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Tuning the electrical conductance of 
metalloporphyrin supramolecular 
wires
Mohammed Noori1,2, Albert C. Aragonès3,4,5, Giuseppe Di Palma6, Nadim Darwish3,4, 
Steven W. D. Bailey1, Qusiy Al-Galiby1,7, Iain Grace1, David B. Amabilino8, 
Arántzazu González-Campo6, Ismael Díez-Pérez3,4,5 & Colin J. Lambert1

In contrast with conventional single-molecule junctions, in which the current flows parallel to the long 
axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin 
(M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current 
flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements 
combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane 
(CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-
in-plane (CIP) counterparts, ranging from 2.10−2 G0 for Ni-DPP up to 8.10−2 G0 for Zn-DPP. The metal 
ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated 
electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding 
energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore 
when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-
conductance CPP single-molecule devices.

Porphyrins offer a variety of desirable features as building blocks for future molecular-scale devices including 
their highly-conjugated structure, rigid planar geometry, high chemical stability and their ability to form metal-
loporphyrins by coordinating metal ions in the center of their macrocyclic and aromatic skeleton1–5. Following 
early work, which established their chemical and biological properties6–9, porphyrins have become a focus of 
interest both for experimental and theoretical investigations of molecular electronics10–12 and for the design of 
complexes using supramolecular chemistry, leading to a diverse array of structures available for nano-scale build-
ing blocks13. This unique combination of properties is exploited in nature, where for example metalloporphyrins 
acts as charge carriers in naturally occurring processes such as photosynthesis14–17 and in the respiratory chain18,19. 
In many of these processes, the plane of the porphyrin skeleton is stacked perpendicular to the direction of charge 
transport, whereas previous studies10–12 address conductance with the plane of the porphyrin skeleton aligned 
parallel to the direction of charge transport. In the latter “current in plane” (CIP) up-right configuration (Fig. 1a), 
the porphyrin skeleton was contacted to gold electrodes via thiol or pyridyl anchor groups and the electrical con-
ductance was found to be low10,20 (of order nanosiemens). For the purpose of developing future single-molecule 
electronics and thermoelectrics, it is highly desirable to increase the electrical conductance, since this can lead 
to higher switching speeds and reduce the relative effect of parasitic phonons in thermoelectric devices. In what 
follows we develop a strategy for increasing the electrical conductance of porphyrin-based single-molecule wires 
by investigating their conductance with the current perpendicular to the plane (CPP) (Fig. 1b). We report a joint 
experimental and theoretical study of CPP conductance trends and binding configurations across a family of 
5,15-diphenylporphyrins (DPPs), with a centrally-coordinated divalent metal ion of either Co(II), Ni, Cu or Zn 
and demonstrate that their conductance and stability can be tuned through the choice of metal atom. This is an 
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extension of previous experimental measurement21 which showed that the CPP conductance of the flat-laying 
sandwiches of a Co(II)-DPP shows a large conductance value of three orders of magnitude higher than the meas-
ured in-plane conductance10.

Results and Discussion
Binding energies and relaxed configurations.  To obtain theoretical results for binding energies and 
relaxed configurations, spin-polarised DFT calculations were carried out using SIESTA22 with the local density 
functional approximation parameterised by Ceperley and Adler23. Initially the geometry of each isolated por-
phyrin was optimised to a force tolerance less than 20 meV/Å using an extended double zeta polarised basis set 
of pseudo atomic orbitals for all atoms, and a mesh cutoff of 200 Ry to define the real space grid. Next, the bind-
ing energy EBof a single pyridine-4-yl-methanol (PY) with the porphyrin was calculated using the counterpoise 
method24,25 (see SI). For all four metallo-porphyrins, we find that the energetically-most-favorable configuration 
occurs when the PY nitrogen atoms are located above the metal atom of the porphyrin. For this most-favorable 
position of the PY nitrogen atoms, the results for all four binding energies and the corresponding nitrogen-metal 
distances are shown in Table 1.

Conductance measurements.  The Co-DPP and Zn-DPP molecules were synthesized according to the 
procedure described by Song et al.26. The synthesis of Cu-DPP and Ni-DPP described by26 was modified by 
changing the solvent and reaction times (See SI for experimental details). PY was synthesized as described previ-
ously by Puigmarti-Luis et al.27 and the single-molecule transport measurements were conducted following the 
procedure described in ref. 21.

Briefly, an Au(111) surface and a STM Au-electrode tip were both functionalized with ∼​1 mM PY solution 
in ethanol and incubated for 24 h (See Experiments SI for further details). Both electrodes were mounted onto 
the STM cell and the cell was filled with mesitylene, an inert, non-polar organic solvent, in which the target 
M(II)-porphyrin is solubilized in nano-molar concentrations25. Details about the STM-break junction (STM-BJ) 
measurements can be found elsewhere (see SI). Briefly, the STM-BJ experiments consist of repeatedly approach-
ing and retracting the two pyridyl-functionalized electrodes, while monitoring the tunneling current flowing 
through the electrode-electrode STM junction under a low applied voltage bias (±​10 and ±​25 mV). ~5000 cur-
rent traces were collected and 10–15% of them were used to build a conductance 1D histogram for each molecule, 

Figure 1.  (a) Porphyrin skeleton aligned parallel to the direction of charge transport “current in plane” 
(CIP) up-right configuration and (b) the optimised sandwich configuration of DPP junction with the current 
perpendicular to the plane (CPP).

Metal d Å EB eV

Zn 2.06 −​1.21

Cu 2.17 −​0.45

Co 1.97 −​1.20

Ni 2.17 −​0.17

Table 1.   Shows optimum distance (d), and binding energies EB for all four metalloporphyrins.
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examples of which are shown in Fig. 2 insets. As control experiments, single-molecule conductance experiments 
in the absence of porphyrin molecules and in the presence of empty DPP were performed under the same exper-
imental conditions (see details in Supporting Information). The absence of porphyrin molecules resulted in the 
lack of molecular junction events and the DPP showed no high conductance peak in the histograms. The fit 
of the observed high conductance peak in Fig. 2 histogram was used to extract a most-probable value of the 
single-molecule conductance for the flat-stacked metalloporphyrin21. The observed two low conductance peaks 
are commonly-observed for all porphyrins and they have been ascribed to molecular wires with more extended 
(tilted) conformations of the porphyrin bridging the gap at longer electrode-electrode separations25. The fact that 
the empty DDP uniquely displays the low conductance features is evidence that such conformations arise from 
the interaction between the PY and the porphyrin ring moieties. The conductance values extracted from Gaussian 
fits to the conductance histograms for each metalloporphyrin (Fig. 2) has been also supported by a static blinking  
STM approach, where the spontaneous formation of the porphyrin bridge is attained while holding a fixed 
electrode-electrode distance (see SI for more details on the blinking method).

Conductance calculations.  To model an example of a blinking experiment in which the electrodes are 
held at a fixed separation, we fixed the PY-functionalised gold electrodes at separation corresponding to a 4.6 Å 
distance between the terminal N atoms of the PYs, as shown in Fig. 3. This distance is chosen to be slightly larger 
than the highest value of the distances d in table 1, such that all molecules can be accommodated within the 
electrode gap. We then allowed the porphyrin molecule to bind to the lower PY, with a N-to-metal-atom distance 
of d (see Table 1). The PY of the upper gold electrode was therefore more weakly bound to the metal atom of the 
porphyrin, as would be the case in a blinking experiment.

Before computing transport properties, we first examined the spin state of the metalloporphyrins. Numerous stud-
ies have examined the effect of the axial ligand on the redox28,29 and photovoltaic properties of metalloporphyrins30.  
Nickel porphyrin with coordinating axial ligands are paramaganetic (S =​ 1) in contrast to four-coordinate species 
(S =​ 0)31,32. Therefore, to accurately calculate the transport properties of these molecules spin polarized transport 
calculations must be carried out. We find in the case of the zinc-metalloporphyrin were there is no spin depend-
ence the up spin and down spin transmission curves are almost identical (See Fig. S1).

The conductance was then calculated using the Gollum quantum transport code33, which utilizes the 
mean-field Hamiltonians provided by DFT. Starting from the SIESTA Hamiltonian, we use Gollum to calculate 
the transmission coefficient Tσ(E), describing electrons of energy E, spin σ =​ [↑​, ↓​] passing from one electrode 
to the other via the porphyrin, from which the finite-temperature electrical conductance G is obtained using the 
Landauer formula

Figure 2.  (a,b,c and d) show the semi-log conductance histograms for the experimental STM single-molecule 
transport experiment for the Co-DPP, Zn-DPP, Cu-DPP and Ni-DPP systems, respectively. The inset shows 
representative single current decay curves used to build the conductance histograms. The applied BIAS was set 
to +​25 mV. The sharp increase in counts in both left and right sides of the histograms correspond to the current 
amplifier baseline and saturation respectively.
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Figure 3.  Scheme of contact of pyridine anchor above the porphyrin molecule. The lower PY nitrogen is a 
distance d from the metal atoms, while the the upper PY nitrogen is placed a distance 4.6 Å above the lower PY 
nitrogen.

Figure 4.  The total transmission coefficient as a function of energy for (a) Zn-DPP, (b) Cu-DDP, (c) Co-DPP 
and (d) Ni-DDP. Each PY-porphyrin is in its relaxed configuration, with the metal atom a distance d from the N 
of the lower PY. The upper PY-functionalised gold electrode was then positioned such that distance between the 
upper and lower PY nitrogens was fixed at 4.6 Å.
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Figure 4 shows the total transmission coefficients as a function of energy for Zn-DPP, Cu-DPP, Co-DPP and 
Ni-DPP respectively. The corresponding room-temperature conductances versus Fermi energy EF are shown in 
Fig. 5a. Since the Fermi energy EF

DFTpredicted by DFT is not necessarily accurate34, to compare theory with 
experiment, we treat the Fermi energy EF as a single free parameter, chosen to determine four conductances, 
which are closest to the experimental trend. Figure 5b shows that the experimentally-measured order 
Ni <​ Co <​ Cu <​ Zn is obtained by choosing a Fermi energy − = − .E E eV0 03F F

DFT .
Figure 5b shows that the chosen junction separation captures the experimental ordering of the Ni-DPP, 

Co-DPP, Cu-DPP and Zn-DPP. Furthermore, the computed magnitudes of the conductances are of the same 
order as the measured values and these conductances are far higher than those measured for CIP junctions, which 
are typically less than 10−4 G0.

Conclusion
We have investigated the electrical conductance with the current perpendicular to the plane (CPP) of supramo-
lecular metalloporphyrin wires. Both theory and experiment reveal that the variation in conductance across this 
family of molecules increases in the order Ni <​ Co <​ Cu <​ Zn. Experimentally the conductance of Zn-DPP is 
found to be a factor of 4 greater than that of Ni-DPP. Crucially the CPP conductances are three orders of magni-
tude greater than their CIP counterparts. For example as reported in [10] for Zn-porphyrins, the CIP conduct-
ance is 2.7·10−5 G0, which is more than three orders of magnitude lower than our measured CPP conductance. 
Similarly in [2] the reported CIP conductances for Cu, Co and Ni porphyrins were 3.6 10−5 G0, 2.5 10−5 G0 and 1.9 
10−5 G0 respectively. This supramolecularly-wired arrangement with the aromatic plane perpendicular to the cur-
rent is therefore stable at room temperature and provides a unique family of high-conductance molecular wires, 
whose electrical conductances and binding energies can be tuned by metal substitution. From the point of view of 
stability, we find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP 
and Cu-DPP and therefore in view of its higher conductance, we identify Zn-DPP as the favoured candidate for 
high-conductance CPP single-molecule devices.
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