages decreased 
(only 10% show correlation >0.6). The largest decrease was observed between the units with a low 
fraction of data above the LOD. 

Figure 3. (A) Pearson correlation coefficient between hourly averaged concentrations measured by Speck
units and TEOM located at the Rochester DEC site, dependent on the longitude of the Speck location
(DEC site at−77.55◦). The gray area highlights the Rochester city center. (B) The same for daily averages.

3.4. Correlation Matrixes

For the Speck monitor data only, Pearson correlation matrices were calculated based on hourly
and daily data, from both the original and LOD-corrected dataset. The data in correlation matrices
are presented according to Speck location, dividing the Speck monitors into three groups: Specks
located west of the city center; in the city center; and east of the city center. The division was based
on the prevailing wind direction, which was westerly during both years (wind roses are presented
in Figure S3). In Figure 4, the three groups are highlighted with three squares. The numbering was
given to Specks randomly during the installation and a close number does not mean a close position
between the two units. The individual Speck positions are presented in Figure 1.

The weak correlations observed during the second period between the Speck and TEOM data
can be observed in the correlation matrixes (Figure 4). During the first period, 28% of the Speck pairs
showed correlation >0.6 and almost 50% of the pairs show correlation >0.5 (Figure 4 and Table 3).
Within the three groups, the largest variability in hourly correlation coefficients was found in the
western group, where only the units located close to each other showed high correlations (for example
V05 and V22). For most units, the correlation was <0.5, resulting in a mean correlation coefficient
within the group of 0.41, probably due to the large distances between units, and limited PM sources,
most of which would be local. In the city center, the distances between Speck units were smaller
and with higher local source emissions, such as traffic, resulting in higher correlation coefficients.
Approximately 20% of the coefficients in the city center are >0.7, and 55% are >0.6, with mean value
of 0.6. Except for V17, which showed correlation coefficients <0.4, correlations >0.6 were observed
between all units in the eastern group. Correlations outside the three groups were generally lower.
In the dataset with data below LOD replaced, the correlations of hourly averages decreased (only 10%
show correlation >0.6). The largest decrease was observed between the units with a low fraction of
data above the LOD.
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Table 3. Percentage of Pearson correlation coefficients in the correlation matrixes of Speck PM
concentrations calculated from hourly and daily averages, from the original and LOD corrected
data (denoted as LOD in the table).

Correlation Coefficient >0.9 >0.8 >0.7 >0.6 >0.5 >0.4 >0.3

First period

hourly 0.0 0.7 7.2 28.3 48.9 68.5 85.1
hourly LOD 0.0 0.4 2.5 10.9 27.5 43.5 64.1

daily 1.1 13.0 31.2 54.7 73.2 84.4 93.8
daily LOD 0.7 8.0 23.9 41.7 56.9 72.5 85.5

Second period

hourly 0.0 0.9 4.6 10.2 26.2 44.3 57.5
hourly LOD 0.0 0.9 2.2 8.3 14.8 26.5 36.0

daily 0.9 7.1 16.0 27.7 37.5 52.3 62.2
daily LOD 0.0 0.0 1.8 6.8 12.9 22.8 35.1

During the second period, only 10% of the pairs showed correlations >0.6 (Table 3). For these
units, the mean correlations were similar (~0.4) in all three groups. In all three groups, several units
showed correlations <0.3 with any other unit (Figure 4). The difference from the first period may be
explained by different locations of the units, different distances between the units, and/or by the lower
mean concentrations during the second period.
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Comparing hourly and daily data, higher correlation coefficients were found for the daily
data for both periods. During the first period, more than half of the correlation coefficients were
>0.6, while during the second period almost 30% of pairs showed correlations >0.6. The higher
correlation coefficients were found both within the three groups but also between sites across the
groups. The patterns in the correlation matrix are similar for the daily data, with mean correlations of
0.5 in the western group, 0.6 in the city center, and 0.7 in the eastern group for the first period. The effect
of well-mixed pollution from the city influencing downwind locations may have produced the high
correlations in the eastern group. In the second period, the highest mean correlation was found in the
western group (0.5), while in the city center and eastern part correlations of 0.4 were found.

3.5. Coefficients of Divergence

The coefficients of divergence (COD) were calculated for the bias corrected hourly and daily
datasets, including both the LOD corrected and uncorrected datasets. The COD values between TEOM
concentrations and individual Speck PM concentrations were compared to the position of instruments.

A decrease in COD for Speck monitors located close to the DEC site where the TEOM was located
is visible in Figure 5 for the first period. Comparing hourly and daily averages, lower COD values
were found for daily data, with COD between TEOM and the closest Specks almost 0.2 (showing
a homogeneity in data). The mean COD value between TEOM and Speck in the city center is 0.36
(including V13 showing COD of 0.69, excluding this unit, the mean COD decreases to 0.32) for daily
data, and 0.41 for hourly data (0.36 without V13 unit). If the LOD-corrected datasets are considered,
an increase of 0.04 was observed in both hourly and daily data. The mean COD of Specks in regions
outside the city center are higher than those in the city center, 0.44 and 0.37 for daily data from the
west and east, respectively, and 0.48 and 0.42 for comparable hourly averages. Outside the city center,
no change in mean COD values was observed between LOD corrected and non-corrected datasets.

The COD was also calculated between the Speck units and presented in a matrix, similarly to the
analyses of correlation coefficients. The COD values were calculated for hourly and daily averages
from bias-corrected PM concentrations, both from LOD-corrected and uncorrected datasets. The Speck
units were again grouped according to their geographical positions into three groups—west, center,
and east.

For the hourly data, 20% of the pairs showed COD < 0.2 (Table 4), suggesting homogeneity in the
data. Most of the pairs, however, show COD between 0.2 and 0.4. For the daily data, homogeneity was
found in 37% of pairs. For the LOD-corrected data, the ratio of COD below 0.2 increases for hourly
and daily datasets as well, and no pair shows COD > 0.6.

Table 4. Percentage of COD values between each Speck PM concentration pair calculated from hourly
and daily averages, from the original and LOD corrected data (denoted as LOD in the table).

COD Values Hour Hour LOD Day Day LOD

First period

<0.2 22.8 30.8 37.3 50.0
0.2–0.4 49.3 64.9 46.0 47.8
0.4–0.6 24.6 4.3 15.6 2.2
0.6–0.8 3.3 0 1.1 0

>0.8 0 0 0 0

Second period

<0.2 25.5 23.1 33.2 35.4
0.2–0.4 37.8 69.8 43.4 58.5
0.4–0.6 22.5 7.1 13.8 6.2
0.6–0.8 13.8 0 9.5 0

>0.8 0.3 0 0 0
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Figure 5. (A) COD between hourly averaged concentrations measured by Speck units and TEOM located
at the Rochester DEC site, dependent on the distance from the DEC site. (B) The same for daily averages.

If the units from the three groups (denoted in Figure 6 as thick squares) are considered separately,
the mean COD decreased to at or below 0.2 for the LOD-corrected data outside the city center (Table 5),
suggesting homogenous concentrations within the groups. The mean COD values in individual groups
are not the same, but there is no statistically significant difference between the groups (evaluated by
Dunn’s test [29]).

Table 5. Mean COD values between each Speck PM concentration pair calculated from hourly and
daily averages, from the original and LOD corrected data (denoted as LOD in the table) in the three
separate geographical groups. In the city center, the mean value from all pairs, with the exclusion of
V13, is presented (in the brackets).

Group Hour Hour LOD Day Day LOD

First period
West 0.24 0.17 0.31 0.20

Center 0.24 (0.16) 0.21 (0.19) 0.28 (0.20) 0.24 (0.22)
East 0.21 0.18 0.25 0.19

Second period
West 0.34 0.22 0.26 0.19

Center 0.32 0.28 0.28 0.24
East 0.28 0.21 0.23 0.19
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Figure 6. Top: COD between Speck PM monitors calculated from hourly (left) and daily (right)
PM averages from bias and LOD corrected data from the first campaign, bottom: the same for the
second campaign.

3.6. Spatial Interpolation

Spatial interpolation assumes that spatially distributed objects are correlated. The PM concentrations
at unmeasured locations are predicted from the limited number of sampled location (the participant
houses, in this case) using functions to estimate the correlations within the measurement domain
(Monroe County). For such analyses, increasing the density of data (sampling sites) will generally
produce more accurate estimations. Hourly and daily average concentrations collected during the 1st
and 2nd heating periods were merged and jointly used as input for IDW spatial interpolations (power 2).
Since the PM concentrations measured at the reference site (DEC) were statistically different between the
two periods (Kruskal–Wallis analysis of variance at p < 0.05), the average concentrations calculated over
the second period were scaled to harmonize the dataset. In this case, the 2nd-year concentrations were
multiplied by 1.35 (i.e., the ratio between mean PM2.5 concentration during the first period to mean PM2.5

concentration during the second period as measured by TEOM) to obtain comparable concentrations.
The daily and weekday patterns of the PM concentrations measured over the two periods

are reported in Figure 7. The resulting maps of the hourly and weekday spatial interpolations
are shown as animations in Figures S4 and S5 in the Supplementary Materials, respectively, while
Figure 8 summarizes the hourly spatial distributions at midnight, 6 a.m., noon, and 6 p.m. Generally,
the daily pattern of PM shows minimal concentrations over all the sites at 5–6 a.m., followed by an
increase until noon at several sites due to the morning rush hour. The PM concentrations maintain
stable concentrations until 3 p.m., when a second peak occurs and raises the PM concentration to
maximum levels around 6 p.m., i.e., during the evening rush hour. The weekly pattern shows minimum
concentrations during the weekends and the maximum on Tuesdays and Wednesdays. The daily and
weekly patterns of most Speck units agree well with the patterns of PM2.5 measured by FEM at the
DEC site between 2004 and 2015 [22].



Sensors 2017, 17, 1922 15 of 19

Sensors 2017, 17, 1922  15 of 19 

 

 
Figure 7. The mean daily and weekday patterns of the PM concentrations measured over the two 
periods. 

 
Figure 8. Hourly spatial distributions at the county at midnight, 6 a.m., noon, and 6 p.m., averaged 
over the two periods. 

The daily and weekly patterns are influenced by both human activities and meteorological 
conditions. Although explicit source apportionment methods were not applied, some insights into 
the most relevant emission sources can be hypothesized based on the observed diurnal patterns. Road 
traffic volume for the major roads in Rochester during winter were provided by the NYS Department 
of Transportation, which performed hourly traffic counts during two weeks in December 2015 and 
January 2016. Figure S6 shows the hourly and weekly traffic count patterns that exhibit typical 
morning and evening rush hour peaks. This profile relates well with the Speck PM profile (Figure 8). 
Thus, road traffic is one of the more influential PM sources. The concentration decreases during the 
nighttime, which suggests the limited effect of domestic heating emissions on PM concentrations. 
Most participants reported that they mostly use their wood stoves on the weekends for recreational 
purposes. Since the lower concentrations are recorded during the weekends, local wood emissions 
does not seem to have had a major impact on PM concentrations. The diel pattern also shows that the 
mixing layer dynamics have a limited effect on PM concentrations. The lowest PM concentrations 
were recorded at 6 a.m., i.e., during the coldest part of the day when the mixed layer reaches its lowest 

Figure 7. The mean daily and weekday patterns of the PM concentrations measured over the two periods.

Sensors 2017, 17, 1922  15 of 19 

 

 
Figure 7. The mean daily and weekday patterns of the PM concentrations measured over the two 
periods. 

 
Figure 8. Hourly spatial distributions at the county at midnight, 6 a.m., noon, and 6 p.m., averaged 
over the two periods. 

The daily and weekly patterns are influenced by both human activities and meteorological 
conditions. Although explicit source apportionment methods were not applied, some insights into 
the most relevant emission sources can be hypothesized based on the observed diurnal patterns. Road 
traffic volume for the major roads in Rochester during winter were provided by the NYS Department 
of Transportation, which performed hourly traffic counts during two weeks in December 2015 and 
January 2016. Figure S6 shows the hourly and weekly traffic count patterns that exhibit typical 
morning and evening rush hour peaks. This profile relates well with the Speck PM profile (Figure 8). 
Thus, road traffic is one of the more influential PM sources. The concentration decreases during the 
nighttime, which suggests the limited effect of domestic heating emissions on PM concentrations. 
Most participants reported that they mostly use their wood stoves on the weekends for recreational 
purposes. Since the lower concentrations are recorded during the weekends, local wood emissions 
does not seem to have had a major impact on PM concentrations. The diel pattern also shows that the 
mixing layer dynamics have a limited effect on PM concentrations. The lowest PM concentrations 
were recorded at 6 a.m., i.e., during the coldest part of the day when the mixed layer reaches its lowest 

Figure 8. Hourly spatial distributions at the county at midnight, 6 a.m., noon, and 6 p.m., averaged
over the two periods.

The daily and weekly patterns are influenced by both human activities and meteorological
conditions. Although explicit source apportionment methods were not applied, some insights into the
most relevant emission sources can be hypothesized based on the observed diurnal patterns. Road
traffic volume for the major roads in Rochester during winter were provided by the NYS Department
of Transportation, which performed hourly traffic counts during two weeks in December 2015 and
January 2016. Figure S6 shows the hourly and weekly traffic count patterns that exhibit typical
morning and evening rush hour peaks. This profile relates well with the Speck PM profile (Figure 8).
Thus, road traffic is one of the more influential PM sources. The concentration decreases during the
nighttime, which suggests the limited effect of domestic heating emissions on PM concentrations.
Most participants reported that they mostly use their wood stoves on the weekends for recreational
purposes. Since the lower concentrations are recorded during the weekends, local wood emissions
does not seem to have had a major impact on PM concentrations. The diel pattern also shows that
the mixing layer dynamics have a limited effect on PM concentrations. The lowest PM concentrations
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were recorded at 6 a.m., i.e., during the coldest part of the day when the mixed layer reaches its lowest
height. The lower concentrations during the late afternoon rush hour compared to the morning values
suggest some effect of the rising mixed layer heights.

The interpolated maps also show that higher PM concentrations on both hourly and weekday
bases were generally recorded in the city of Rochester. However, there is a large spatial variation of
PM concentrations, which is likely related to local emission sources. In addition, high concentrations
were also found near the village of Parma (west of Rochester) and Scottsville (southwest of Rochester).
These results confirm the high spatial variability of PM concentrations across the county. This spatial
resolution obtained from a single monitor is therefore insufficient to capture the spatial variability
required to accurately represent human exposure for use in epidemiological studies, similar to what
had been reported by Wang et al. for wood smoke [19] and ultrafine particles [32]. Thus, the use of
low-cost monitors can be a useful option to reduce exposure misclassification. The Speck data will be
used for modelling the spatial variations of PM through the implementation of an hourly land use
regression model in a future paper.

3.7. CBPF

The CBPF was calculated from hourly data for PM2.5 concentrations measured at the DEC site by
TEOM and at the locations measured by Specks as well, separately for each of the periods. The wind
speed and direction data from the Greater Rochester International Airport were used as representative
of the meteorological conditions across the measurement domain. The CBPFs from Speck monitors
were calculated from averaged data. The mean hourly concentrations from each geographical group of
sensors (western, center, and eastern) were compared to wind data to estimate the influence of wind
speed and direction on measured concentrations. Furthermore, the result was compared to CBPF from
TEOM data measured at the DEC site (located in the city center).

The CBPF calculated from TEOM data shows that the highest probabilities of the concentrations
being higher that the median values (6.8 µg/m3 and 4.9 µg/m3 during the first and second period)
were under low wind speeds with the main contribution from local sources (Figure 9). A similar
result was found for the Specks located in the city center. However, the Specks showed some sources
connected to higher wind speeds and SW wind directions. This result may reflect the multiple locations
of the units compared to the DEC site.
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In the western group, stagnant conditions also proved to be the periods with higher concentrations.
Additional sources were located east of the units, suggesting the city as a source of PM in this area.
Sources were found during periods with wind speeds >15 m/s, with resuspension or distant sources
playing their role. In the eastern group, stagnant conditions were found to be related to high measured
PM concentrations during the first period, with an additional source located SW of the region, pointing
again to the Rochester city center. During the second year, however, the main contribution was found
for sources located outside the region (W and SW of the area).

4. Conclusions

Clearly, these monitors would perform better in environments with higher concentrations. At the
ambient concentrations in Rochester, there are issues of accuracy for these low-cost monitors given
the need for large bias corrections. However, their precision as reported by Zikova et al. [18] as 12%
for outdoor data, is sufficient to permit the determination of the spatial and temporal patterns of
PM across an extended area over multiple months. They worked over two separate seasons with
limited problems. Thus, these monitors provide the opportunity for much more intensive monitoring
networks based on a central site monitor where high-accuracy PM data are being collected. They could
be used to identify high concentration areas or provide very detailed monitoring within a smaller area.
The relationships between measured values and locations, time of day, day of week, and meteorological
conditions were reasonable. Thus, these data can serve as the basis for further modeling to provide
more accurate exposure assessments for future work on the relationships between PM exposure and
various possible adverse health outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/8/1922/s1,
Figure S1: Inside of outdoor housing for Speck monitor with labeled inlets, Speck monitor, and a bulb for heating,
Figure S2: Top: Hourly TEOM PM2.5 concentrations from the Rochester DEC site, and mean PM concentrations as
measured by Speck monitors during the first period. Bottom: The same for the second period, Figure S3: Wind roses
from hourly data from the first (left) and second (right) period, Figure S4: Hourly IDW spatial interpolations of
the PM concentrations across the county calculated from two measurement periods, Figure S5: Daily IDW spatial
interpolations of the PM concentrations across the county calculated from two measurement periods, Figure S6:
Daily and weekly patters of road traffic measured on a major road in Rochester between December 2015 and January
2016. Data provided by NYS DOT. There are also two movies showing hourly and day of week variations in PM
concentrations across the measured domain.
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