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Imaging acoustic sources through 
scattering media by using a 
correlation full-matrix filter
Wei Rui1, Chao Tao1,2 & Xiaojun Liu  1

In the inhomogeneous medium, acoustic scattering is always a fundamental challenge for 
photoacoustic imaging. We implement a correlation full-matrix filter (CFMF) combing with a time 
reversal operator to improve the imaging quality of acoustic sources in complex media. The correlation 
full-matrix filtering process extracts the direct wave component from the detected signal and preserve 
all the useful information at the same time. A location factor is considered in the time reversal operator 
to compensate for the image distortion and false contrast caused by the limited-view detection. The 
numerical simulations demonstrate that the proposed approach can perform good imaging quality with 
the higher image signal-noise ratio and better resolution in an acoustic scattering environment. This 
scheme might be applied to improve the photoacoustic imaging for inhomogeneous biological tissues.

Probing or imaging an acoustic source in an acoustic scattering environment is a fundamental challenge in dis-
ordered systems theory1–4 but highly desirable. It has many significant applications, such as geological prospect-
ing5, underwater acoustic detection6, biomedical imaging7–12, and so on13. For example, photoacoustic imaging 
is essentially a process of probing sound sources based on passively received ultrasound signals. It combines the 
advantages of the rich contrast from optical imaging with the high spatial resolution in deep tissue from ultra-
sonography. Optical absorbers in the region of interest (ROI) are illuminated by a pulse laser and emit ultrasound 
waves as a result of the photoacoustic effect. Then the acoustic waves propagate through the scattering layer and 
are received by the ultrasonic transducer array to reconstruct the image. Photoacoustic imaging has great appli-
cation prospects in biomedical imaging7–11.

Classical methods usually locate or image the acoustic sources by achieving coherent beamforming, which 
utilizes the deterministic signal phases in the direct wave component. However, a scattering contribution always 
exists when an acoustic wave is propagating through a random inhomogeneous medium. The coherence of the 
signals will be broken by the randomness of the scattering, which results in the appearance of speckles and even 
makes imaging failure. Acoustic scattering caused by an inhomogeneous medium is a nightmare for classical 
imaging techniques. It is generally sufficient to image the medium correctly by choosing an appropriate fre-
quency doming where scattering can be neglect for its low strength. But in other situations, scattering can be so 
strong that there is no longer a direct relation between travel time and depth. As a consequence, the wave loses 
its coherent and coherent beamforming fails. Therefore, it is necessary to reduce the influence of scattering wave 
on probing acoustic target.

Over the years, there has been considerable effort to overcome the limitation of probing acoustic sources in 
the medium with inhomogeneous acoustical properties, including the statistical reconstruction method14, time 
reversal method15,16, coherence factor optimization17, interferometry method18, and so on19–22. Nevertheless, these 
methods are limited by specific conditions (need to know some prior properties of tissue inhomogeneity). To 
provide a universal scheme for more general situations, a random matrix theory has been put forward as a new 
way for sound wave analysis and the scattering medium is regarded as one realization of a random process23. The 
random matrix theory has shown great potential in acoustic backscattering imaging23–25, optical imaging26,27, and 
telecommunication28–30 in complex media. In wave physics, especially for the active detection, the matrix form is 
particularly suitable for describing the wave transmission and reveal the inherent deterministic coherence of the 
acoustic signal in the inhomogeneous medium effectually23.
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Recently, we have generalized the random matrix theory to passive probing of acoustic sources in complex 
media31. The intrinsic coherence of the direct wave can be revealed in a matrix form by investigating the passively 
received wide-band ultrasound waves which propagate through the scattering media. On account of the correla-
tion of direct wave, we proposed a matrix filter to separate the direct waves from the scattering waves. Benefitting 
from this correlation filter, the imaging quality of acoustic sources is significantly improved. However, this cor-
relation filter still has some defects that need further improvement. The operations of matrix rotation and trans-
formation make the partial acoustic information not fully utilized during matrix filtering process. Inadequate 
utilization of the matrix information results in the reduction of field-of-view and the image distortion of the 
acoustic target.

In this study, we propose a correlation full-matrix filter to restore the imaging area and improve the imaging 
quality. On the one hand, we improve the rotation and filtering operations during the matrix filtering to restore 
the imaging area and make full use of all the useful information in the detected signals. On the other hand, a 
location factor is proposed to compensate for the intensity unbalance in multi-targets imaging. Both simulations 
and experimental results verify the superior performance of the proposed matrix filter.

Results
Schematic of the scenario considered in this study. As shown in Fig. 1, four acoustic sources (marked 
as sources 1~4) with a diameter of d = 0.8 mm are placed in the ROI behind a scattering layer. Irradiated by the 
pulse laser, these four targets in the ROI emit ultrasonic waves (central frequency of 2.0 MHz, bandwidth of 
1.26~2.68 MHz). The locations of the four acoustic sources 1~4 are (15 mm, 82 mm), (−5 mm, 87 mm), (−15 mm, 
77 mm) and (5 mm, 72 mm), respectively. For the acoustic sources, the speed of sound is cs = 5200 m/s and the 
density is ρs = 7870 kg/m3. The acoustic waves are detected by a passive ultrasonic array after propagating through 
a scattering layer. The scattering layer contains 40 scatterers with identical parameters compared to the ones in 
the ROI and the scatterers are randomly distributed. The scattering layer has a thickness of 20 mm and a concen-
tration of 4 rods/cm3, corresponding to a frequency-averaged scattering mean free path of ls = 20.9 ± 1.00 mm 
between 1.26 and 2.68 MHz32. The parameters for the surrounding medium are ce = 1500 m/s and ρe = 1000 kg/
m3, which approximate water or soft tissues. Therefore, the surrounding medium has seriously impedance mis-
match with the scatterers, which leads to strong acoustic scattering. The passive ultrasonic transducer array has 
N = 101 elements with a pitch size of w = 0.5 mm. The distance between the array and the scattering layer is set as 
a = 40 mm and the signals are recorded with a sampling frequency of 20 MHz. We will concentrate on recovering 
the image of the ROI as this region is the furthest away from the array and the corresponding signals are worst 
because of the pollution by random acoustic scattering. The length of the time window ∆t is set to 5 μs, which 
promises that the direct waves within ROI are at the same time window32.

Acquisition and processing of the signals. The acoustic waves are received by the array consisting of N 
u l t ras onic  t rans ducers  for  imag ing .  The  N -channel  s ig na ls  are  re corded  in  a  ve c tor 

= ... ...t H t H t H tH( ) [ ( ), , ( ), , ( )]n N1  and the vector can be converted to its frequency domain form as 
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/2 2 , where W(t) 
is a window function. In the scattering medium, P(T, f) usually consists of two components, the direct wave PD(T, 
f  ) and the scattering wave PS(T, f  ). Based on the paraxial approximation, the element of the direct wave PD(T, f  ) 
that is from the source at (X, Z) can be written as

Figure 1. The schematic of the scenario to imaging through acoustic scattering layer. The signals are generated 
from the region of interest (ROI), propagate through the scattering layer (gray region), and are finally detected 
by the transducer array. The detected signals in the time window [T − ∆t/2, T − ∆t/2] contain two components: 
PD(T, f ) and PS(T, f ), around the time of flight T and at the frequency f. P T f( , )n

D  is one of the direct waves 
emitted directly from the object located at a depth of Z = cT, while P T f( , )n

S  is one of the scattering waves.
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where A0 = Z1/2, k = 2πf/c is the wave number, c is the sound speed, xn is the x-coordinate of the n-th transducer. 
The element of scattering wave PS(T, f ) is given by
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where Al and sl are the amplitude and phase corresponding to the l-th propagating path. Both Al and sl are random 
owing to the randomly distribution of the scatterers and the uncertainty of the scattering paths. Waves propa-
gating through L scattering paths in the scattering medium constitute the scattering wave term. Then a response 
matrix K(T, f ) can be written as31
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It is worth noticing that all terms in Eq. (3) containing PS are random due to the random nature of multiple 
scatterings. We recorded them as KR. The remaining term recorded as KC is independent of the scatterer distribu-
tion and the scattering paths. Its element can be given as
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A deterministic relation of the phase between the elements km n,
C  exists along the antidiagonal,

ϕ = = .− +k k jk qw Z/ exp[ ( ) / ] (5)q m q m q m m,
C

,
C 2

That is, the phase difference between two matrix elements in the same antidiagonal only depends on the chan-
nel spacing qw and is irrelevant to the acoustic sources or scattering paths. Direct waves represent a particular 
coherence on the antidiagonals of the matrix. This coherent property along the antidiagonals in the matrix form 
allows us to extract direct waves from the scattering background by applying a correlation filter31. Aiming at 
breaking through the limitations of previous study31, we have proposed the following process of matrix filtering:

Step 1: Two new matrices A1 and A2 are built by rotating the matrix K(T, f ) by 45 degrees. As shown in Fig. 2, 
the original matrix K is rotated by 45° counterclockwise and the coherence of direct waves occurs on the columns 
as a consequence. Then we can divide the element into two parts based on their symmetry characteristic. For the 
green circle part, the center element of each line falls on the axis of symmetry. When it comes to the gray diamond 
part, the axis of symmetry is in the middle of two elements. Finally, we separate the two parts and expand them 
into two new matrices A1 and A2, respectively. The value of the blue square elements in Fig. 2 is 0. The element 
a1u,v and a2u,v of matrices A1 and A2 can be related to the element km,n of matrix K by

Figure 2. Principle of the matrix rotation by taking the example of a matrix K with a dimension N = 9. The 
gray circles donate the whole elements of K. By rotating the matrix 45 degrees, the coherence of the direct waves 
appears along the columns and all the elements are divided into the green circle part and gray diamond part 
according to the symmetry characteristics. Finally, these two parts are extended into two new matrices A1 and 
A2. The value of the blue square elements is 0.
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where m = u + v − (N + 1)/2 and n = v − u + (N + 1)/2. The dimensions of matrices A1 and A2 are N and N − 1, 
respectively. In the following discussion, we will no longer make the difference between matrices A1 and A2 
because they are filtered in the same way. They will be called indifferently A. The dimension of the matrix A is 
marked as NA. The coherence of direct waves is transferred to the columns of A after the rotation.

Step 2: A filtering matrix F = CC† is constructed to extract coherence part from the matrix A, where 
= ... ...jky Z jky Z jky ZC [exp( /2 ), , exp( /2 ), , exp( /2 )]u N1

2 2 2
A

 with u  =  1 ,  2,  … ,  NA and = + +y x x[( )u m n
−N w( 1) ]/ 2A  is the characteristic space of direct waves. We can obtain the filtered matrix AF according to the 

formula
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The first term in the right of the formula FAC = AC indicates that the coherence part remains itself after the 
filtering process. In contrast, the components that are orthogonal to the characteristic space of the direct waves 
will be filtered out. For A1, the filtering process will decrease the scattering contribution by a factor +N( 1)/2  
since each column of A1 contains (N + 1)/2 independent coefficients considering its symmetry25.

Step 3: A filtered matrix KF with a change of coordinates back to the original system can be obtained by apply-
ing the coordinate inversion to AF. The matrix element is given by
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The filtered matrix KF has the same dimension N as the original detected matrix K. Before and after filtering, 
the dimensions of the matrix remain unchanged. No elements are excluded by the filter.

Step 4: A time reversal operator can be applied to recover the image of acoustic sources from the filtered matrix 
KF. Each acoustic source is associated with one non-zero singular of matrix KF. The backpropagated image of the 
i-th singular value = = ...Z cT f I I II ( , ) { , , , }i i i

N
i

1 2  is λ= ∗Z fI G V( , )i
i i
F F , where G is the propagating opera-

tor in a homogeneous media, λ i
F is the i-th singular value of KF, and Vi

F is the normalized singular vector corre-
sponding to λ i

F. The component of G is expressed as =g jkr rexp( )/m n m n m n, , ,  with rm,n the distance between the 
n-th transducer and the m-th point in the focal plane. λ i

F and Vi
F can be obtained by applying the singular value 

decomposition to the matrix KF(T, f ) = UFΛFVF†. The image in the focal plane Z = cT can be achieved by 
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represents the pixel values of the points in the focal plane Z = cT.
Step 5: The image distortion and false contrast due to the limited-view detection are compensated by
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,
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where Im
U is the ultimate pixel value of the m-th point in the focal plane Z = cT after compensating and Im

R is the 
corresponding location factor calculated for compensating. Since the array does not surround the imaging region 
completely, the limited-view detection will cause the false contrast and distortion. Considering a single point 
source located at the m-th point in the focal plane Z = cT without the scattering layer, the detected signal should 
be = ...g g gP ( , , , )m m m N,1 ,2 , . The response matrix K = PPT is equal to the filtered matrix KF, i.e., KF = K if there 
is no scattering layer. The singular vector of KF is ∝ ...g g gV ( , , , )m m m N,1 ,2 ,  and the imaging intensity of the 
point source is

∑= + + + = .
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Equation (11) indicates that the imaging intensity is also related to the position of the acoustic source besides 
of its intensity, which is said that the false contrast is induced by the limited view detection. Therefore, the image 
can be corrected by compensating the location factor Im

R as Eqs (10) and (11).

Imaging results and data analysis. Figure 3 illustrates the action of the matrix filtering on the recorded 
signals at frequency f = 2.0 MHz and time T = 58 μs, corresponding to the source 2 in the time window in Fig. 1. 
For reference, Fig. 3(a) shows the matrix K when the scattering layer is absent and only one acoustic source exists. 
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The regular pattern implies the deterministic coherence of the matrix K. When the scattering layer is placed 
between the ROI and the array, the scattering waves break the deterministic coherence of the matrix K, as shown 
in Fig. 3(b). Figure 3(c,d) present the filtered matrix KF obtained by the filtered time reversal (FTR) method31 and 
the proposed correlation full-matrix filter (CFMF) method, respectively. As shown, both methods can recover the 
coherent characteristics and reduce scattering components. However, the dimension of KF obtained by the FTR 
method (Fig. 3(c)) is only half of the reference matrix K in Fig. 3(a). It means that part of the detected information 
is lost. On contrast, KF obtained by the CFMF method (Fig. 3(d)) is highly consistent with the reference matrix 
K (Fig. 3(a)). The filtered matrix not only reproduces the coherent characteristics but also maintains the matrix 
dimension. It preserves all useful information of the direct wave but cleans up disturbance from the scattering 
waves.

Figure 4 illustrates the images behind the scattering layer recovered by the conventional delay-and-sum (DAS) 
method, the time reversal method, the FTR method, and the current method, respectively. Both the DAS method 
(Fig. 4(a)) and the time reversal method (Fig. 4(b)) can recover the images of the ROI. However, low contrast and 
strong speckles causing by the strong scattering appear in the background. The FTR method (Fig. 4(c)) cleans 
the speckles in background very well since the scattering waves are reduced. However, it only obtains the par-
tial image of the ROI, because the filtering process reduces the matrix dimension and cause the absence of the 
detected information. Figure 4(d) shows the imaging result obtained by the CFMF method. The image has a good 
contrast. The background noise has been significantly reduced after filtering. Additionally, the full image of the 
ROI is obtained since the filtered matrix has the same dimension as the original matrix and the direct wave is fully 
utilized. Visually, the CFMF method provides much better images behind a strong scattering layer, in comparison 
with the traditional methods.

Figure 5 shows the profile of images along the focal plane at the depth Z = 87 mm, as shown by the time win-
dow in Fig. 1. These curves correspond to the source 2 and are normalized to their maximum. The image recov-
ered by the DAS method (black dashed line) has the largest full-width at half-maximum (FWHM) of 5.57 mm 
because of the serious imaging distortion and the strong background noise. It implies a poor resolution and 
contrast. The FTR method (blue dotted line) has improved the FWHM to 3.54 mm. The CFMF method (red 
solid line) has the narrowest half-maximum width of 2.28 mm and the lowest background noise. It is said that 
the CFMF method not only enlarges the image region, but also further reduces the speckles and improves the 
imaging resolution in comparison with the FTR method.

Figure 6 compares the performances of the three methods under different scattering conditions. The 
signal-to-noise ratio (SNR) and the average FWHM are utilized to quantify the imaging quality. For the sake of 

Figure 3. Results in a matrix formalism of the signals at time T = 58 μs and frequency f = 2.0 MHz. (a) Real 
part of K without the scattering layer. (b) Real part of K with the scattering layer. (c) Real part of KF given by 
the filtered time reversal (FTR) method. (d) Real part of KF given by the correlation full-matrix filter (CFMF) 
method.
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comparison, the SNR of the same region within – 12.5 mm ≤ X ≤ 12.5 mm and 63 mm ≤ Z ≤ 92.7 mm is calcu-
lated. Considering the actual size and position of the acoustic sources, we defined the area inside the two circles 
with a diameter of 0.8 mm at the locations of the sources 2 and 4 as the signal area. For comparison, we defined 
the area outside the two circles and inside the rectangle labelled by the white dotted lines in Fig. 4 as the back-
ground area. The ratio of the mean signal intensity in the signal area and the mean noise intensity in the back-
ground area is defined as SNR. The FWHM for each acoustic source of the images is estimated by using the same 
way discussed in Fig. 5. A smaller FWHM and lower SNR imply the better quality of the image.

Figure 6(a,c) compare the imaging qualities in the case of different scattering layers, where the number of the 
scatterers in the scattering layer is increased from 10 to 50. As the scatterer number increases, the frequency-averaged 
scattering mean free paths are reduced from 83.75 ± 4.00 mm to 16.75 ± 0.80 mm with a corresponding range of fre-
quency from 1.26 MHz to 2.68 MHz. Acoustic thickness is the ratio of the thickness of the scattering layer and the 
frequency-averaged scattering mean free path. As shown in Fig. 6(a), all the three methods can provide high SNR 
when the scattering is weak. When the acoustic scattering is stronger, the image obtained by the CFMF method still 
has good SNR and always remains the highest SNR among the three methods. For the DAS method, the FWHM 
becomes larger as the acoustic thickness of the scattering layer increases (Fig. 6(c)). Results of the FTR method show 
the same trend but the changes are smaller. When it comes to the CFMF method, the acoustic thickness has little 
impact on the FWHM and the imaging performance is more stable. Furthermore, the targets in the images obtained 
by the CFMF method have the smallest FWHM, in comparison with the FTR method and the DAS method. 
Figure 6(b,d) examine the imaging qualities when the number of the array elements is reduced from 101 to 17, where 
the number of scatterers is 40. Here, the length of the array remains the same. Fewer array elements means a larger 

Figure 4. Reconstructed images of the ROI behind an acoustically scattering layer. (a) Image reconstructed by 
the delay-and-sum (DAS) beamforming method. (b) Image reconstructed by the time reversal operator without 
filtering. (c) Image reconstructed by the FTR method. (d) The final image after applying the CFMF method. The 
CFMF method significantly reduce the background noise (d), in comparison with the other methods (a–c).
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array pitch. The image qualities are improved as the transducer number increases. The CFMF method always has 
the best SNR and FWHM in comparison with the other methods. Moreover, the CFMF method can still have good 
performances even when the number of transducers is reduced to 17. These results suggest the proposed method can 
always provide the best images with the lowest speckles and the best resolution under different scattering situations 
or detection situations, comparing to the other methods.

Figure 5. Image profile of the target obtained by three different imaging methods. Normalized pixel values in 
the focal plane at a depth Z = 87 mm (corresponding to source 2) of the CFMF method (red solid line), the FTR 
method (blue dotted line) and the traditional DAS method (black dashed line). The full width at half maximum 
(FWHM) of each method is measured by the grey dotted line. The CFMF method provides the smallest FWHM, 
which implies the best resolution.

Figure 6. The comparison of the signal-to-noise ratio (SNR) and the FWHM between three different methods. 
(a) The SNR of three methods in the case of different scattering layer. (b) The SNR of three methods in the case 
of different array element number. (c) The average FWHM of three methods in the case of different scattering 
layer. (d) The average FWHM of three methods in the case of different array element number.
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Experimental set-up and imaging results. Figure 7(a) illustrates the schematic diagram of the experimental 
system. Irradiated by the pulse laser with a wavelength of 532 nm and a pulse width of 8 ns, the targets in the sample 
emit ultrasonic waves owing to photoacoustic effect. The waves will propagate through the scattering layer and then 
be picked up by the 64-channel transducer array (7.5MhzL46, Haiying Inc.) with a central frequency of 7.5 MHz. The 
signals are sampled and recorded by the 64-channel custom-made signal acquisition system and are finally stored by 
the PC system. The sampling frequency is 32 MHz. As shown in Fig. 7(b), six steel balls are arranged in a smiley face 
pattern. A scattering layer with a thickness of 10 mm is placed between the imaging region and the transducer array. 26 
steel balls are distributed randomly within the scattering layer. The diameter of all these steel balls is 0.8 mm and all the 
balls are embedded in the agar for fixing, and the speed of sound of the agar is measured as 1460 m/s at 25 °C.

For comparison, the images recovered by DAS method and CFMF method are shown in Fig. 7(c,d). The 
pattern recovered by the DAS method cannot be clearly distinguished. Strong background noise and graphic dis-
tortion lead to the low contrast of the image. When it comes to the imaging results of CFMF method, we can get 
the clearly smiley face pattern as well as some important details, including the total number and the distribution 
of steel balls. It can be concluded that the improvement of imaging quality by the CFMF method is also significant 
in the real photoacoustic application, which is consistent with previous theoretical predictions. For the sake of 
quantitatively analyzing the image quality, including the SNR and the FWHM, we have done the simulations and 
experiments in the case of point sources. To further confirm the application of the proposed method, we have 
added the simulation results of the vessel shape sources to the supplemental material. The CFMF method is also 
applicable and have better performance in the case of vessel shape sources (see Supplementary Note. 1).

Discussion
We present a full-matrix filter based on the correlation of direct waves to overcome the obstacles of photoacoustic 
imaging in the inhomogeneous media. In comparison to our previous studies, two major improvements have 
been achieved. Firstly, we adopt a full-matrix filtering process, which can effectively extract the coherence com-
ponents in the detected signal and preserve all the useful information. Secondly, a location factor Im

R is considered 
in the time reversal operator to compensate for the image distortion and false contrast. As a result, the proposed 
approach can perform high quality imaging with higher image SNR, better resolution, and wider imaging area, in 
comparison with the DAS method and the FTR method. This work might be valuable in studying the physics of 
the interaction of sound in the complex media. Moreover, the proposed approach can be applied to improve the 
quality of photoacoustic imaging for inhomogeneous biological tissues which could be seen as linear combina-
tions of point sources that are not independent.

Methods
Numerical simulations. Throughout the paper, Finite Element Method based on commercial software 
COMSOL MultiphysicsTM 5.3a is employed for the simulations. Impedance boundary condition is imposed on 
the outer boundaries of simulated domain to eliminate the interference from reflected waves.

Figure 7. Comparison of experimental results. (a) Schematic of experimental set-up. (b) Photo of the sample used 
in the experiment. (c) Image reconstructed by the DAS method. (d) Image reconstructed by the CFMF method.
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Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

References
 1. Xu, M. & Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instruments 77, 041101 (2006).
 2. Robert, J. L. & Fink, M. Green’s function estimation in speckle using the decomposition of the time reversal operator: Application to 

aberration correction in medical imaging. J. Acoust. Soc. Am. 123(2), 866–877 (2008).
 3. Jin, X., Li, C. & Wang, L. V. Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced 

thermoacoustic tomography. Med. Phys. 35, 3205–3214 (2008).
 4. Sebbah, P. Waves and Imaging through Complex Media. (Kluwer Academic, 2001).
 5. Winton, T. Quantifying shallow-buried maritime archaeological material using SBP acoustics: experimental and in-situ wrecksite 

survey approaches. RIO Acoustics 2017 IEEE/OES (2017)
 6. Hayward, T. J. & Finette, S. I. Consensus detection of a Gaussian underwater acoustic source by a distributed sensor network. J. 

Acoust. Soc. Am. 143, 1955 (2018).
 7. Yao, L., Xi, L. & Jiang, H. Photoacoustic computed microscopy. Sci. Rep. 4, 4960 (2014).
 8. Singh, M. S. & Jiang, H. Estimating both direction and magnitude of flow velocity using photoacoustic microscopy. Appl. Phys. Lett. 

104, 1145–1151 (2014).
 9. Tang, J., Coleman, J. E., Dai, X. & Jiang, H. Wearable 3-D photoacoustic tomography for functional brain imaging in behaving rats. 

Sci. Rep. 6, 25470 (2016).
 10. Xi, L. & Jiang, H. High resolution three-dimensional photoacoustic imaging of human finger joints in vivo. Appl. Phys. Lett. 107, 

063701 (2015).
 11. Rao, B. et al. Photoacoustic imaging of voltage responses beyond the optical diffusion limit. Sci. Rep. 7, 2560 (2017).
 12. Xiong, X. et al. Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier. J. Control. 

Release 217, 113–120 (2015).
 13. Tserevelakis, G. J. et al. Photoacoustic imaging reveals hidden underdrawings in paintings. Sci. Rep. 7, 747 (2017).
 14. Dean-Ben, X. L., Ntziachristos, V. & Razansky, D. Statistical optoacoustic image reconstruction using a-priori knowledge on the 

location of acoustic distortions. Appl. Phys. Lett. 98, 171110 (2011).
 15. Derode, A., Roux, P. & Fink, M. Robust Acoustic Time Reversal with High-Order Multiple Scattering. Phys. Rev. Lett. 75, 4206–4210 

(1995).
 16. Wu, D., Tao, C. & Liu, X. Photoacoustic tomography extracted from speckle noise in acoustically inhomogeneous tissue. Opt. 

Express 21, 18061–18067 (2013).
 17. Yoon, C. et al. Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation. Opt. Express 20(3), 

3082–3090 (2012).
 18. Yin, J., Tao, C., Cai, P. & Liu, X. Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry 

for sample partially behind an acoustically scattering layer. Appl. Phys. Lett. 106, 234101 (2015).
 19. Liu, Y. et al. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering 

media. Appl. Phys. Lett. 108, 231106 (2016).
 20. Mahmoodkalayeh, S. et al. Low Temperature-Mediated Enhancement of Photoacoustic Imaging Depth. Sci. Rep. 8, 4873 (2018).
 21. Kang, S. et al. Imaging deep within a scattering medium using collective accumulation of single-scattered waves. Nat. Photonics 9, 

253–258 (2015).
 22. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in 

disordered media. Phys. Rev. Lett. 104, 100601 (2010).
 23. Aubry, A. & Derode, A. Random matrix theory applied to acoustic backscattering and imaging in complex media. Phys. Rev. Lett. 

102, 084301 (2009).
 24. Shahjahan, S. et al. A random matrix approach to detect defects in a strongly scattering polycrystal: how the memory effect can help 

overcome multiple scattering. Appl. Phys. Lett. 104, 234105 (2014).
 25. Aubry, A. & Derode, A. Detection and imaging in a random medium: A matrix method to overcome multiple scattering and 

aberration. J. Appl. Phys. 106, 044903 (2009).
 26. Chaigne, T. et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix. Nat. Photonics 

8, 58–64 (2013).
 27. Badon, A. et al. Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci. Adv. 2, 1 (2016).
 28. Derode, A. et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Phys. Rev. Lett. 90, 014301 

(2003).
 29. Tulino, A. M. & Verdu, S. Random matrix theory and wireless communications. (Now Publishers Inc., 2004).
 30. Sprik, R., Tourin, A., Rosny, J. D. & Fink, M. Eigenvalue distributions of correlated multichannel transfer matrices in strongly 

scattering systems. Phys. Rev. B 78, 012202 (2008).
 31. Rui, W., Tao, C. & Liu, X. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal 

operator. Opt. Express 25(19), 22840–22850 (2017).
 32. Aubry, A. & Derode, A. Singular value distribution of the propagation matrix in random scattering media. Waves Random Complex 

Media 20(3), 333–363 (2010).

Acknowledgements
This work was supported by the National Basic Research Program of China (2016YFC0102300) and NSF of China 
(11834008, 11847217); the Fundamental Research Funds for the Central Universities.

Author Contributions
W.R. performed the numerical simulations and experiments. W.R., T.C. and X.L. conceived the idea and wrote the 
article. All authors contributed to the discussions.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-34039-w.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-018-34039-w


www.nature.com/scientificreports/

1 0SCIeNtIfIC REPORTS |  (2018) 8:15611  | DOI:10.1038/s41598-018-34039-w

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Imaging acoustic sources through scattering media by using a correlation full-matrix filter
	Results
	Schematic of the scenario considered in this study. 
	Acquisition and processing of the signals. 
	Imaging results and data analysis. 
	Experimental set-up and imaging results. 

	Discussion
	Methods
	Numerical simulations. 

	Acknowledgements
	Figure 1 The schematic of the scenario to imaging through acoustic scattering layer.
	Figure 2 Principle of the matrix rotation by taking the example of a matrix K with a dimension N = 9.
	Figure 3 Results in a matrix formalism of the signals at time T = 58 μs and frequency f = 2.
	Figure 4 Reconstructed images of the ROI behind an acoustically scattering layer.
	Figure 5 Image profile of the target obtained by three different imaging methods.
	Figure 6 The comparison of the signal-to-noise ratio (SNR) and the FWHM between three different methods.
	Figure 7 Comparison of experimental results.




