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Purpose: To determine whether stacked deep learning models based on

PET/CT images and clinical data can help to predict epidermal growth factor

receptor (EGFR) mutations in lung cancer.

Methods: We analyzed data from two public datasets of patients who

underwent 18F-FDG PET/CT. Three PET deep learning ResNet models and one

CT deep learning ResNet model were trained as low-level predictors based on

PET and CT images, respectively. A high-level Support Vector Machine model

(Stack PET/CT and Clinical model) was trained using the prediction results of

the low-level predictors and clinical data. The clinical data included sex, age,

smoking history, SUVmax and SUVmean of the lesion. Fivefold cross-validation

was used in this study to validate the prediction performance of the models.

The predictive performance of the models was evaluated by receiver operator

characteristic (ROC) curves. The area under the curve (AUC) was calculated.

Results: One hundred forty-seven patients were included in this study. Among

them, 37/147 cases were EGFRmutations, and 110/147 cases were EGFRwild-

type. The ROC analysis showed that the Stack PET/CT & Clinical model had the

best performance (AUC = 0.85 ± 0.09), with 0.76, 0.85 and 0.83 in sensitivity,

specificity and accuracy, respectively. Three ResNet PET models had relatively

higher AUCs (0.82 ± 0.07, 0.80 ± 0.08 and 0.79 ± 0.07) and outperformed the

CT model (AUC = 0.58 ± 0.12).

Conclusion: Using stack generalization, the deep learning model was able to

e�ciently combine the anatomic and biological imaging information gathered

from PET/CT images with clinical data. This stacked deep learning model

showed a strong ability to predict EGFR mutations with high accuracy.

KEYWORDS

positron-emission tomography, EGFR mutation, stack generalization, deep learning

model, lung cancer

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.1041034
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.1041034&domain=pdf&date_stamp=2022-10-10
mailto:ymli2001@163.com
https://doi.org/10.3389/fmed.2022.1041034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.1041034/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2022.1041034

Introduction

Lung cancer is one of the most common malignancies

worldwide and accounts for 18% of cancer-related deaths. More

than 80% of lung cancer cases are non-small-cell lung cancer

(NSCLC). In recent years, with the growing understanding

of genetic changes, the management of lung cancer has

made great advancements. Several genetic changes, including

anaplastic lymphoma kinase (ALK) rearrangements and Kirsten

rat sarcoma (KRAS) and epidermal growth factor receptor

(EGFR) mutations, have been proven to be prognostic indicators

for NSCLC patients. Targeted therapy using novel targeted

drugs and immunotherapeutic agents has greatly improved the

prognosis of lung cancer patients and has become an important

aspect of personalized treatment.

Prior to targeted therapy, critical pathogenic gene mutation

tests are suggested in patients with advancedNSCLC to guide the

treatment. In NSCLC, the genes like EGFR andKRASmutations,

are important. Testing these important genes depends on

routine biopsies or cytological examinations of tumors, which

carry a few limitations. The biopsies and cytological examination

are invasive tests. They are not always feasible and are often

associated with a high risk of bleeding, pneumothorax and

the collection of inadequate samples. Therefore, for patients

who have recurrence after first-line treatment, rebiopsy of the

recurrent lesion is not required, and targeted therapies might

be executed based on the gene mutation test of the surgical

specimen, assuming that no genetic changes occur between

secondary tumors and recurrence. In these circumstances, the

need to find a low-risk and non-invasive method to assess

actionable biomarkers as a substitute for biopsies and cytological

examination in NSCLC is emerging.

In recent years, researchers have utilized CT images to

predict gene mutations, primarily by radiomic features and

machine learning approaches. A systematic review showed

that studies that used radiomic features of CT images to

predict EGFR mutations had successfully obtained relatively

accurate results (1). Scientists have also tried to use PET/CT

images to predict gene mutations. Liu et al. employed random

forest and logistic regression to predict EGFR mutations and

found that predictive models based on radiomic features

extracted from 18F-FDG PET/CT images achieved a satisfying

prediction power in the identification of EGFR mutation

status, with area under the curves (AUCs) ranging from

0.77 to 0.92 (2). Although radiomics and machine learning

methods have successfully predicted some genetic mutations,

the procedures to calculate the radiomic features and build

Abbreviations: ALK, Anaplastic Lymphoma Kinase; EGFR, Epidermal

Growth Factor Receptor; FDG, Flourodeoxyglucose; KRAS, Kirsten Rat

Sarcoma; ResNet, Residual Networks; ROC, Receiver Operation Curve;

VOI, Volume Of Interest.

the machine learning models are complicated and strict. These

procedures are time-consuming and require full cooperation

from both practiced imaging physicians and AI technicians,

from detection, segmentation and feature extraction to feature

selection and model optimization. Furthermore, radiomic

features are sensitive to reconstruction parameters and have low

repeatability between different PET/CT scanners (3). Thus, the

machine learning models built on the radiomic features showed

low receptibilities between different PET/CT centers.

Deep learning has achieved significant achievement in the AI

industry in recent years as a result of its excellent images analysis

capabilities, which allow researchers to bypass the arduous

procedures of features calculation and features selection. In the

field of imaging prediction of gene mutations, deep learning

approaches have been continuously developed. In lung cancer,

using CT images to train deep learningmodels and predict EGFR

mutations has been studied and shows promising performance

(4, 5).

In this study, we developed a deep learning-based model

to predict EGFR mutation status in patients with lung cancer

using 18F-FDG PET/CT scans and multiple public datasets. We

evaluated the performance of the deep learning-based EGFR

prediction model, which integrated the information extracted

from PET/CT images and clinical data. We hope that this deep

learning-based model will aid doctors in identifying suitable

advanced lung cancer patients for EGFR-targeted therapy,

allowing for more efficient and convenient application of

precise medicine.

Materials and methods

Data collection

This study used two publicly available datasets selected from

the Cancer Imaging Archive (TCIA). PET/CT data. The “TCGA-

LUAD” dataset (6) and “NSCLC Radiogenomics” dataset (7)

were used in this study, from which we obtained a collection

of patients with clinical data and PET/CT images. The PET/CT

images were acquired with 3 different PET/CT scanners. For

every lesion, a semiautomatic segmentation method was used to

delineate the lesion (8). Then, the delineations were reviewed by

a board-certified nuclear medicine physician (with more than 10

years of working experience in nuclear medicine).

Prepare dataset for training, validation
and testing

Nested five-fold cross-validation was used to train and

evaluate the prediction ability of the models. A five-folds cross

validation were used as the inner loop, and another five-folds

cross validation were used as the outer loop. All the lesions
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in this study were randomly separated into inner loop dataset

and outer loop testing dataset using five-folds cross validation

as the outer loop. And then the lesions in inner loop dataset

were divided into training dataset (80%) and inner loop testing

dataset (20%) with another five-folds cross validation as inner

loop. The models were trained and optimized using the inner

loop and tested using outer loop test dataset. In order to prevent

over-fitting, 25% of lesions in training dataset of inner loop

were randomly selected as validation dataset when training and

optimizing the deep learning models. And the performances of

the models were evaluated using outer loop test datasets.

EGFR status prediction with PET/CT
images and deep learning models

For each lesion we studied, we extracted three 2D slices from

3 planes (transverse, sagittal, and axial) at the largest slice of each

lesion, which were used to characterize the imaging information

of the lesion.

The images were normalized before being fed into the

models using the following methods (9). The CT values in ROIs

were converted into Hounsfield units, and the values ranging

from −600 to 1,600 were transformed to [0, 1]; the PET values

in the ROIs were converted into standard uptake values, and the

values ranging from−0 to maximum value were transformed to

[0, 1].

The deep learning models were trained using the images we

extracted. The images of the lesion were first resampled to 32

× 32 pixels. Then, they were fed into the models. To reduce

overfitting, data augmentation was applied in training dataset,

and the images in the training dataset randomly proceeded with

width/height-shift with 0∼6 pixels, horizontal-flip, rotation with

0∼20 degrees, and zoom with 100∼120%.

Three PET Resnet models were built using PET images with

Resnet 20 architecture, ResNet 32 architecture and ResNet 50

architecture. We also build a ResNet 32 CT model using CT

images. Then, we used the stacked generalization method to

build two SVM models. The first SVM model (stack PET/CT

model) was trained using the prediction results of three PET

models and one CT model together. The second SVM model

(Stack PET/CT and clinical model) was trained by the prediction

results of three PET models and one CT model and clinical

data. The clinical data included age, smoking history, the sex

of each patient, the SUVmax value and the SUVmean value of

each lesion.

The ResNet models were trained with a batch size of 32. The

Adam optimizer was used in this study to update the parameters

of the deep learning models. The training was stopped after 50

epochs or the accuracy of the validation dataset prediction stop

increasing for 10 epochs.

After trained and evaluated the performances of the ResNet

models, stacked generalization was used to integrate the results

of ResNet models to further improve the prediction ability.

Stacked generalization is an ensemble method that allows

researchers to combine several different prediction models

(lower-level classifier) into one to achieve higher predictive

accuracy (10). In this study, the results of ResNet PET models

and ResNet CT model served as lower-level classifiers. The

support vector machine (SVM) served as the higher-level

classifier model to make a new prediction based on the

prediction results of the lower-level classifiers.

EGFR status prediction with radiomics
features of PET/CT images and machine
learning models

The radiomic features were extracted using Python (version

3.7). The PyRadiomics module was used to calculate the

radiomic features. All the images were resampled to the same

size before feature extraction. The PET images were resampled

to 3.9063 × 3.9063 × 3.27mm. The CT images were resampled

to 0.98 × 0.98 × 3.27mm. The bin sizes were 0.1 and 15

for PET and CT images, respectively. A total of 120 radiomic

features were extracted from the PET and CT images for

each lesion, respectively. These radiomic features include: first

order statistics (19 features), shape-based (3D) (16 features),

shape-based (2D) (10 features), gray level cooccurrence matrix

(24 features), gray level run length matrix (16 features), gray

level size zone matrix (16 features), neighboring gray tone

difference matrix (5 features) and gray level dependence matrix

(14 features).

For comparison, we trained machine learning model based

on radiomic features for EGFR mutation prediction. The

machine learning model was trained and tested using the same

method with previous study (11). In order to reduce the size

of the dataset, sequential forward floating selection (SFFS)

was used to select only a few critical features to training the

Support Vector Machine (SVM) models. The feature selection

was performed in the training dataset (80% data) and testing

dataset (20% data) of the inner loop, the SFFS stopped when

the performance of the SVM decreased. Using those selected

radiomic features, an SVM model was trained and then

evaluated using the testing dataset of the outer loop.

Software tools and statistical analysis

Models were trained and validated using Python (version

3.7). The scikit-learn module was used to train the SVM models

based on clinical features and to integrate the results of the

lower-level classifiers (ResNet models). The implementation of
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FIGURE 1

Flowchart of patient selection. EGFR, epidermal growth factor receptor.

the deep learning models (ResNet models) was performed by the

Keras toolkit.

Statistical analysis was performed by using Python (version

3.7) and SPSS (version 17.0). The scikit-learn package was

used for ROC analysis. Meanwhile, the matplotlib package was

employed to plot the ROC curve. The predictive performance

of deep learning models and machine learning models was

evaluated by receiver operator characteristic (ROC) curves.

The area under the curve (AUC) was calculated. The optimal

diagnosis threshold for each model was calculated using

the Youden Index. By employing the optimal threshold, the

sensitivity, specificity and accuracy were calculated according

to the ROC curve. Chi-Square test was performed to compare

the differences between two categorical variables. T test was

performed to compare the differences between two normal

distribution samples. AndMann-Whitney test was performed to

compare the differences between two independent samples when

the sample distributions are not normally distributed.

Results

Clinical characteristics of patients

PET/CT images and clinical data from the NSCLC

Radiogenomic dataset and TCIA-LUAD dataset were reviewed,

in which 147 patients (135 patients from NSCLC Radiogenomic

dataset, 12 patients from TCIA-LUAD dataset) satisfied the

experimental requirements: (1) PET/CT images and clinical

information integrity; (2) Lesions were larger than 10 voxels on

PET images; (3) The EFGR mutation was tested. Finally, 147

lesions from 147 patients (age: 68.57 ± 9.78) were included in

this study. A total of 37/147 had EGFR mutations, and 110/147

were wild-type EGFR (Figure 1).

TABLE 1 Clinical characteristics of patients.

EGFR*-

mutation

group

EGFR*

wild-type

group

p-Value

Number of cases 37 110

Sex 0.008

Male 17 77

Female 20 33

Age 68.59± 9.33 68.56± 9.97 0.987

SUVmax 5.87± 5.46 8.28± 6.77 0.016

SUVmean 0.86± 0.40 0.90± 0.46 0.714

Smoke status 0.000

Non-smoker 20 13

Former 15 73

Current 2 24

*EGFR, epidermal growth factor receptor.

According to the EGFR mutation status the patients were

divided into EGFR-mutation group and EFGR wild-type group

(Table 1). Mann-Whitney test showed that the SUVmax value of

EGFR mutant group is significantly higher that EGFR wild-type

group (Z=−0.24, P= 0.016). There was no statistical difference

of SUVmean value between two groups (Z=−0.37, P = 0.714).

T tested showed that there was no statistically difference in age

between two groups (T = 0.02, P = 0.987). Chi-Square test

showed that sex and smoke status had a significantly difference

between two groups (X = 6.948, P = 0.008; X = 29.30, P =

0.000), the EGFRmutation group had more female patients and

more non-smokers.
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TABLE 2 Characteristics of the images.

EFGR* Wildtype EGFR* Mutation Total

Resolution of PET images

3.65× 3.65× 3.27mm 35 19 54

3.91× 3.91× 3.27mm 19 4 23

3.91× 3.91× 4.25mm 1 0 1

4.00× 4.00× 4.00mm 2 2 4

4.06× 4.06× 3.27mm 1 0 1

4.07× 4.07× 3mm 3 1 4

4.07× 4.07× 4mm 0 1 1

4.07× 4.07× 5mm 1 2 3

4.3× 4.3× 4.25mm 7 1 8

4.69× 4.69× 3.27mm 2 0 2

5.15× 5.15× 3.38mm 2 0 2

5.31× 5.31× 2.5mm 1 1 2

5.31× 5.31× 3.4mm 3 2 5

5.47× 5.47× 3.27mm 32 5 37

Matric size of PET image

128× 128 68 13 81

144× 144 2 2 4

168× 168 4 4 8

192× 192 35 19 54

Resolution of CT images

0.75× 0.75× 3.27mm 1 0 1

0.87× 0.87× 0.62mm 1 0 1

0.88× 0.88× 5mm 2 1 3

0.91× 0.91× 3.27mm 0 1 1

0.98× 0.98× 2mm 0 1 1

0.98× 0.98× 2.5mm 3 1 4

0.98× 0.98× 3mm 2 0 2

0.98× 0.98× 3.27mm 86 26 112

0.98× 0.98× 3.4mm 3 2 5

0.98× 0.98× 4mm 1 3 4

0.98× 0.98× 4.25mm 8 1 9

1.17× 1.17× 2.5mm 0 1 1

1.37× 1.37× 3.27mm 1 1 2

1.68× 1.68× 0.98mm 1 0 1

* EGFR, epidermal growth factor receptor.

Characteristics of images

The reconstruction information of the image data was

extracted from the dicom files.

For the resolution of PET images, 54 cases were

reconstructed into 3.65 × 3.65 × 3.27mm; 37 cases were

5.47 × 5.47 × 3.27mm; 23 cases were 3.90 × 3.90 × 3.27mm;

and 33 cases were reconstructed into other resolutions (Table 2).

For the resolution of CT images, 112 cases were reconstructed

into 0.98 × 0.98 × 3.27mm, and 35 cases were reconstructed

into other resolutions (Table 2).

The predictive performance of models

The performance of the models can be compared by

sensitivity, specificity, accuracy and the area under the ROC

curve (AUC) (Table 3 and Figure 2). The ROC analysis showed

that the three Resnet PET models and the stack PET/CT model

had higher AUCs and significantly outperformed the CT model

and radiomic model. The AUC of Resnet 32 CT model is

similar with radiomics model. After integrated clinical data (age,

smoking history, and sex) into the stack PET/CT model we

got the stack PET/CT and Clinical model. Compare to stack

PET/CT model, the performance of the stack PET/CT and

Clinical model improved, and the AUC increased from 0.81

to 0.85, the sensitivity and accuracy of the stack PET/CT and

Clinical Data model increased from 0.60 to 0.76 and 0.82 to

0.83, respectively. The Stack PET/CT and Clinical model had the

highest specificity and accuracy and a relatively high sensitivity.

Discussion

In this study, we proposed a prediction model based on

ResNet deep learning models to predict EGFR mutation status

using non-invasive 18F-FDG PET/CT images and clinical data

of patients with lung cancer. By using stacked generalization,

the prediction model integrated the medical images and clinical

data together and showed encouraging results and strong

performance in predicting EGFR mutations. To our knowledge

this is the first study that predicted the EGFR status based on

the stacked deep learning models which integrated the medical

images and clinical data from multiple centers together.

For patients with advanced pulmonary adenocarcinoma,

radiotherapy and chemotherapy remain the major treatment.

Molecular-targeted medicines, such as EGFR-TKIs, have

considerably improved the outcome of advanced lung cancer

patients compared to standard therapy. The effectiveness of

EGFR-TKIs is dependent on the presence of an EGFRmutation.

Using image-based AI models to predict EGFR mutation could

be relevant when invasive examinations are contraindicated.

The deep learning model has been demonstrated to be

a useful tool to analyze medical images. The performance

of the deep learning models was affected by the quality of

the dataset. Usually, training a good deep learning model

requires a large image dataset with good quality control. A

systemic review (1) showed that until 2020, four studies used

CT images to build deep learning models to predict EGFR,

but no one had used PET/CT images to train deep learning

models. The reason for this might be it is hard to integrate

PET and CT images together to train a deep learning model.
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TABLE 3 The performance of di�erent models to classify epidermal growth factor receptor-mutated lesions.

Models AUC* Number of

ture/false

positive cases

Number of

ture/false

negative cases

Sensitivity Specificity Accuracy

Stack PET/CT and Clinical model 0.85± 0.09 28/9 94/16 0.76 0.85 0.83

Stack PET/CT model 0.81± 0.07 22/15 99/11 0.60 0.90 0.82

Resnet 20 PET model 0.80± 0.08 26/11 90/20 0.70 0.82 0.79

Resnet 32 PET model 0.82± 0.07 32/5 71/39 0.86 0.65 0.70

Resnet 50 PET model 0.79± 0.07 24/13 90/20 0.65 0.82 0.78

Resnet 32 CT model 0.58± 0.12 26/11 54/56 0.69 0.49 0.54

Radiomic model 0.60± 0.06 12/25 95/15 0.32 0.86 0.73

* AUC, The Area Under the Curve.

FIGURE 2

The ROC curves of di�erent models in 5-fold cross validation.

By integrating the clinical information and images, the Stack

PET/CT and Clinical model obtained the highest AUC at 0.85 ±

0.09. The stacked PET/CT model and ResNet PET models also

obtained relatively high AUCs of 0.79∼0.82 ± 0.07∼0.08. The

ResNet CT models and radiomic model showed low predictive

ability.

In order to do that we used stacked generalization in this

study. Stacked generalization was designed to combine several

different prediction models into one. Although the concept of

“stacked generalization” was originally developed in 1992, the

theoretical guarantees for stacking were not proven until the

publication of a paper titled, “Super Learner,” in 2007. Stacked

generalization was then proven to be an effective approach

to improve the predictive performance (10, 12). The stacked

generalization is to integrate the results of several “lower-level”

predictive models into a “higher-level” model. The goal in

stacking is to ensemble strong, diverse sets of “lower-level”

predictive models together. The benefit of stacked generalization

is that it can harness the capabilities of a range of well-

performing models on a classification or regression task and

make predictions that have better performance than any single

model. Traditional stacking is used to integrate the results

of several models trained by the same dataset. However, in

this study, we used stack generalization to integrate the data

from different datasets (images and clinical information). These

data reflect different features of the lesions. PET images reflect

biological information, CT images reflect anatomic information,

and clinical data reflect possible predisposing factors. In this

study, stacked generalization helped the models to integrate

anatomic, biological imaging data and clinical information. This

is a successful attempt. After integrating the information of

images and clinical data, the AUC of the model was improved,

proving that integrating multiple aspect information of lesions

could further improve the predicting performance.

EGFR mutation prevalence had associated with gender

and smoking status. The prevalence was higher in females

(females vs. males: 43.7 vs. 24.0%) and non-smokers (non-

smoker vs. past or current smoker: 49.3 vs. 21.5%) (13). In

this study we found that clinical data (age, smoking history,

and sex) helped the PET/CT and Clinical model to get a better

predictive performance. After integrated clinical data into the

stack PET/CT model, the AUC increased from 0.81 to 0.85, and

the sensitivity and accuracy increased from 0.60 to 0.76 and 0.82

to 0.83, respectively.

Using PET/CT radiomics features to predict EGFR

mutations showed a promised result with an AUC ranging

from 0.83 to 0.79 (1, 14–16). But radiomic features are highly

sensitive to the reconstruction method, which means those

radiomic models might not be reliable when used on different

PET/CT scanners with different reconstruction parameters (3).

In this study, the imaging data came from several different

hospitals. The PET reconstruction parameter was different

between different hospitals. This might be the reason that the

radiomic model showed low predictive ability in this study.

And compare to radiomics model, the deep learning models
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showed a better performance to deal with images with difference

reconstruction parameters.

Previous studies have shown that using deep learning

model trained by CT images to predict EGFR mutations had a

promising result, with AUC ranging from 0.85 to 0.75 (1, 4). But

in this study, the CT images showed a very weak ability to predict

EGFR mutations. The reason for this might be that the quality

and quantity of the CT images of PET/CT are not sufficient for

training the deep learning models. The CT images of PET/CT

is free breath CT image. And some of the CT images in this

study are contrast-enhanced CT, and some of them are not. This

might be another reason for the poor performance of the ResNet

CT model.

In this study we used nested cross validation to train and

build our models. Compare non-nested cross validation, model

selection without nested cross validation uses the same data

to tune model parameters and evaluate model performance.

Information of test dataset may thus “leak” into the model

and overfit the data. The magnitude of this effect is primarily

dependent on the size of the dataset and the stability of the

model. To avoid this problem, nested cross validation effectively

uses a series of train/validation/test set splits. In the inner loop,

the models were trained and optimized. In the outer loop,

performance of the model is estimated by averaging test set

scores over several dataset splits. This is a useful method to train

and test the models when the dataset is small. But compared to

data split method, nested cross validation consumed more time

in training and testing the models.

In this study is that the segmentation method of this

study is semiautomatic. This semiautomatic approach requires

that the physician give an approximate location of lesions.

Li et al. reported that a deep learning model can be trained

to segment tumors on PET/CT images (17). Instead of

the semiautomatic segmentation approach, we should build

another deep learning model to segment the lesion in

future research. By integrate several deep learning models,

an automatic non-invasive decision support system could be

developed, including identification, segmentation and EGFR

status prediction. Using stack generalization to integrate more

models based on multimodality imaging, radiomic features

and more clinical features together may further improve the

predictive performance.

Conclusion

In this study, we trained a deep learning-based algorithm

to predict the EGFR mutation status in patients with lung

cancer using 18F-FDG PET/CT images from multiple hospitals.

Using stack generalization, the machine learning model was

able to efficiently combine the anatomic and biological imaging

information gathered from CT and PET images with clinical

data. This model showed the ability to assist doctors in

predicting EGFR mutations non-invasively to identify patients

with lung cancer who would benefit from EGFR-TKI therapy.
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