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Abstract: Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed

cancers causing death worldwide. It is difficult to detect at an early stage and most

patients with advanced HCC rarely achieve satisfying therapeutic results. Accordingly,

researchers have been trying to find new biomarkers for diagnosis and new methods of

treatment. OCT1, a member of solute carrier super family, is highly expressed in normal

liver tissues, and predominantly transports endogenous and exogenous substances, such

as metabolites, drugs and toxins to hepatocytes. Studies have demonstrated that the

expression of OCT1 is related to the progression and survival of HCC patients.

Furthermore, sorafenib, which is regarded as the only effective molecular targeting

drug for advanced HCC, is affected by OCT1 variants. In the current review, we

summarized the reports about OCT1 and HCC in order to present a comprehensive

overview of the relationship between OCT1 and HCC.
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Introduction
Hepatocellular carcinoma (HCC) is the sixth most commonly diagnosed cancer and

the fourth leading cause of cancer-related mortality worldwide, with about 841,000

new cases and 782,000 deaths annually.1 HCC might be cured by surgical resection,

liver transplantation or ablation at the early stage, and 5-year survival can be higher

than 50%. Patients with a small single tumor and very good preserved liver function

are optimal candidates for surgical resection. Liver transplantation is most bene-

ficial for patients who are not good candidates for resection.2However, most

patients are already at advanced stage when HCC is diagnosed. They have no

opportunity to accept surgical treatment, and chemotherapy has obviously serious

side effects. Therefore, new biomarkers for recognizing HCC at an early stage and

novel treatments for advanced HCC are urgently needed.

The SLC22 transporter family comprises more than two dozen members,

which are expressed in epithelial tissues of the kidney, liver, and other organs,

and play a critical role in translocating small molecular endogenous metabolites,

drugs, and toxins between tissues and interfacing body fluids.3–6 Due to the

significance in the field of various molecular metabolisms, plenty of attention

has been focused on the SLC22 family. SLC22 family is divided into six

subfamilies on the basis of substrates and mechanisms of transport, including

OATs, OAT-like, OAT-related, OCTs, OCTNs, and OCT/OCTN-related

subfamilies.7

OCTs contain three subtypes encoded by SLC22A1-3 genes and are plasma

membrane carriers of organic cations, weak base, and some neutral compounds.8
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The three membrane transporter subtypes have amino

identities about 50%–70%9,10 and they facilitate their

substrates to move bidirectionally across the plasma

membrane as cation exchangers depending on the elec-

trochemical gradient of the substrates.9,11,12 Natural sub-

strates and drugs transported by organic cation

transporters are shown in Table 1. Even though organic

cation transporters, OCT1, OCT2, and OCT3, have partly

similar distribution in organs, overlapping substrate, and

the same inhibitors, they are mainly expressed in differ-

ent tissues.10,13 OCT1 is mainly expressed in the liver,

OCT2 is mainly expressed in the basolateral membrane

of renal proximal tubules, and OCT3 is highly expressed

in skeletal muscle.14–16 All of them play important roles

in absorption, excretion, and distribution of cationic

drugs.

In the human body, almost 40% of drugs are organic

cation in a physiological environment, therefore numerous

drugs are potential substrates of OCTs.17 More and more

studies have demonstrated that OCTs, to a small or large

extent, play a role in cellular uptake of multiple drugs and

the development of drug resistance in various diseases,

and also influence the progression and survival of cancers

and the response to anti-cancer drugs in human malignant

tumors. Especially, much attention has been paid to the

role of OCT1 in HCC.

This review therefore aimed to show the expression of

OCT1 in normal liver tissue and HCC tissue, and elucidate

certain defined relationships between OCT1 and HCC, and

summarize recent research progress regarding OCT1 and

HCC. We believe that a comprehensive overview will

contribute to a better understanding of the role of OCT1

in HCC and we aimed to further investigate characteristics

of OCT1 in HCC and provide a new therapeutic approach

for HCC treatment.

Structure and variant of OCT1
OCT1 was first cloned from a rat in 1994,18 and first cloned

from a human and described in detail in 1997.19,20 The

human OCT1 encoded by SLC22A1 gene is located on

chromosome 6q25-q27 in a cluster and the gene contains

eleven exons and ten introns, with a span of approximately

37.41 kb.21–24 The OCT1 protein has 554 amino acids and

consists of 12 α-helical transmembrane domains (TMDs)

with N- and C-termini localized in intracellular position.

The site of OCT1 protein in intracellular loop between

TMD6 and TMD7 domains is phosphorylated post-

translationally.25,26 Additionally, residues of certain amino

acids, including cysteine, glycine, and proline, are rather

conserved in overall OCTs cloned hitherto, indicating that

these residues play a pivotal role in the establishment of the

secondary structure of these proteins.27 When cation com-

bines with OCT1, the conformation of transporter will be

changed and finally OCT1 mediates the transposition across

plasma membrane.28

Notably, there are many single nucleotide polymorph-

isms (SNPs) in SLC22A1 gene, which results in the presence

of numerous SLC22A1 variants.28,29 It has been confirmed

that the existence of genetic variants in genes encoding

proteins relating to the processes of drug detoxification is

responsible for drug reaction, and sometimes contributes to

serious consequences in regard to drug toxicity and thera-

peutic effect.30 A broad range of drugs applied in clinical

treatment are organic cations, therefore the genetic variant of

SLC22A1 gene has important clinical significance for human

pharmacology. For example, a variant of SLC22A1 gene

inserted by an 8 bp in intron 7 between exons 7 and 8 brings

about a truncated protein, which probably predisposes

toward universality of adverse side effects in metformin-

treated type 2 diabetes patients.31 SLC22A1 gene has more

than 1,000 site-mutations in the open reading frame, in the

Table 1 Natural substrates and drugs transported by organic cation transporters (OCTs)

OCTs Natural substrates Drugs

OCT1 TEA, MPP, ASP, acetylcholine, choline, corticosterone, epinephrine,

histamine, guanidine, salsolinol serotonin, thiamine, progesterone,

prostaglandin E2/F2.
9,22,96–101

Acyclovir, atenolol, debrisoquine, furamidine, ganciclovir,

lamivudine, lamotrigine, metformin, oxaliplatin, pentamidine,

picoplatin, tropisetron, zalcitabine.102–105

OCT2 TEA, MPP, ASP, N-methylnicotinamide, aminoguanidine,

acetylcholine, dopamine, epinephrine, norepinephrine, serotonin,

histamine, cyclo (His-Pro), salsolinol, agmatinepolyamine,

putrescine, choline.22,100,101

Amantadine, amiloride, atenolol, cimetidine, cisplatin, famotidine,

ifosfamide, lamivudine, memantine, metformin, oxaliplatin,

picoplatin.102–103,106

OCT3 epinephrine, norepinephrine, histamine, agmatine, cyclo (His-Pro),

salsolinol.101,
Cisplatin, etilefrine, lamivudine, lidocaine, metformin, oxaliplatin,

pramipexole, quinidine.103,107

Abbreviations: TEA, tetraethylammonium; MPP, 1-methyl-4-phenylpyridinium; ASP, 4-[4-(dimthylamino)-styryl]-Nmethylpyridinium.
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promoter sequence, even in certain introns described in pre-

vious reports. However, we still have no complete under-

standing about the biological implication of numerous SNPs

in the untranslated regions.32–34 Except for the transcript

variant hOCT1G/L554, most of OCT1 transcript variants

will be translated into truncated proteins on account of the

“skip” of certain exons and retention of several introns in

variant mRNAs.23,28 This is the reason why many previous

reports show that OCT1 variant tends to be less functional or

non-functional.17,32,35–37 Regarding some less functional or

non-functional OCT1 variants, the alterations of evolutiona-

rily conserved glycine residues were observed, and the result

indicates that these residues may play a key role in the

function of OCT1.35,36 Thus, amino acid variant has peculiar

biological value for providing information about whether

these residues mediate activity of protein and specificity of

substrate.25

Some studies also demonstrated that several non-

synonymous mutations exist on the SLC22A1 gene in

each subject from different racial groups, such as L160F,

P341L, and M408V. In addition, these variants still main-

tained transport ability own relatively high frequency in

SLC22A1 gene.38 However, not overall SLC22A1 gene

mutations exhibit reduced function of transporters. For

instance, patients suffering from chronic myeloid leukemia

with the wild-type L160F variant have a worse response to

imatinib than those with the mutation.39

Function of OCT1
OCT1, the poly-specific amphiphilic solute facilitator of

transmembrane protein, transports organic cations electro-

genically independent of Na+ and H+gradients.19,40 Since

OCT1 is mainly expressed in the liver, OCT1 predomi-

nates not only in the delivery of many endogenous sub-

strates and cationic drugs into hepatocytes from sinusoids,

but also in the release of organic cations from hepatocytes

to sinusoids.17,22,41 In hepatocytes, OCT1 mediates the

detoxification of various endogenous or xenobiotic sub-

strates in the first step.25,42

OCT1 is also involved in relevant transport of sub-

stances in other organs, such as the absorption and secretion

of organic cations in the small intestine,9,41 reabsorption of

ultra-filtrated cations in the kidney and absorption of certain

drugs in lungs.41,43 Additionally, OCT1 promotes organic

cations to traverse the blood–brain barrier in the brain and

motivates the uptake of endogenous substrates and antiviral

drugs in human immune cells.44,45

Expression and regulation of OCT1
in the liver
As described previously, OCT1 protein is expressed

mainly in the liver, located in the basolateral sinusoidal

membrane of normal hepatocytes and to a lesser degree in

cholangiocytes. However, there are big differences in

OCT1 protein and mRNA levels in different people. The

high variation of OCT1 protein and mRNA levels (83- and

113-, respectively) was shown in 136 of 150 liver samples

collected from Caucasian subjects. Similarly, this high

variation (23.6- and 15.9-fold, respectively) was also

detected in a Korean population. The correlation coeffi-

cient value of OCT1 protein and mRNA is just 0.53, which

probably means very low post-transcriptional regulation of

SLC22A1 gene expression.17,46 The hepatic OCT1 mRNA

possesses the highest expression in all human organs, but

OCT1 transcripts have a pretty low expression in various

other organs, such as the brain, testis, small intestine,

spleen, mammary gland, eye, heart, kidney, lung, adipose

tissue, skeletal muscles, and immune cells.14,17,45,47–52

Similarly, OCT1 protein is also expressed in other tissues

in low levels. OCT1 is localized to the lateral and baso-

lateral membranes of enterocytes,53,54 the luminal mem-

brane of pulmonary epithelial cells,43,55 and the

endothelial cells of brain microvessels.44

Also, OCT1 expression in various tumor cells has been

demonstrated, such as HCC cells, lung cancer cells, and

lymphoma cells.56–59 Significant down-regulation of OCT1

expression was detected in a variety of liver cancer tissues,

such as HCC, cholangiocarcinoma (CCA), and hepatoblas-

toma, compared with adjacent non-tumor liver tissue.37,60–62

OCT1, predominating in hepatic uptake and excretion

of cationic drugs and endogenous substances, is highly

expressed only in hepatic parenchyma cells. Apparently,

it implies that the expression of OCT1 is possibly regu-

lated by certain liver-enriched transactivators. Saborowski

et al found that HNF-4α can activate SLC22A1 gene to

encode OCT1 protein via binding to two contiguous DNA-

response elements contained by OCT1 promoter.63 Some

reports showed that HNF-4α also regulates the expression

of many genes affecting most aspects of healthy hepatic

function.64–70 These functions refer to regulation of hepa-

tic cell development, differentiation, bile acid synthesis,

xenobiotic detoxification, serum protein production, and

energy metabolism.71 On the other hand, bile acid cheno-

deoxycholic acid (CDCA) is a typical ligand of farnesoid

X receptor. The activation of HNF-4α to OCT1 tends to be
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interrupted by CDCAvia interference of small heterodimer

partner (SHP) (Figure 1A).63 Thus, when patients have

cholestatic liver disease, OCT1 expression is down-regu-

lated due to the increasing bile acid level which interferes

with the promotion of OCT1 transcription by HNF-4α.
Further studies demonstrated that upstream stimulating

factors (USFs), USF1 and USF2, served as pivotal tran-

scriptional regulators of the SLC22A1 gene via an E-box

(CAGTG) which is located in the SLC22A1 core promoter

region with abundant transcriptional factors, increasing the

HNF-4α-mediated transactivation of SLC22A1 gene in

another way.72 In a hepatocyte-derived cell lines model,

the HNF-4α-mediated transactivation of SLC22A1 gene

was repressed by ligand-mediated activation of PXR via

competing for SRC-1 with HNF-4α and USFs, for exam-

ple, rifampicin, a ligand of PXR, can activate PXR to

down-regulate SLC22A1 gene indirectly (Figure 1B).73

This competition is called squelching.74,75 In addition,

Rulcova et al showed that glucocorticoids could transacti-

vate SLC22A1 gene via up-regulating HNF-4α (Figure

1C).76 Moreover, there are also additional transcription

factors, such as CCAAT/C/EBP -α, -β, and -3γ, which

generate a special effect on the transcription regulation

of hepatic drug transporters.77,78

Ciarimboli et al established two different OCT1 expres-

sion systems, hOCT1-transfected Chinese hamster ovary

cell line (CHO-K1) and human embryonic kidney cortex

cells (HEK293-cells), to investigate the regulation mechan-

ism of OCT1 protein function.42 It has been shown that

there are diverse intracellular signaling pathways which,

together, regulate the function of OCT1. For example,

OCT1 is negatively regulated by activation of PKA and

endogenously positively regulated by the Ca2+/CaM com-

plex, the Ca2+/CaM-dependent CaMKⅡ by PKA, and

p56lck tyrosine kinase. Additionally, the result demonstrated

that OCT1 defers in the same regulatory signaling pathway

in different expression systems and also showed that the

activation or inhibition of specific regulatory patterns and

different expression systems collectively influences sub-

strate affinities to a greater or lesser degree.42,79

OCT1 and development and
progression of HCC
There are big discrepancies of OCT1 expression between

hepatic tumor cell lines and healthy human hepatocytes.

Heise et al first described the expression profiles of OCTs

in a bigger series of human HCC, and the analysis of

experimental data indicated that HCC patients with low

expression of OCT1 usually progress to further advanced

HCC stage and have worse survival than those with rela-

tively high expression of OCT1.62 Schaeffeler et al

demonstrated that OCT1 expression in HCC is signifi-

cantly inversely correlated with expression of the tumor

proliferation marker MIB1/Ki-67,56 indicating that OCT1

inhibits tumor proliferation via certain pathways. Previous

studies also showed that MIB1/Ki-67 expression was

decreased in diethylnitrosamine-treated JNK1−/- knockout

mice80 and that the high activation of JNK1 in HCC

tissues is related to the reduction of OCT1 mRNA expres-

sion and worse prognosis.81 In addition, the study from

Lautem et al also found that the expression of OCT1 was

down-regulated in patients with cholangiocellular carci-

noma, which was closely related to larger tumor sizes or

advanced tumor stage and a poorer overall patient

survival.82

The fundamental mechanisms accounting for the

reduced OCT1 expression in HCC tissues are still not

understood completely. The study from Schaeffeler et al

showed that DNA methylation of OCT1 is associated with

down-regulation of OCT1 in HCC.56 Several studies dis-

cussed the reasons of abnormal DNA methylation level in

HCC. Lambert et al demonstrated that the methylation state

in defined genes in HCC is affected by alcohol intake or

viral infection, therefore inducing hepatocarcinogenesis.83

Even though the understanding of the reduced expression of

OCT1 in hepatic malignant cells is still not enough and the

specific causes of aberrant DNA methylation may need to

be elucidated further, undoubtedly, we can regard DNA

methylation index of OCT1 as a novel molecular marker

for diagnosing HCC at the early stage, and it may provide a

new therapeutic method, such as pretreatment of demethy-

lation, for patients with HCC.56

OCT1 and HCC treatment
Traditional chemotherapeutic drugs for HCC fail to obtain

a relevant survival benefit because of marked chemo-

resistance.84,85 Sorafenib is one of the most effective

drugs to conquer chemo-resistance in primary HCC.37

Although sorafenib is a pretty effective antitumor drug in

HCC treatment, it results in different effects in clinical

therapy. Honestly, sorafenib treatment is far below optimal

expectation by reason of a pronounced refractoriness that

liver tumors possess originally to sorafenib.86 Up to now,

many studies have been conducted to investigate the fun-

damental mechanisms of the response to sorafenib and
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trials have been carried out to surmount the obtainment of

this drug resistance.

The heterogeneity of antitumoral efficacies of sarafenib

in different patients, and the drug-related adverse side

effects of sorafenib treatment make it essential to recog-

nize biomarkers either in tumor tissue or peripheral blood

to predict therapeutic outcomes of patients in individual

treatment schemes.87 Phorbolmyristate acetate-induced

phosphorylation of ERK has been considered as a blood

biomarker88 and in addition, the level of pERK expression

was identified as an ideal intratumoral marker of drug

response.89 Not only the presence of the molecular targets

of sorafenib in hepatic tumors, but also the expression of

various drug transporters displays a putative indicator

of response to treatment. The specific mechanism of action

of sorafenib is determined by access to intracellular tar-

gets, which may be affected by alteration of the expression

and activity of transporters responsible for its uptake.37,87

OCT1 plays a key role in the uptake of sorafenib in

hepatic cells, which has encouraged numerous teams to
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Figure 1 Schemes of pathways/processes affecting OCT1 expression.

Notes: (A) The SLC22A1 gene tends to be suppressed by CDCA via interference of small heterodimer partner (SHP), which can co-repress HNF-4α transactivation.

(B) PXR is activated by rifampicin to compete for SRC-1 with HNF-4α, and thus represses the HNF-4α-mediated transactivation of SLC22A1 gene. (C) The HNF-4α-
mediated transactivation of SLC22A1 gene is activated by glucocorticoids binding glucocorticoids receptor via up-regulating HNF-4α.
Abbreviation: CDCA, chenodeoxycholic acid.

Dovepress Li et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
6017

http://www.dovepress.com
http://www.dovepress.com


study the availability of OCT1 expression as a useful

biomarker for response to sorafenib therapy for

HCC.25,37,90 Grimm et al reported that intratumoral

OCT1 mRNA expression probably played a promising

role as a prognostic biomarker for HCC patients receiving

sorafenib treatment.90

Substrates mediated by OCT1 are endogenous and exo-

genous organic cations, involving drugs like metformin,

anthracyclines, platinum derivatives, and tyrosine kinase

inhibitors.22,38,91,92 Generally, the drug-relevant transporter

determines the response to the drug via affecting uptake of

the drug in hepatocytes, for example, metformin is influ-

enced by alterations in OCT1 expression and by the pre-

sence of impaired functional variants.35 And there is a

similar relationship between OCT1 genic mutations and a

lower response to imatinib in patients with chronic myeloid

leukemia.93 Does this relationship still exist between OCT1

and sorafenib? Herraez et al reported that two novel identi-

fied variants of OCT1, R61S fs*10 and C88A fs*16, which

encode truncated proteins unable to get to the plasma mem-

brane, were expressed in HCC. Both the presence of less

functional variants and down-regulated expression of OCT1

together, probably significantly affected the uptake and

response of these tumors to sorafenib.37 A further experi-

ment from Geier et al found that there was no difference in

sorafenib response in HCC tissues with and without OCT1

expression, but when considering OCT1 expression level at

the plasma membrane of HCC cells, a pronounced better

survival was presented in patients with high expression

level at the plasma membrane.87 They thus concluded that

the expression of OCT1 at the plasma membrane is more

significantly associated with a beneficial response in HCC

patients treated with sorafenib rather than overall OCT1

expression. Thus, based on the views of Herraezetal and

Geieretal, we easily see that variants and expression of

OCT1 are possibly not the root reasons contributing to

reduced sensitivity to sorafenib, and the effective expression

of OCT1 at the plasma membrane may determine the

response to sorafenib in patients with HCC. Considering

that a large proportion of synthesized OCT1 mRNA is

constituted by non-functional aberrant variants, Geieretal

investigated the association between OCT1 and HCC at

the level of proteins in order to reflect OCT1 function

better.87 And another surprising finding of this research

was that expression of OCT1 protein at the plasma mem-

brane did not correlate with tumor stage and previous treat-

ment with transcatheter arterial chemoembolization or

radiotherapy. Interestingly, Ruba et al recently showed that

epigenetic factors and highly aberrant splicing, including

miRNA-mediated mRNA decay and hypermethylation,

can partly account for the low expression of OCT1 in

HCC, and the down-regulated OCT1 triggers impaired sor-

afenib uptake and cytotoxic events.94 Also, Lozano et al

found a similar result in CCA, which showed that promoter

hypermethylation, aberrant splicing, and miRNA-mediated

degradation resulted in reduction of OCT1 mRNA and

sorafenib uptake/response in CCA.95 These discoveries

also shed new light on the relationship among OCT1,

sorafenib, and HCC. Based on these reports, OCT1 truly

plays a critical role in response to sorafenib in HCC patients

and is deeply involved in the development of sorafenib

chemo-resistance.

Conclusion
In this review, we focused on research progress of OCT1

and the relationship between OCT1 and HCC in the last 2

decades. A number of achievements have been made in the

field of regulatory mechanisms of OCT1 in healthy liver.

The specific roles of OCT1 in the occurrence and progres-

sion of HCC are still elusive, and the precise molecular

mechanisms of down-regulated OCT1 expression in HCC

still need further investigation. However, we can confirm

that OCT1-related functions are profound and novel tar-

gets for HCC research.

From existing studies of OCT1, it has been shown that

OCT1 variant is an essential part of OCT1 subset, and we

predict that perhaps a variant of OCT1 plays a critical role

in many fields, including physiological and pathological

conditions. There is still a great number of functions and

presence of OCT1 variants to be found in the future, and

further studies are urgently needed to comprehensively

describe more mechanisms, epigenetic factors, transcrip-

tional, and post-transcriptional factors regulating OCT1

expression and function in HCC.

OCT1 is involved in the formation of sorafenib resis-

tance as well as in the uptake of sorafenib in HCC cells.

Further studies are necessary to understand and solve this

contradiction between OCT1 and sorafenib. On one hand,

maybe we could look for the breakthrough at the level of

amino acid residues of OCT1 variants, since the changes

in these residues play a key role in the appearance of

dysfunctional OCT1 variants, which dramatically affected

the response of HCC patients to sorafenib. On the other

hand, whether OCT1 has any connection with other var-

ious signaling pathways of developing sorafenib resis-

tance, is also worth being considered.
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