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Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by incomplete vascularization/ab-
normality of peripheral retina. Four of the identified disease-causing genes of FEVR were NDP, FZD4, LRP5, and TSPAN12, the
protein coded by which were the components of the Norrin/β-catenin signal pathway. In this review, we summarized and
discussed the spectrum of mutations involving these four genes. By the end of 2017, the number of FEVR causing mutations
reported for NDP, FZD4, LRP5, and TSPAN12 was, respectively, 26, 121, 58, and 40. ,ree most frequently reported mutations
were c. 362G>A (p.R121Q) of NDP, c. 313A>G (p.M105V), and c.1282_1285delGACA (p.D428SfsX2) of FZD4. Mutations have
a tendency to cluster in some “hotspots” domains which may be responsible for protein interactions.

1. Introduction

Familial exudative vitreoretinopathy (FEVR), described first
by Criswick and Schepens in 1969 [1], is a hereditary ocular
disorder characterized by incomplete vascularization/ab-
normality of peripheral retina. Incomplete and aberrant
vascularization leads to various complications, including
retinal neovascularization and exudates, retinal fold and
detachments, vitreous hemorrhage, and macular ectopia,
ultimately leading to total blindness.

FEVR is genetically heterogeneous and can be inherited
as a dominant, recessive, or X-linked trait. ,e dominant
form is the most common mode of inheritance. So far,
mutations in at least 9 genes have been attributed to the
development of FEVR including NDP, FZD4, LRP5,

TSPAN12, ZNF408, KIF11, RCBTB1, CTNNB1, and JAG1
[2–10]. ,e proteins encoded by the first four genes are
cooperative in the Norrin/β-catenin signaling pathway (also
named as Norrin/Frizzled-4 pathway) and showed intense
interaction with each other [11]. So, this review specially
focused on the mutation spectrums of these genes.

,e mechanisms of NDP, FZD4, LRP5, and TSPAN12 in
retinal vascular had been intensively investigated during the
past years. ,e Ndp knockout mouse exhibited superficial
retinal vasculature development delay and was unable to
form deep retinal vasculature [12]. Similarly, FZD4 played a
central role in vascular development in the eye and ear.
Knockout of Fz4 has been shown to affect vascular devel-
opment both in retinal and in inner ear and cause retinal
stress [13, 14]. Compared with Fzd4 or Ndp knockout mice,

mailto:oivy@163.com
https://orcid.org/0000-0003-1725-7550
https://orcid.org/0000-0003-0997-0743
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Lrp5 knockout mice showed many milder vascular defects,
in which attenuated retinal vessels and capillaries lacking
lumen structure was observed [15, 16]. Afterwards, Tspan12
was verified to cause vascular defect and affect neural cells
through association with Norrin/β-catenin but not Wnt/
β-catenin signaling. Formation of microaneurisms, aberrant
fenestration, and delayed hyaloid vessel regression was re-
ported in Tspan12 knockout mice [11].

In the Norrin/β-catenin pathway, Norrin (coded by
NDP) worked as a ligand, while Frizzled-4 (FZD4) acted as
the receptor of Norrin, in concert with low-density lipo-
protein receptor-related protein-5 (LRP5) as coreceptor.
Norrin binds to FZD4 and its coreceptor LRP5, forming a
ternary complex. Together with the auxiliary component
tetraspanin-12 (TSPAN12), this complex initiates down-
stream β-catenin signaling. Specifically, FZD4-bound Di-
shevelled and phosphorylated LRP5 recruited Axin to the
plasma membrane, resulting in the suppression of β-catenin
phosphorylation/degradation. ,e cytoplasmic levels of
β-catenin consequently increased. Subsequently, β-catenin
was translocated to the nucleus where it interacts with the
T-cell factor/lymphoid enhancing factor, family of tran-
scription factors, to initiate RNA transcription and elon-
gation, as shown in Figure 1 [17–19]. ,is signaling pathway
shared many similarities with the canonical Wnt/β-catenin
pathway except that Norrin substituted Wnt as the ligand
and traspanin-12 had been linked to the Norrin/β-catenin
signaling pathway. Norrin/Frizzled-4 signaling plays an
important role in retinal vascular growth, remodeling, and
maintenance [20].

Prior to this review, a great many mutations in NDP,
FZD4, LRP5, and TSPAN12 had been reported by different
study groups from different countries as disease-causing
mutation of FEVR. Although most of the mutations were
documented for once by one study group, some mutations
seemed to be more common than others. Here, we presented
the comprehensive list of currently known mutations in
NDP, FZD4, LRP5, and TSPAN12 associated with FEVR and
discussed their coding consequences. ,is aims in facili-
tating the construction of a complete spectrum of mutations
that occur in the above four genes. We discuss about each
gene mutation individually and then highlight how they
disturb the protein interactions.

2. Materials and Methods

,e current review article aimed to analyze the studies on
FEVR caused by NDP, FZD4, LRP5, and TSPAN12 gene
mutations to find the spectrum of these four genes. For this
review study, an extensive search in PubMed and Web of
Science up to December 30, 2017, was conducted in-
dependently by two individuals (Tong and Zhu) using the
following search terms: “Familial exudative vitreoretinop-
athy” and “mutation”. To avoid losing relevant information,
no limitations were set in the search. Furthermore, the
related studies and the references of literatures were man-
ually screened for additional potential eligible studies.

Mutations in NDP can result in Norrie disease and
X-linked exudative vitreoretinopathy. Some earlier reports

investigated Norrie disease (ND) and FEVR together. In
addition, loss-of-function mutations in the LRP5 gene either
cause osteoporosis pseudoglioma syndrome (OPPG) or
FEVR depending on the functional severity of mutation.
,ese distinct clinical entities share some common patho-
logical features such as abnormal retinal blood vessel growth
that may result in retinal detachment. So, we read the rel-
evant articles of the candidates carefully to make sure the
probands on whom the mutations were found were defi-
nitely diagnosed as FEVR. ,en, we recorded the mutations
related to FEVR and excluded those caused ND and OPPG.
A total of 433 potentially relevant articles were identified, but
only 41 studies involving FEVR patients caused by NDP,
FZD4, LRP5, and TSPAN12 gene mutations were included
in this review.

3. Results

3.1. NDP Mutations and Norrin Structure. ,e NDP gene
locus mapped to chromosome Xp11.4 and comprised three
exons. However, the first exon corresponds to the un-
translated region of the gene that has regulatory functions,
and only exons 2 and 3 of encode a secreted protein of 133
amino acids called Norrin or Norrie disease protein. Norrin
consists of two major parts: a signal peptide at the amino-
terminus of the protein that directs its localization and a
region containing a typical motif of six cystines forming a
cystine-knot. ,e cystine-knot motif is highly conserved in
many growth factors as transforming growth factor-β, hu-
man chorionic gonadotropin, nerve growth factor, and
platelet derived growth factor [21]. Cystine residues and
their disulfide bonds in the cystine-knot play important
structural and functional roles. Among 10 Frizzled family
members, Norrin specifically binds to the transmembrane
FZD4 with high affinity, forming a Norrin/FZD4 complex
with LRP5 and TSPAN12 coreceptors to activate the Norrin/
β-catenin signaling pathway [22]. Norrin was also reported
to play a major role in controlling retinal vascular growth
and architecture both in the developing eye and in adult
vasculature.

Twenty-six nucleotide variants have been identified for
NDP in patients with FEVR. ,ese include 21 missense
changes, 4 deletions, and 1 insertion resulting frame shift
[2, 23–31] (Table 1 and Figure 2). Most of themutations were
found in single or only a few patients, while several mu-
tations are generally more common. By far, the most
prevalent mutation was c.362G>A (p.R121Q), distributed
in Spanish, Mexican, Indian, Chinese, and Italian. It is
noteworthy that although probands containing
c.11_12delAT (p.H4RfsX21), c.170C>G (p.S57X), and
c.310A>C (p.K104Q) were definitely diagnosed as FEVR
following explicit criteria, these three mutations were also
reported to cause Norrie disease by other researches
[28, 32, 33].,e ocular features and retinal changes observed
in Norrie disease are similar to those observed in cases of
FEVR. Not all the Norrie disease patients have mental re-
tardation and develop a progressive sensorineural hearing
loss; it is really difficult to distinguish Norrie disease from
FEVR.
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It was demonstrated from the three-dimensional
structure of Norrin that two-monomer Norrins formed a
homodimer in the crystal. ,e Norrin monomer contained
exclusive β strands with two β-hairpins on one side and one
β-hairpin on the other side. Crystal structures of Norrin in
complex with the extracellular domain of FZD4 showed that
two β-hairpins in Norrin (β1-β2 and β5-β6) interacted with
three loops in FZD4 cystine-rich domain (FZD4-CRD)
[38, 39]. ,ere were 19 mutations located in domains from
C39 to C65 and C96 to C126, which covered two β-hairpins
(β1-β2 and β5-β6) and loops between them, namely, 73% of
the mutations (19/26) concentrated in the interacting do-
mains with FZD4-CRD.

Specifically, 9 mutations were located in the Norrin
dimer interface which was formed from β2 and β4 sheets of
one monomer and β2′ of another monomer (Table 1). ,ree
mutations were reported from the cystine-knot motif, one of
which (C65W) obviously impaired intermolecular disulfide
bond-forming. Five mutations disturbed the hydrogen
bonds or hydrophobic contacts between Norrin and FZD4
CRD in the Norrin-FZD4 CRD interface [38, 40]. Four
mutations clustered on the edge of the Norrin molecule in
the β1-β2 and β3-β4 loop regions were inferred as LRP5
binding sites because they did not affect Fz4 binding yet
reduced the ability of Norrin to activate the TCF reporter
[39]. ,e residues in the interaction interface are well de-
fined and overlap with disease-associated mutations inNDP.
,e level of signaling activity of K104Q, R121Q, and L124F
was between 20% and 80% of the wide-type Norrin, sug-
gesting that even a modest decrement in Norrin/Fz4 sig-
naling may have a significant phenotypic effect in humans
[14, 41]. It is of no surprise that the mutations located in β1-

β2 and β5-β6 obstructed the formation of two β-hairpins and
the interactions between Norrin and FZD4.

3.2. FZD4 Mutations and FZD4-CRD Structure. ,e FZD4
gene is located on chromosome 11q14.2, and its mRNA
consists of two exons coding for 537 amino acid protein
called FZD4 or Frizzled-4 protein. FZD4 acted as the re-
ceptor for Wnt and Norrin along with LRP5, which has a
pivotal role in various cellular processes including cell fate
determination, control of cell polarity, and malignant
transformation. ,e FZD4 contains a ∼120-residue N-ter-
minal extracellular cystine-rich domain(CRD), seven helix
transmembrane domains, three extracellular and three in-
tracellular loops, and a C terminal cytoplasmic domain
[42, 43].,e cystine-rich domain is indispensable toWnts or
Norrin and is conserved among Frizzled family members
[22, 39]. ,e FZD4 carboxyl cytoplasmic region contains
juxtamembrane KTXXXW motif which is responsible for
association with Dishevelled to activate downstream sig-
naling [44, 45].

In this update, we summarized a total of 121 mutations
already reported in patients with FEVR in the literatures
consisting of 70missense mutations, 19 nonsense mutations,
and 30 insertions or deletions that lead to either frame shifts
or in-frame deletions; a single base change resulted in 2
amino acids extension and a whole-gene deletion
[7, 24, 28, 29, 46–71] (Table 2 and Figure 3). No splice
mutations have been reported for FZD4, and the mutations
seem to cluster in two specific “hotspots”. Although the
mutations span in whole FZD4 gene, 49% (59 of 121 mu-
tations) and 13% (16 of 121 mutations) of them have a

LRP4

TSPAN12

Norrin

FZD4

Dvl Axin

βCat
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βCat

βCat TCF
LEF

Figure 1: A schematic of the Norrin/β-catenin signal pathway. When Norrin was bond to the receptor complex FZD4/LRP5/TSPAN12,
Dishevelled and Axin would be recruited to FZD5 and LRP5. Consequently, β-catenin escaped from the degradation complex and entered
nucleus to initiate gene transcription collaborated with T-cell factor/lymphoid-enhancing factor.
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Table 1: Spectrum of NDP gene mutations among patients with familial exudative vitreoretinopathy.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the amino

residue Mutant phenotypes Country
of origin

Chen et al.
[2] 30 1 c.370C>T p.L124F Norrin dimer interface Retina detached UK

Riveiro-
Alvarez
et al. [30]

45 1 c.362G>A p.R121Q Norrin dimer interface Congenital blindness,
phthisis bulbi Spain

Dickinson
et al. [23] 13 1 c.307C>G p.L103V Norrin-FZD4 interface Not mentioned Australia

Hiroyuki
et al. [34] 62 3

c.53T>A p.I18K Signal domain
Peripheral

avascularization,
neovascularization

Japanc.162G>C p.K54N Deductive Norrin-LRP5
interface

Retinal detachment and
macular traction with

temporal
avascularization

c.344G>T p.R115L Deductive Norrin-LRP5
interface Retinal detachment

Pelcastre
et al. [35] 127 3 c.361C>T p.R121W Norrin dimer interface On-perfusion in

peripheral retina Mexico
c.362G>A p.R121Q Norrin dimer interface Retinal detachment

Musada
et al. [36] 110 8

c.11_12delAT p.H4RfsX21 Signal domain Bilateral total retinal
detachment

India

c.69delC p.D23EfsX9 Signal domain Pigmentation and
vitreoretinal traction

c.142_145delATCA p.I48VfsX55 Premature termination Bilateral leukocoria and
total retinal detachment

c.148C>G p.H50D Deductive Norrin-LRP5
interface

Straightening of the
blood vessel, macular

dragging

c.170C>G p.S57X Norrin-FZD4 interface Retinal detachments and
retrolental membranes

c.338G>A p.G113D Near deductive Norrin-
LRP5 interface

Avascular peripheral
retina, straightening of
the blood vessels, and dye

leakage

c.362G>A p.R121Q Norrin dimer interface Retinal detachments with
retrolental membranes

c.376T>C p.C126R Norrin dimer interface Bilateral total retinal
detachment

Liu Y. L.
et al. [37] 40 1 c.310A>C p.K104Q Norrin-FZD4 interface Weak eyesight, retinal

vascular abnormalities China

Tang et al.
[31] 100 5

c.196G>A p.E66K Cystine-knot motif Macular dragging

China

c.203A>C p.H68P Cystine-knot motif Ectopic macular

c.281A>T p.H94L Norrin dimer interface Peripheral avascular
zone and retinal exudates

c.362G>A p.R121Q Norrin dimer interface Retinal fold, retinal
detachment

c.334delG p.G113AfsX149 Premature termination Bilateral tractional
retinal detachment

Iarossi et al.
[24] 8 2

c.362G>A p.R121Q Norrin dimer interface Falciform fold, partial
traction Italian

c.313G>C p.A105F Norrin-FZD4 interface Macula-involving retinal
detachment

Rao et al.
[29] 31 3

c.127C>A p.H43N Norrin-FZD4 interface Complete retinal
detachment

Chinac.52_53ins32bp p.S29fs Premature termination Complete retinal
detachment

c.195C>G p.C65W
Cystine-knot motif,

form disulfide bond with
C126

Complete retinal
detachment
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tendency to bunch in the N terminal extracellular domain
and C terminal intracellular domain, respectively.

,e 120-residue N-terminal extracellular cystine-rich
domain (CRD) domain, connected to the first trans-
membrane helix by a 50-amino-acid linker, was crucial to
ligand recognition. In the CRD domain, mutations at C45,
M105, and M157 were three most frequently reported
mutations, for 4, 9, and 4 times by different studies, re-
spectively. One of these mutations, C45Y, was found to
disrupt protein folding, resulting FZD4 being stuck in the
cytoplasm with no membrane location [71]. It was supposed
that the disulfide bond between Cys45 and Cys106 was
imperative to protein transportation and functional activity.
It was also visible from the crystal structure of FZD4-CRD
that five disulfide bridges (Cys45–Cys106, Cys53–Cys99,
Cys90–Cys128, Cys117–Cys158, and Cys121–Cys145) sta-
bilized the α helices [38].

Two crystal structures of Norrin/FZD4-CRD complex
and a FZD4 transmembrane domain had been registered in
the Protein Data Bank [38, 40, 70]. ,e structures showed
that one FZD4-CRD coupled a Norrin monomer with no
interactions between the two FZD4-CRDs. ,ree loops
between α helices were responsible for binding to the
β-hairpins in Norrin [38]. ,e C-terminal tail of FZD4-CRD
alsomade contribution to Norrin recognition. Residues V45,
M59, L61, and L124 of Norrin and F96, M105, I110, M157,
and M159 FZD4-CRD constituted a hydrophobic core at the
binding interface [40]. Based on this, it is speculated that
FEVR-related mutations at M105 and M157 may interrupt
the binding of Norrin to FZD4. Biophysical analysis of
Norrin and FZD4 demonstrated that the linker region of
FZD4 contributes to a high-affinity interaction with Norrin
and signaling [71]. Mutation C181Y in this domain not only
destroyed the disulfide bond but also interrupted the binding
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of Norrin. ,e FZD4 transmembrane domain structure
showed mutations in key positions (M309L, C450I, C507F,
and S508Y) of the ΔCRD-FZD4 structure which led to
aberrant downstream signaling. However, no disease-
causing mutation had been reported in abovementioned
four amino residuals.

,e FZD4-mediated membrane recruitment of the cy-
toplasmic effector Dishevelled is a critical step in Wnt/
β-catenin signaling. Considerable domains on FZD4 were
identified as critical sites for recruitment of Dishevelled. A
conserved motif (KTxxxW) located two amino acids after
the seventh transmembrane domain was firstly verified to be
crucial for membrane relocalization and phosphorylation of
Dishevelled [44, 45]. ,e interaction between FZD4 and
Dishevelled was further found to be pH- and charge-de-
pendent [72]. Several amino residuals in intracellular loops
1, 2, and 3 and the flanking region near to intracellular loop 3
were also important for the intracellular location of Di-
shevelled while the mutant impaired the binding of Di-
shevelled [73–77]. Research based on FZD6 also showed that
the linker domain, especially some conserved cystines, be-
tween the CRD domain and seven transmembrane core was
imperative for Dishevelled recruitment [78]. One potential
mechanism for FZD4 activation would be a Wnt/Norrin-
induced movement of the seventh transmembrane domain
to expose the key FZD4-Dishevelled interaction site [79].
Although 21% (26 of 121 mutations) of the mutations ag-
gregated in the third intracellular loop and C terminal in-
tracellular domain, it was not clear how the mutations affect
the interaction between FZD4 and Dishevelled.

3.3. LRP5 Mutations and LRP5/LRP6 Structure. LRP5 gene,
localized on human chromosome 11q13.2, consists of 23
exons and encodes 1615 amino acid single-pass trans-
membrane protein. LRP5 is a member of the low-density
lipoprotein receptor family and belongs to a subfamily
consisting of its mammalian homolog LRP6 and the Dro-
sophila protein arrow. LRP5 and LRP6 share 73% identity in
their extracellular domains. ,e LRP5/6 protein contains
three domains including an extracellular domain, one
transmembrane domain, and a cytoplasmic domain. ,e
LRP5/6 ectodomain contains four β-propeller motifs
(composed of six YWTD repeats) at the amino terminal end
that alternate with four epidermal growth factor- (EGF-) like
repeats (YWTD-EGF domain). ,ese are followed by three
low-density-lipoprotein receptor-like ligand-binding do-
mains. LRP5 can act synergistically with FZD4 or other
members of the Frizzled family to bind Wnts or Norrin,
forming a functional ligand-receptor complex that triggers
canonical Wnt/β-catenin or the Norrin/β-catenin signaling
pathway and induce the transcription of target genes sub-
sequently [80, 81].

,us far, 58 causative mutations identified in patients
with FEVR have been reported for LRP5, of which 46
mutations are missense changes, 6 frame shift mutations
resulted by deletions, insertion, and duplication, 2 introduce
premature stop codons, and 4 changes affect splicing
[28, 29, 31, 46, 56, 59, 69, 69, 82–85] (Table 3 and Figure 4).

Mutations located in first, second, and third YWTD-EGF
domain accounted for 12% (7 of 58 mutations), 38% (22 of
58 mutations), and 17% (10 of 58 mutations) of all the
mutations, respectively. ,us, it can be seen causative
mutations have a trend of clustering in the second YWTD-
EGF domain since this segment is composed of only about
300 amino acids, accounting for less than 20% of whole
LRP5 protein. Five of the included mutations (c.1828G>A,
c.731C>G, c.1042C>T, c.1058G>A, and c.1481G>A) were
also reported as causative mutation for OPPG [86], which
was characterized as blindness and decreased bone density.
But FEVR and OPPG were two different diseases because of
the distinct pathogenesis of visual loss. OPPG patients often
presented with blindness in the neonatal period and the
symptoms initiated during early childhood. Inconformity of
these results may was due to omission of bone density and
definite pathogenesis of visual loss.

In the crystal of the first two YWTD-EGF structure of
LRP6, each of the two EGF domains packs tightly against the
bottom surface of the preceding YWTD β-propellers [87].
Extensive interface interactions was observed between the
first β-propellers and second β-propellers, and the first EGF
domain also interacts with the second β-propellers, which
was critical to maintain the stability and orientation of
LRP6’s first two YWTD-EGF domains.

Early studies revealed that the interaction of LRP6 with
Wnt-Fzd4 was mediated by the first two propeller domains
[88], while other researchers pointed out that a single LRP6
might engage two different Wnt proteins simultaneously.
LRP5/6 binds to different Wnts via different regions or
multiple domains together [89]. ,e four β-propeller do-
mains in LRP5/6 share a relatively low identity among them,
indicating the functional differences among these YWTD
propellers. Ke et al. demonstrated that Norrin interacted
with β-propeller domain 1 (BP1) and β-propeller domain 2
(BP2) but not BP3-4 of LRP6. However, the binding sites of
Norrin with LRP5 remain unclear. From these two per-
spectives, the mutations accumulated in the second YWTD-
EGF domain may destroy the stable structure of first two
β-propellers or interrupted their interaction with Norrin or
Fzd4.

3.4. TSPAN12 Gene, Protein, and Spectrum. ,e TSPAN12
gene is located on chromosome 7q31 and encodes for a 305
amino acid transmembrane protein. TSPAN12 is a member
of the tetraspanin family that shares certain specific struc-
tural features that distinguishes them from other proteins
that pass the membrane four times. Both the N and C
terminals of TSPAN12 were inside the cell membrane, and it
has an unusually long C-terminal intracellular tail of ap-
proximately 60 amino acids. It contains four transmembrane
domains connected by two extracellular loops (ECL-1 and
ECL-2) and an intracellular loop. ,e ECL-1 is smaller
compared to the ECL-2.

TSPAN12 was discovered to associate selectively with
Norrin/β-catenin signaling but not with Wnt/β-catenin
signaling. It acted as the fourth important component of
Norrin/FZD4/LRP5 complex. Signaling reduction could be
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Table 3: Spectrum of LRP5 gene mutations among patients with familial exudative vitreoretinopathy.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the

amino residue Mutant phenotype Country of
origin

Toomes
et al. [68] 32 6

c.518C>T p.T173M First β-propeller
motif

Abnormal retinal
vasculature and
retinal fold

USA

c.3502T>C p.Y1168H

Low-density-
lipoprotein receptor-
like ligand binding

domains

Total retinal
detachment and
retinoschisis

c.3840delA p.R1270fsX1438 Premature
termination Not mentioned

c.4081T>G p.C1361G

Low-density-
lipoprotein receptor-
like ligand binding

domains

Classic features of
FEVR

c.4119_4120insC p.K1374fsX1549 Premature
termination Not mentioned

c.4488 + 2T>G Splice-donor
mutation

Premature
termination Undetermined

Qin et al.
[56] 56 9

c.433C>T p.L145F First β-propeller
motif

Bilateral retrolental
fibroplasias and total
retinal detachment

Japan

c.803_812del p.G268fsX272 Premature
termination

Bilateral dragged
macula

c.1330C>T p.R444C Second β-propeller
motif

Severe falciform
retinal fold

c.1564G>A p.A522T Second β-propeller
motif

Tractional retinal
detachment, severe
macular ectopia

along with peripheral
fibrovascular mass

c.1604C>T p.T535M Second β-propeller
motif

Bilateral retinal folds
followed by total
retinal detachment

c.1828G>A p.G610R Second epidermal
growth-like factor

Bilateral dragged
macula

c.1850T>G p.F617C Second epidermal
growth-like factor

Bilateral retinal folds
followed by total
retinal detachment

c.2392A>G p.T798A ,ird β-propeller
motif

Bilateral peripheral
avascular retinas

c.3361A>G p.N1121D Fourth β-propeller
motif

Unilateral falciform
retinal fold with
bilateral retinal
avascularization

Boonstra
et al. [46] 83 2

c.1532A>C p.D511A Second β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned Netherlands

c.2413C>T p.R805W ,ird β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned

Nikopoulos
et al. [28] 16 4

c.1321G>A p.E441K Second β-propeller
motif Not mentioned

Netherlands
c.2978G>A p.W993X

EGF-like domain
following the third
“β-propeller” module

Not mentioned

c.3758G>T p.C1253F
EGF-like domain
following the third
“β-propeller” module

Not mentioned

c.4489-1G>A Splice defect Not applicated Not mentioned
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Table 3: Continued.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the

amino residue Mutant phenotype Country of
origin

Yang et al.
[69] 49 6

c.891-892delTC p.R298LfxX2 Premature
termination

Retrolenticular
fibrotic mass, retinal

detachment,
microcornea, flat
anterior chamber

China

c.2484C>G p.I828M ,ird β-propeller
motif

Retrolenticular
fibrotic mass,

stretched ciliary
process

c.2626G>A p.G876S ,ird epidermal
growth like factor

Retrolenticular
fibrotic mass,

stretched ciliary
process

c.3361A>G p.N1121D Fourth β-propeller
motif

Temporal dragging of
optic disc,

retrolenticular
fibrotic mass

c.4025G>A p.R1342Q

Low-density-
lipoprotein receptor-
like ligand binding

domains

Microcornea,
retrolenticular
fibrotic mass,
avascular zone

c.4087G>A p.D1363N

Low-density-
lipoprotein receptor-
like ligand binding

domains

Increased branching
of peripheral vessels,

retrolenticular
fibrotic mass

Fei et al.
[82] 2 2

c.1264G>A p.A422T Second β-propeller
motif Not mentioned

China
c.1619T>C p.L540P Second epidermal

growth like factor Not mentioned

Seo et al.
[59] 51 4

c.731C>G p.T244R First β-propeller
motif 3A/2B stage FEVR

Korea

c.1330C>T p.R444C Second β-propeller
motif 2A stage FEVR

c.1833dupG p.C612VfsX25 Premature
termination 1B/4A stage FEVR

c.4098C>G p.D1366E

Low-density-
lipoprotein receptor-
like ligand binding

domains

3B stage FEVR

Zhang et al.
[85] 4 4

c.C1042T p.R348W First epidermal
growth-like factor Not mentioned

Chinac.G1141A p.D381N Second β-propeller
motif Not mentioned

c.C1870T p.R624W Second epidermal
growth-like factor Not mentioned

c.A4550G p.Y1517C Cytoplasmic tail Not mentioned

14 Journal of Ophthalmology



Table 3: Continued.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the

amino residue Mutant phenotype Country of
origin

Tang et al.
[31] 100 10

c.1058G>A p.R353Q First epidermal
growth-like factor

Ilateral
retrolenticular

fibrotic mass and
total retinal
detachment

China

c.1183C>T p.R395W Second β-propeller
motif Falciform retinal fold

c.1318A>T p.I440F Second β-propeller
motif Retinal fold

c.1582G>A p.E528K Second β-propeller
motif

Peripheral vascular
deficiencies

c.1942G>A p.V648I Second epidermal
growth-like factor

Rhegmatogenous
retinal detachment

c.2738G>T p.C913F ,ird epidermal
growth-like factor

Retinal fold and
macular dragging

c.4087G>C p.D1363H

Low-density-
lipoprotein receptor-
like ligand binding

domains

Falciform retinal fold

c.4733C>T p.T1578M Cytoplasmic tail Retinal fold

c.92-2A>C Splice site
mutation

Premature
termination

Ilateral
retrolenticular

fibrotic mass and
total retinal
detachment

c.4488 + 2T>G Splice site
mutation

Premature
termination Retinal folds

Rao et al.
[29] 31 5

c.4205G>A p.G1402D Transmembrane
domain Falciform fold

China

c.2237G>C p.R746P ,ird β-propeller
motif

Peripheral avascular
zone

c.2618A>T p.K873M ,ird β-propeller
motif

Peripheral avascular
zone

c.1384C>T p.R462X Second β-propeller
motif

Complete retinal
detachment

c.2817_2827+1del12bp p.N940fs Premature
termination

Complete retinal
detachment

Liu et al.
[83] 10 5

c.542T>G p.M181R First β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned

China

c.1197G>T p.R399S Second β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned

c.1481G>A p.R494Q Second β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned

c.1507G>A p.G503R Second β-propeller
motif

Diagnosed with
FEVR, symptoms not

mentioned

c.2626G>A p.G876S ,ird epidermal
growth-like factor

Diagnosed with
FEVR, symptoms not

mentioned

Pefkianaki
et al. [84] 1 1 c.2234C>T p.A745V ,ird β-propeller

motif

Extensive exudative
retinopathy and
shallow retinal
detachment

USA
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rescued by TSPAN12 overexpression although direct
binding with Norrin and FZD4 was not detected. However,
another study reported that TSPAN12 interacted with

Norrin and FZD4 via its extracellular loops and enhanced
the FZD4 ligand selectivity for NDP [90]. ,us, TSPAN12
was postulated to elicit physiological levels of signaling that
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Table 4: Spectrum of TSPAN12 gene mutations among patients with familial exudative vitreoretinopathy.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the

amino residue Mutant phenotypes Country of
origin

Savarese et al.
[94] 1 1 c.668T>C p.L223P Transmembrane

domain
No sign of

neovascularization Pakistan

Poulter et al.
[93] 58 5

c.67-1G>C p.L23GfsX66
Transmembrane

domain, premature
termination

Bilateral retinal
folds

Mexican and
Pakistan

c.146C>T p.T49M First extracellular
loop

Bilateral congenital
cataract, large
retinal fold

c.285 + 1g>a p.R50DfsX12 Premature
termination

Bilateral congenital
cataract, large
retinal fold

c.413A>G p.Y138C Second extracellular
loop

Peripheral retina
avascularity

c.668T>C p.L223P Transmembrane
domain

Bilateral retinal
folds, funnel retinal

detachments

Poulter et al.
[6] 70 7

c.68T>G p.L23X Transmembrane
domain

Bilateral retinal
folds and unilateral,

persistent
hyperplastic

primary vitreous

USA, UK,
Britain,
Japan,

Australia

c.149 + 3a>g Splice-site
mutation

Premature
termination

Unilateral retinal
fold

c.218_219insGCTGTTT p.F73LfsX119 Premature
termination

Macula ectopia,
with a large retinal

fold

c.302T>A p.L101H Transmembrane
domain

Lassic signs of
FEVR

c.361-5_361-1delaccag Splice-site
mutation

Premature
termination

Bilateral temporal
retinal avascularity

c.419T>A p.L140X Second extracellular
loop

Bilateral retinal
folds

c.629T>G p.M210R Bilateral macular
traction

Bilateral macular
traction

Nikopoulos
et al. [68] 43 2

c.709G>C p.A237P Transmembrane
domain

Avascular
peripheral retina Netherlands

c.562G>C p.G188R Second extracellular
loop

Avascular
peripheral retina

Yang et al.
[96] 49 3

c.146C>T p.T49M
First extracellular
loop, conserved

residue

Falciform retinal
folds

Chinac.313T>C p.C105R
Transmembrane

domain, conserved
residue

Midperipheral
retina, an avascular

zone on the
peripheral retina

c.601delC p.L201FfsX14 Conserved residue

Inferotemporal
dragging of the
optic disc and

macula

Gal et al. [91] 64 1 c.542G>T p.C181F
Second extracellular
loop, form disulfide

bonds

Bilateral visual
impairment,
various ocular
abnormalities

Israel
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was required for normal retinal angiogenesis by promoting
FZD4 multimerization cooperated with Norrin and facili-
tating selective ligand recognition [11].

We summarized 40 currently known mutations in
TSPAN12 identified in patients affected with FEVR and dis-
cussed their coding consequences [6, 24, 29, 31, 54, 58,
59, 68, 83, 91–96] (Table 4 and Figure 5). All types of mutations

were identified, including 22 missense mutation, 4 nonsense
mutations, 9 splice-site mutations, 3 deletions, and 2 insertions.
Mutations at residues T49, L140, C189, and L233 were reported
more than one time. It was reported that L233P strongly im-
paired the TSPAN12 activity, while T49M mildly impaired the
activity. Unfortunately, the authors did not investigate the sig-
naling defect strength of L140X and C189Y/R. In all of the

Table 4: Continued.

Studies No. of
patients

No. of
mutations DNA variant Coding effect Location of the

amino residue Mutant phenotypes Country of
origin

Xu et al. [95] 85 3

c.177delC p.Y59fsX67 Premature
termination

Falciform retinal
folds

Chinac.C254T p.T85M Intracellular loop Pigment deposit,
dragged disc

c.566G>A p.C189Y
Second extracellular
loop, form disulfide

bonds

Bilateral retinal
folds

Kondo et al.
[92] 90 2

c.419T>A p.L140X Second extracellular
loop

Abnormal retinal
vessels with vitreous

degeneration Japan

c.734T>C p.L245P C-terminal
cytoplasmic tail

Retinal fold
resulting

Seo et al. [59] 51 1 c.56T>G p.L19R Transmembrane
domain 3A stage FEVR Korea

Ganeswara
Rao Musada
et al. [2016]

110 3

c.125T>C p.V42A First extracellular
loop

Diagnosed with
FEVR, symptoms
not mentioned

Indiac.334G>A p.V112I Second extracellular
loop

Diagnosed with
FEVR, symptoms
not mentioned

c.479G>A p.C160Y Second extracellular
loop

Diagnosed with
FEVR, symptoms
not mentioned

Tang et al.
[31] 100 8

c.2T>C p.M1T N-terminal domain Not mentioned

China

c.464G>C p.R155T Second extracellular
loop Not mentioned

c.438-439insT p.T147YfsX12 Premature
termination

Total retinal
detachment and
massive vitreous
proliferation

c.655delC p.Q219NfsX5 Premature
termination

Total retinal
detachment

c.916-
918 + 3delTAAAAA p.∗306Eext∗35 Elongated protein Peripheral avascular

retina

c.150-1G>A Splice acceptor
mutations Not applicated Not mentioned

c.285 + 1G>A Splice acceptor
mutations Not applicated Not mentioned

c.469-1G>A Splice acceptor
mutations Not applicated Not mentioned

Iarossi et al.
[24] 8 1 c.67-2A>G Defective

splicing Not applicated Falciform retinal
fold Italia

Rao et al. [29] 31 1 c.345T>G p.Y115X Second extracellular
loop

Falciform folds,
complete retinal
detachment

China

Liu et al. [83] 10 1 c.566G>A p.C189Y Second extracellular
loop China

Schatz and
Khan [58] 3 1 c.565T>C p.C189R

Second extracellular
loop, affects cystine
residues forming

Total retinal
detachment Sweden
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mutations, 38% (15 in 40mutations) of themwere located in the
ECL-2 domain.,ese mutations were highly consistent with the
biochemical results. TSPAN12 is anchored to the Norrin re-
ceptor complex via an interaction of the LEL with FZD4. ,e

ECL-2 domain of TSPAN12 is essential for enhancing Norrin-
induced FZD4 signaling. TSPAN12 can also alleviate the defects
of FZD4 M105V, a mutation that destabilizes the NDP/FZD4
interaction [90].
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Figure 4: Schematic representation of LRP5 protein shows the location of themutations within the protein domains. Four splice site mutations
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4. Discussion

FEVR causing NDP, FZD4, LRP5, and TSPAN12 mutations
was reported from 15 countries including USA, UK, China,
Spain, India, Australia, Mexico, Japan, Netherlands, Italy,
Canada, Korea, Sweden, Pakistan, and Israel. Top three
countries with the largest number of reported mutations
about NDP, FZD4, LRP5, and TSPAN12 genes were China,
Netherlands, and Japan. ,e number of reported mutations
did not completely match the population, since the three
most populous countries were China, India, and USA. One
of themajor reasons contributing to this phenomenonmight
be the number of research groups was more in China,
Netherlands, and Japan than that in other regions. Although
most of the mutations were reported by only one study just
once, some specific mutations were more common than
others. For example, mutations of NDP at c.362G (p.R121)
was independently reported by 5 different studies and dis-
tributed in Spanish, Indian, Mexican, Chinese, and Italian.

FZD4 c. 313A>G (p.M105V) was reported for 8 times by 8
different research groups.,us, it is significant to investigate
the structure and function changes of the coding protein
which resulted by the widely reported mutations.

Although the mutations scattered widely through the
whole genes, they have an inclination to distribute in certain
areas. From the point of view of the coding proteins, the
mutations concentrated at the N-terminal and C-terminal
domains of Norrin. ,ere were 19 mutations located in
domains from C39 to C65 and C96 to C126, which covered
the two β-hairpins (β1-β2 and β5-β6) and loops between and
was crucial for binding with FZD4-CRD, namely, 73% of the
mutations (19/26) concentrated in the interacting domains
with FZD4-CRD. In terms of FZD4, 49% (59 of 121 mu-
tations) of the mutations were positioned in the extracellular
domain, which played a significant role in ligand recogni-
tion, while 13% (16 of 121 mutations) of the mutations were
positioned in the intracellular domain which recruited
Dishevelled to activate downstream signaling. ,e sum of

19

L19R

232

L23X

42

V42A

492

T49M

59

Y59fsX67

73

F73LfsX119

85

T85M

105

101

C105R

L101

112

V112I

138

1402
L140X

Y138C
160

181

188

1893

201

210

C160Y C181F

C189Y2⁄R

G188R

L201FfsX14

M210R

2232

237

245

L223P

A237P

L245P

H2N

COOH
Cytoplasm

1 M1T

115

Y115∗

147

T147Yfs∗12

155

R155T

219

Q219Nfs∗5

Figure 5: Schematic diagram of the TSPAN12 protein shows the location of the 31 known mutations within the protein domains. Nine
splice-site mutations besides one mutation (c.916-918 + 3delTAAAAA) resulting in protein extension and one mutation (c.67-1G>C)
resulting in frame shift are not shown in this diagram. Superscript number means the reported times of the same or different mutations at a
certain site. ,e color of the mutations which were reported more than one time was recolored as orange. ,e opacity varied with the
reported frequency of the mutations.

20 Journal of Ophthalmology



mutations from the two domains accounted for 61% of total
reported mutations. ,e tendency of mutations accumu-
lating in certain domains was more obvious in regard to
LRP5 protein. More than a third of reported mutations
(38%, 22/58) were found from the second YWTD-type
β-propeller domain and EGF domain, which were com-
prised of approximately 300 amino acids, accounting for less
than 20% of whole LRP5 protein. But whether the second
YWTD-EGF domains interacted with Norrin and FZD4
directly or not remained unknown. As far as TSPAN12 was
concerned, it seemed that the mutations were intensively
located in the ECL-2 domain (38%, 15/40). A recent study
revealed that the large extracellular loop of TSPAN12 is
required for enhancing Norrin-induced FZD4 signaling. In
conclusion, the “hotspots” where mutations clustered were
highly consistent with the domains participating protein
interactions.

Overall, mutations in NDP, FZD4, LRP5, and TSPAN12
genes explained up to ∼50% of all FEVR cases worldwide
[97]. Besides the four genes we reviewed in this review,
ZNF408, KIF11, RCBTB1, CTNNB1, and JAG1 were also
reported to be the disease-causing genes of FEVR. ,e
proteins encoded by NDP, FZD4, LRP5, TSPAN12, and
CTNNB1 genes participate in the Norrin/β-catenin pathway,
the signaling which is critical for retinal angiogenesis by
controlling retinal vascular growth and architecture. ,e
connection of proteins coded by ZNF408, KIF11, and
RCBTB1 genes with the Norrin/β-catenin pathway was still
unclear. A comprehensive spectrum covering other four
causative genes (ZNF408, KIF11, RCBTB1, and CTNNB1)
and further investigation on the biochemical functions of
their coding proteins will undoubtedly facilitate thorough
understanding of the pathogenic mechanism of FEVR.

Pathogenic mutations in NDP and FZD4 lead to a
number of retina-related diseases including FEVR, Norrie
disease, persistent hyperplastic primary vitreous, advanced
stage of retinopathy of prematurity, and Coats disease.,ese
diseases can be diagnosed according to their unique
symptoms which can be distinguished from FEVR [98]. ,e
common characteristic of these NDP and FZD4 related
diseases was defects in the vascularization of the retina.
Further study on the role of the Norrin/β-catenin pathway in
the retinal vascular may promote the understanding of the
mechanism of the pathogenic mutations [12]. Furthermore,
other sprouting angiogenesis associated components will in
some way help provide in-depth insight about these retina-
related diseases.
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