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According to GLOBOCAN 2021 cancer incidence and mortality statistics compiled by the
International Agency for Research on Cancer, hepatocellular carcinoma (HCC) is the most
common malignancy in the human liver and one of the leading causes of cancer death
worldwide. Although there have been great advances in the treatment of HCC, such as
regofenib, sorafenib, and lomvatinib, which have been developed and approved for the
clinical treatment of advanced or metastatic HCC. However, they only prolong survival by
a few months, and patients with advanced liver cancer are susceptible to tumor invasion
metastasis and drug resistance. Ubiquitination modification is a type of post-translational
modification of proteins. It can affect the physiological activity of cells by regulating the
localization, stability and activity of proteins, such as: gene transcription, DNA damage
signaling and other pathways. The reversible process of ubiquitination is called de-
ubiquitination: it is the process of re-releasing ubiquitinated substrates with the
participation of de-ubiquitinases (DUBs) and other active substances. There is growing
evidence that many dysregulations of DUBs are associated with tumorigenesis. Although
dysregulation of deuquitinase function is often found in HCC and other cancers, The
mechanisms of action of many DUBs in HCC have not been elucidated. In this review, we
focused on several deubiquitinases (DUBs) associated with hepatocellular carcinoma,
including their structure, function, and relationship to hepatocellular carcinoma.
hepatocellular carcinoma was highlighted, as well as the latest research reports.
Among them, we focus on the USP family and OTU family which are more studied in
the HCC. In addition, we discussed the prospects and significance of targeting DUBs as a
new strategy for the treatment of hepatocellular carcinoma. It also briefly summarizes the
research progress of some DUB-related small molecule inhibitors and their clinical
application significance as a treatment for HCC in the future.
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INTRODUCTION

Liver cancer is a common cause of cancer death worldwide and is
one of the ten cancers with a high incidence (1). Due to the
asymptomatic nature of early hepatocellular carcinoma (HCC),
HCC can only be evaluated by some early biomarkers in the
patient’s body, such as serum a-fetoprotein (AFP) (2), Glypican-
3 (GPC3) (3), and tumor-associated antigens (TAAs) (4). As a
result, most patients are unable to detect and treat HCC at an
early stage; moreover, HCC has a poor prognosis and a high
mortality rate (5). For patients with early and intermediate HCC,
surgical therapies such as hepatic resection and liver
transplantation have good results (6). However, surgical
therapy needs to consider factors such as the patient’s tumor
stage and physical condition, so surgical therapy is not suitable
for some patients. At present, systemic therapy and some
adjuvant therapies of clinical surgery have become new
research strategies for the treatment of HCC (6), such as
transarterial chemoembolization (TACE), transarterial
radioembolization (TARE), external beam radiation therapy,
and oncolytic virus (7), but the effect of these treatments is not
ideal. Systemic drug therapy has also become an important
means of current liver cancer treatment (8). At present, many
targeted drugs have been approved for the clinical treatment of
HCV patients, for example, Nexavar (sorafenib), an oral drug
first approved to target multiple kinases (9); regorafenib
(Stivarga) was approved in June 2017 (10); and lenvatinib (11).
These drugs all provide new treatment directions for
HCC patients.

As we all know, the pathogenesis of human HCC is more
complex, and an in-depth understanding of the molecular
mechanism of HCC pathogenesis can provide an effective
treatment strategy for improving the survival rate of HCC
patients. At present, the development of targeted drugs
provides new therapeutic prospects for the current treatment
of HCC. Signaling pathways and potential targets related to the
pathogenesis of HCC have become important methods for the
development of drugs targeted for the treatment of advanced
HCC (12). Studies have reported many key targets associated
with HCC, such as microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) (13), programmed cell death-1 and its ligands
(PD-1/PD-L1) (14), hypoxia-inducible factor (HIF) (15), and
deubiquitinases (DUBs) (16).

DUB is an important regulator of the process of
deubiquitination and ubiquitination balance in human cells
(17). Ubiquitination of proteins is a process in which multiple
ubiquitin molecules are covalently attached to the protein
substrate and then degraded by the 26S proteasome complex
under the combined action of three types of enzymes: ubiquitin-
activated enzyme (E1), ubiquitin-coupled enzyme (E2), and
ubiquitin ligase (E3) (18, 19). Ubiquitination involves seven
lysine residues: K6, K11, K27, K29, K33, K48, and K63 and N-
Teline (Met1) (20). These residues can be ubiquitinated to form
isopeptide-linked ubiquitin chains (21). DUBs include cysteine
proteases as well as metalloproteinases that specifically cleave
ubiquitin molecules in protein substrates (22). Regulating the
Frontiers in Oncology | www.frontiersin.org 2
homeostasis of ubiquitination and deubiquitination is conducive
to the normal progress of human cell activities and maintains
homeostasis in the human body (23). There are approximately
100 DUBs in humans, and DUB enzymes can be divided into 7
families based on structure and function (24), including
ubiquitin-specific proteases (USPs), ubiquitin C-terminal
hydrolases (UCHs), proteases containing the Machado–Joseph
domain (MINDYs), ovarian tumor proteases (OTUs), newly
discovered zinc finger protease (ZUPs/ZUFSPs), JAM/MPN
domain-related Zn-dependent metalloproteinases (JAMMs),
and Machado–Josephin domain-containing proteases (MJDs)
(25) (Figure 1).

At present, a number of studies have shown that the
deubiquitination effect of proteins is closely related to the
occurrence and development of cancer, such as breast cancer,
lung cancer, stomach cancer and hepatocellular carcinoma (26–
30). In this review, we highlight hepatocellular carcinoma
-related DUBs, including their structure, mechanisms of action
in hepatocellular carcinoma, and recent research advances. In
Figure 2, the related pathways and target proteins of DUBs in
HCC are shown (Figure 2). Last but not least, we discussed the
prospects and implications of DUBs and DUB-related small
molecule inhibitors as potential protein targets for
hepatocellular carcinoma treatment.
OVARIAN TUMOR PROTEASE OTU

There are 16 species of cysteine protease OTU family members,
which can be divided into four different subfamilies: OTUB
subfamilies (OTUB1 and OTUB2), OTUD subfamilies (OTUD1,
OTUD2/YOD1, OTUD3, OTUD4, OTUD5/DUBA, OTUD6A,
OTUD6B, and ALG13), A20-like subfamilies (A20, Cezanne,
Cezanne2, TRABID, and VCPIP), and OTULIN subfamily
(OTULIN) (31). Studies have shown that the Cys catalytic
residues present in the OTU subfamily protease active site
make it susceptible to reverse oxidation (32). Here, we
introduce the structure and function of “OTUB1 OTUD3
OTUD6B ZRANB1” in the OTU family and the research
progress in HCC.

OTUB1
Structure of OTUB1
OTUB1 is a founding member of the ovarian tumor (OTU)
domain family of DUBs and belongs to the OTUB subfamily
(33). In addition to the OTU domain containing 130 amino
acids, OTUB1’s unique crystal structure has two different
ubiquitin-binding sites (34). During the deubiquitination
process, OTUB1 preferentially cleaves the polyubiquitin
chains connected by Lys (34, 35) while using the active center
to catalyze the substrate reaction. The catalytic domain of
OTUB1 consists of three parts: Cys(C)91, His(H)265, and
Asp(D)268 (36). Studies have shown that in the presence of
free ubiquitin molecules, the activity of the OTUB1 enzyme is
regulated by the E2 enzyme: the uncharged E2 enzyme can
June 2022 | Volume 12 | Article 920287

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Progress DUB Enzyme Hepatocellular Carcinoma
activate the activity of the OTUB1 enzyme by stabilizing the N-
terminal structure of OTUB1. In addition, OTUB1 is able not
only to remove the ubiquitin molecules linked to the substrate
but also to inhibit the ubiquitination process through binding
to the E2 enzyme (37).

The Function of OTUB1 and Research Progress in
Hepatocellular Carcinoma
OTUB1 is expressed in a variety of tissues in the body, such as
the kidneys, colorectum, stomach, brain, and liver (38). In
human liver cancer and other tumor tissues, OTUB1 has been
shown to have a high expression and is associated with a poor
prognosis in patients (38, 39). Inhibiting the expression of
OTUB1 by shRNA will weaken the proliferation, migration,
and invasion ability of HCC cells (38).

LncRNAs are a class of RNAs that are not protein-coding
and can bind to downstream MIR genes through endogenous
competition and targeted action (40, 41). It is widely believed to
be associated with many diseases in the human body and is also
a related causative agent of cancer (42). OTUB1 is also
associated with lncRNA in liver cancer. LncRNA GAS6-AS2
Frontiers in Oncology | www.frontiersin.org 3
was shown to be upregulated in liver cancer cells as well as
tissues. GAS6-AS2 regulates the expression of downstream
OTUB1 by targeting miR-493-5p with 3′UTR (39). The
hyperactivated PI3K/Akt signaling pathway plays a central
role in cancer cell metabolism and is also thought to be
associated with the occurrence of HCC as well as metastasis
(43, 44). LncRNA GAS6-AS2 knockdown can promote HCC
cell proliferation, invasion, metastasis, and apoptosis by
mediating the miR-493-5p/OTUB1 axis to activate the PI3K/
AKT/FoxO3a pathway (39). The above studies show that
OTUB1 can be used as a novel marker for targeted therapy
for liver cancer.

OTUD3
Structure of OTUD3
OTUD3 belongs to the subfamily OTUD and is structurally
similar to OTUD2. Its active domain is approximately 52–209
amino acids, which also includes the DUB family’s classic
catalytic triplet residues (31). During the deubiquitination
process, OTUD3 is the only DUB that tends to cleave k6-
linked double ubiquitin and bind it to the S1 and S1′ sites (31).
FIGURE 1 | Ubiquitination of E1, E2, E3, and deubiquitination mechanism of DUB.
June 2022 | Volume 12 | Article 920287
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The Lys6-linked polyUb is a mysterious type of chain whose role
in cells has not yet been elucidated (45).

The Function of OTUD3 and Research Progress in
Hepatocellular Carcinoma
A growing number of reports suggest the role of OTUD3 in
human cancers, such as breast cancer as well as lung cancer (35,
46). Studies have demonstrated that OTUD3 is expressed in high
amounts in HCC tissues and is associated with a poor prognosis
in HCC patients (47). a-Actin 4 (ACTN4) is called an actin-
binding protein and belongs to a family of actin-binding
proteins. OTUD3 can affect the expression of a-actin 4
(ACTN4) at the protein level and promote the proliferation,
invasion, and metastasis of HCC by stabilizing ACTN4 by
deubiquitination (47).
OTHER ENZYMES OF THE OTU FAMILY

OTUD6B
Studies have shown that OTUD6B can regulate HCC metastasis
by regulating the activity of HIF under hypoxic conditions.
Frontiers in Oncology | www.frontiersin.org 4
Mechanistically, OTUD6B directly interacts with pVHL and
enhances its stability. In human HCC tissues, the protein level
of OTUD6B was positively correlated with pVHL, whereas
HIF-1a and vascular endothelial growth factor were
negatively correlated. This study demonstrates that OTUD6B
is a direct transcriptional target of HIF-1a, providing a new
strategy for targeting hypoxic microenvironments for HCC
therapy (48).

ZRANB
ZRANB1 overexpression was associated with poorer survival in
patients with HCC, and there was a significant positive
correlation between the expressions of ZRANB1 and LOXL2 in
clinical HCC specimens, which can regulate the expression of
LOXL2 through specific protein 1 (SP1). Mechanistically,
ZRANB1 stabilizes and binds SP1 through deubiquitination,
which promotes liver cancer progression (17). However,
another study reported that the deletion or downregulation of
ZRANB1 was closely associated with the recurrence, metastasis,
tumor volume, and disease stage of liver cancer significantly
increased. Knockdown of ZRANB1 promotes HCC growth and
metastasis by regulating Twist1 K63 ubiquitination (49).
FIGURE 2 | Deubiquitinase-related proteins and pathways in hepatocellular carcinoma (HCC).
June 2022 | Volume 12 | Article 920287
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UBIQUITIN-SPECIFIC PROTEASE

The USP family is the most frequently studied DUB family and is a
large family of more than 60 DUBs. The USP protein is considered
an antagonist of the E3 ligase and is a potential target for cancer
treatment (50). Here, we introduce the structure and function of
“USP14, USP1, USP10, USP39, USP22, USP9X, USP2, USP7,
USP4, USP5, USP29, USP15, USP12, USP16, USP27, USP46,
and USP8” in the USP family research progress in HCC.

USP14
Structure of USP14
The full length of the protein sequence of USP14 contains 494
amino acids. Its structure can be roughly divided into the N-
terminal ubiquitination active center and C-terminal
deubiquitination catalytic activity domain. The N-terminus has
a 9-kDa ubiquitin-like (Ubl) domain, which is an important
regulator of proteasome activity (51, 52); the C-terminus is a 45-
kDa catalytic domain responsible for its DUB activity (53). The
catalytic domain of USP14 is similar to the structure of the
HAUSP catalytic core domain, which is an extended right hand
consisting of three domains of fingers, palm, and thumb (51).
When the apolipoprotein USP14 binds to the proteasome, the
conformation of the two surface rings (BL1 and BL2) changes to
bring the ubiquitin C-terminus into the catalytically active site
(54, 55).

The Function of USP14 and Research Advances in
Hepatocellular Carcinoma
Many studies have shown that USP14 can be involved in
modulating a variety of signaling pathways associated with
human diseases, such as cancer, autophagy, immune response,
and viral infections (56, 57). In HCC, USP14 is highly expressed
in liver cancer and is associated with a poor prognosis in patients
with HCC. In the hypoxic environment of liver cancer (58),
USP14 can enhance the transcriptional activity of HIF-1a and
the stability of HIF-1a through deubiquitination, which in turn
promotes the migration and invasion of HCC cells in a HIF-1a-
dependent manner (59). This suggests that USP14 is a potential
diagnostic biomarker for HCC as well as a therapeutic target.
IU1, an inhibitor of USP14, can significantly inhibit the
proliferation of liver cancer cells and liver cancer tissue
tumors. It can be used as a potential HCC treatment agent in
vivo and in vitro.

USP1
Structure of USP1
USP1 regulates cellular DNA repair processes (60). USP1 has
highly conserved USP domains of His and Cys and also has a
catalytic triad consisting of C90, H593, and D751 (61). The
protein sequence of USP1 consists of 785 amino acids, and the
protein molecular weight is about 88.2 kDa (62). The cofactor
UAF1 is a related factor of USP1 (63), which regulates the
activity of USP1 isopeptidase by combining with UAF1 into a
unique exogenous dimer complex. The enzyme activity of USP1
Frontiers in Oncology | www.frontiersin.org 5
alone is low, but the activity of the enzyme is increased when
combined with UAF1 (64, 65).

The Function and Research Progress of USP1 in
Hepatocellular Carcinoma
In addition to being a regulator of cellular DNA repair (60),
USP1 is also involved in the occurrence and development of
various human diseases, such as USP1, plays a key role in the
Fanconi anemia pathway (60), is a potential target for
differentiation therapy (66), is upregulated in breast cancer,
and is associated with poor patient prognosis (67). USP1 can
also affect the development of lung cancer by regulating the
PHLPP1-Akt signaling axis (68). In liver cancer, USP1 is thought
to play a key role in the immune infiltration process of tumors.
Drugs such as pimozide and ML-323 can inhibit the promotion
of USP1 on the cell cycle and proliferation of HCC (69).

Ribosomal protein S16 (RPS16) is a highly conserved 40S
ribosomal protein, which has been reported to be highly
expressed in various cancers, such as colorectal cancer (CRC)
(70). Studies have shown that USP1 can promote the stability of
RPS16 protein and promote the proliferation and migration of
liver cancer cells by binding to the cys90 (C90) site at the N-
terminus of UAF1 (a cofactor of USP1) (71).

Protein transduction protein (TBL1) is a key regulator of the
Wnt pathway and is proven to be associated with tumors in
several studies, such as in cervical (72), prostate (73), and ovarian
cancers (74). In liver cancer, USP1 can maintain the survival of
hepatic circulating tumor cells by deubiquitinating and
stabilizing TBL1 protein (75).

Lenvatinib (Lenvima) is an oral small-molecule inhibitor of
multiple receptor tyrosine kinases for the treatment of advanced
liver cancer patients (76). However, most patients will develop
resistance to lenvatinib (77), so research on the mechanism of
drug resistance in patients will help the development of targeted
therapy for liver cancer (78). USP1 can promote the proliferation
and migration of HCC cells by promoting the expression and
stability of c-kit protein, and USP1 also promotes the efficacy of
lenvatinib in HCC (79). In conclusion, USP1, as a novel
diagnostic and predictive marker in the treatment of liver
cancer, can provide new ideas for the development of targeted
drugs for liver cancer treatment.

USP10
Structure of USP10
USP10 is a cysteine protease of approximately 798 amino acids in
length and is a highly conserved protein in eukaryotes (80). The
catalytic domain of USP10 is located at 415 amino acids at the N-
terminus of the protein and is about 380 amino acids in size.
USP10 can remove Ub from the target protein by undergoing a
hydrolysis reaction (80).

The Function of USP10 and Research Progress in
Hepatocellular Carcinoma
USP10 is involved in many physiological activities in the human
body, such as promoting cell proliferation and differentiation by
June 2022 | Volume 12 | Article 920287

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Progress DUB Enzyme Hepatocellular Carcinoma
targeting p53 protein (81); USP10 can activate the downstream
protein AMPK through deubiquitination and form a
feedforward loop with it (82). In addition, USP10 is also a
tumor-related factor in human lung cancer (83), CRC (84),
liver cancer, etc. (30). In HCC, multiple studies have shown
that the transforming growth factor b (TGF-b) pathway is closely
related to the metastasis of HCC (85, 86). USP10 can directly
bind to Smad4 and act on the Lys-48-linked polyubiquitin chain
on Smad4 to stabilize it; USP10 regulates the abundance and
function of Smad4 protein through deubiquitination and
activates the TGF-b pathway to further promote the migration
of hepatoma cells (87). In addition, the USP10 inhibitor Spautin-
1 can inhibit HCC metastasis in a dose-dependent manner,
which makes it a targeted drug for effective anti-metastatic
agents in the treatment of HCC.

mTOR signaling is highly expressed in liver cancer and other
cancers (88). PTEN and AMPKa signaling pathways are
regulators upstream of mTOR activation (89). USP10 acts as a
tumor suppressor and acts as a tumor suppressor protein in
HCC. USP10 stabilizes PTEN and AMPKa in HCC cells through
deubiquitination and can inhibit AKT 329 phosphorylation and
mTORC1 activation in HCC cells, thereby inhibiting the mTOR
pathway (90).

A study showed that USP10 interacts with lncRNA GASAL1
to promote the malignancy of HCC (91). Mechanistic analysis
revealed that lncRNA-GASAL1 could upregulate USP10
expression by targeting downstream miR-193b-5p through
competitive binding. In addition, USP10 can stabilize
prol i ferat ing cel l nuclear antigen (PCNA) through
deubiquitination to enhance the proliferation and migration of
hepatoma cells (92).

YAP protein is a regulator found in Drosophila to control
organ size (93, 94). Studies have shown that the Hippo-YAP/
TAZ pathway is closely related to human metabolism, organ
regeneration, and cancer (95–97). In HCC, USP10 was shown to
activate YAP/TAZ protein and stabilize its activity through
deubiquitination. USP10 can upregulate the abundance of
YAP/TAZ protein in HCC and promote the proliferation and
migration of HCC in vivo and in vitro (30). These provide new
ideas and research proof for the mechanism of USP10 in HCC.

USP39
Structure of USP39
Family member ubiquitin-specific peptidase 39 (USP39) is the
homolog of Sad1p in yeast, also known as the human 65-kDa SR-
related protein (98, 99). The structure of USP39 includes a
central zinc finger ubiquitin domain and a canonical UCH
domain (100). Studies have shown that there are no active site
residues of cysteine and histidine in the structure of USP39, so
there is no DUB enzyme activity (101), and it is also classified as
a DUB (99).

The Function and Research Progress of USP39 in
Hepatocellular Carcinoma
USP 39 (USP39) is an important regulator of human mRNA
splicing and is highly expressed in a variety of cancers (100, 102).
Frontiers in Oncology | www.frontiersin.org 6
New research shows that USP39 plays a key role in the
occurrence and development of liver cancer. The Kaplan–
Meier analysis found that the high expression of USP39 in
liver cancer was closely related to the poor prognosis of
patients. USP39 may promote the malignancy of liver cancer
by participating in the regulation of the epithelial–mesenchymal
transition (EMT) pathway of HCC. ZEB1 is a key factor in the
human tumor EMT pathway (103, 104). Mechanistic studies
suggest that USP39 stabilizes ZEB1 protein through
deubiquitination and activates the development of the EMT
pathway and the proliferation and migration of hepatoma
cells (105).

USP39 can directly bind and interact with the ubiquitinated
E3 ligase TRIM26 (105). Studies have shown that the E3 ligase
TRIM26 can inhibit the occurrence and development of several
tumors in humans (106). USP39 and TRIM26 promote HCC
progression through antagonism to balance the expression level
of ZEB1 (105).

USP39 can be acetylated by the acetyltransferases HAT and
MYST1. Acetylated USP39 can be degraded by E3 ubiquitin
ligase (VHL)-mediated proteasome (107). SIRT7 has been
reported to be an oncogenic potential factor in HCC and can
form a regulatory loop with miRNAs to promote HCC
progression (108). In the development of hepatoma cells,
SIRT7 can deacetylate USP39, which improves the stability of
USP39 and promotes the proliferation of HCC (107).

FoxM1 is widely recognized as a key factor in the
transcriptional regulation of human cancers (109). It can
promote the occurrence and development of HCC by
regulating the expression of KIF4A (110). USP39 has been
reported to promote the cleavage of forkhead box protein M1
(FoxM1) in hepatoma cells to promote the occurrence and
development of HCC (111); USP39 knockdown can also
induce apoptosis by targeting FoxM1 shear force on mRNA
and promote the growth of hepatoma cell SMMC-7721 in vitro
and in vivo (112).

Specific protein 1 (SP1) belongs to the Sp/KLF transcription
factor family (113) and is considered to be the basal transcription
factor in humans. Sp1 is also associated with a variety of human
diseases, such as Huntington’s disease (113, 114). SP1 is also
associated with poor prognosis in a variety of cancers (115).
Studies have shown that USP39 can stabilize Sp1 and prolong its
half-life through deubiquitination in HCC (116). In addition,
USP39 can also promote the SP1-dependent pathway. Therefore,
USP39 can target Sp1 to promote liver cancer cell
proliferation (116).

USP22
Structure of USP22
USP 22 (USP22) is an important member of the USP family. Its
protein structure consists of 525 amino acids, including the
structural sequence of a putative ubiquitin hydrolase
containing a C-terminal peptidase domain and an N-terminal
UBP-type zinc finger motif (117). In addition, USP22,
ATXN7L3, ATXN7, and ENY2 are transcriptional cofactors of
human Spt-Ada-Gcn5 acetyltransferase (hSAGA) and key
subunits of the SAGA complex (118, 119).
June 2022 | Volume 12 | Article 920287
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The Function and Research Progress of USP22 in
Hepatocellular Carcinoma
As an important member of the USP family, USP22 also plays a
very important role in the occurrence and development of
HCC. Among them, the expression of USP22 and survivin was
shown to be closely related to the malignant behavior of HCC
cases, including tumor size, stage, and differentiation (120).
Several studies have reported that USP22 is closely related to
the drug resistance mechanism of HCC. For example, in
sorafenib-resistant cell lines, USP22 can regulate and
upregulate ABCC1 (121). In addition, USP22 can directly
interact with SIRT1 and regulate the protein expression level
of SIRT1, which promotes the resistance of hepatoma cells
to 5-fluorouracil (5-FU) (122). Previous reports have
demonstrated that SIRT1 can deacetylate and activate the
AKT pathway (123), and USP22 can promote MDR in HCC
cells by activating the SIRT1/AKT/MRP1 pathway (124);
USP22 is also able to regulate chemotolerance in HCC
through Smad4/Akt-dependent MDR-related gene regulation
(117). Relevant drug resistance genes include BMI1 and EZH2.
Co-expression of USP22 and BMI1 is associated with poor
prognosis and enhanced anticancer drug resistance in HCC
(125). Some researchers have proposed a self-activating
cascade reaction—the co-delivery system of sorafenib and
shUSP22 (Gal-SLP), aiming at the effect of USP22 on the
drug resistance of liver cancer cells. This delivery system
exhibits potent antitumor efficiency through three synergistic
effects (126). This is also a major advance in the use of DUBs
for the treatment of HCC. We presume that with the in-depth
study of DUB, DUBs can provide new approaches and
strategies for the treatment of cancer in humans. In addition
to affecting the drug resistance of liver cancer cells, USP22 can
also regulate peroxisome proliferator-activated receptor g
(PPARg) in HCC through deubiquitination to promote fatty
acid synthesis and tumorigenesis. These findings provide a new
therapeutic strategy for patients with high USP22 expression in
HCC (127).

In addition to the effect on drug resistance of liver cancer cells,
other studies have also reported that USP22 can significantly
affect the glycolysis and stemness characteristics of liver cancer
cells under hypoxic conditions: HIF-1a knockdown inhibits
USP22-induced and hypoxia-induced effects (128). USP22 can
also affect the transcription of the phosphatase DUSP1 by E2F6
protein through deubiquitination, which can activate the AKT
pathway in hepatoma cells (129). In addition, USP22 can also be
regulated by lncRNA HULC to further affect the drug resistance
and tumor growth of liver cancer cells (130, 131).
Other Enzymes of the USP Family
In addition to the abovementioned USP family DUBs, there are
other liver cancer-related USP family DUBs, including USP9X,
USP2, USP7, USP4, USP5, USP29, USP15, USP12, USP16,
USP27, USP46, and USP8.
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Their Function and Research Progress in
Hepatocellular Carcinoma
USP9X
USP9X has been proved by many studies to affect the occurrence
and development of HCC (132). For example, by promoting
HCC cell proliferation by regulating the expression of b-catenin
(eta-catenin) (133), USP9X is able to affect hepatoma cells with
ARID1A mutations through the AMPK pathway (134), miR-26b
can regulate USP9X-mediated p53 deubiquitination to enhance
the sensitivity of HCC cells to doxorubicin (135), miR-26b is also
able to target USP9X expression to suppress EMT in hepatocytes
(136), and usp9x can affect the drug sensitivity of hepatoma cells
to doxorubicin and WP1130 through p53 (137). The lncRNA
LINC00473 is also able to exert its oncogenic function in HCC by
interacting with USP9X and may be a therapeutic target for HCC
treatment (138).

USP2
USP2a is significantly upregulated in HCC tissues and positively
correlated with poor patient prognosis, and USP2a can promote
HCC progression by deubiquitinating and stabilizing RAB1A
(139). In addition, USP2a is also believed to be involved in the
production of nascent adipose to further regulate the progression
of HCC, which has pathogenic and prognostic significance for
HCC (140). USP2b has been shown to be dysregulated in HCC
patients, promoting apoptosis and necrosis of HepG2 and Huh 7
cells. This study demonstrates that USP2 contributes to the
pathogenesis of HCC and provides a molecular basis for the
development of HCC therapies by modulating USP2b expression
or activity (141).

USP7
The expression of USP7 is significantly increased in HCC and
has been reported to have clinical significance in the prognosis
and functional mechanism of HCC (142). USP7 may be a drug
target for chemoresistance in HCC (143). MicroRNA-205
(miR-205) may negatively regulate the UPS7 protein level by
targeting the 3′-untranslated region in HCC cells (144).
Adipocyte-secreted exosomal circRNAs promote tumor
growth and reduce DNA damage by inhibiting miR-34a and
activating USP7/Cyclin A2 signaling pathway (145). METTL3
can regulate the expression of USP7 through m6A methylation
and promote the invasion, migration, and proliferation of HCC
cells (146). Furthermore, the homolog of Usp7, HAUSP, is able
to regulate the Hippo pathway and stabilize Yorkie (Yki) and
HAUSP as potential therapeutic targets for HCC (147). USP7
can also bind to FEN1, a poor prognostic molecule in HCC
through deubiquitination, which can reduce the expression of
p53 and promote the progression of HCC (148). In liver cancer,
PROX1 can also enhance the stability of p65 by binding USP7
to affect angiogenesis in liver cancer cells (149). USP7 promotes
HCC cell growth by forming a complex with thyroid
hormone receptor-interacting protein 12 (TRIP12) and
stabilizing p14 (ARF) ubiquitination, thereby promoting HCC
progression (150).
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USP4
Kaplan-Meier survival analysis showed that patients whose
tumors overexpressed USP4 had poor overall survival, and it
combined with cyclophilin A (CypA) to form a complex to
activate the MAPK signaling pathway in HCC (151). In addition,
USP4 can directly interact with TGF-b receptor type I (TGFR-1)
through deubiquitination and activate the TGF-b signaling
pathway, which can induce EMT in hepatoma cells, providing
a new therapeutic target for the treatment of HCC (152). USP4 is
able to act as a downstream target of miR-148a in hepatoma cells,
and overexpression may contribute to the progression of HCC to
more aggressive features (153).

Others
USP5 has been reported to be highly expressed in human
hepatoma cells and can inhibit the expression of p53 and DNA
repair function (154). It also binds to SLUG and regulates the
EMT pathway associated with hepatoma cells (155).

The expression of USP13 was significantly upregulated in
HCC cells, and studies showed that USP13 knockdown could
inhibit the activation of the TLR4/MyD88/NF-kB pathway in
hypoxia-induced HCC cells. In addition, studies have shown that
USP13 can affect the growth of liver cancer cells by regulating the
expression of c-Myc (156, 157).

Studies have shown that USP29 is related to HIF-1a in
hepatoma cells. Mechanistically, USP29 promotes sorafenib
resistance in HCC cells by upregulating glycolysis, thus
opening a new avenue for therapeutic targeting of patients
with sorafenib-resistant HCC (158).

USP15 is highly expressed in liver cancer tissues and cell lines,
and high expression is significantly positively correlated with
HCC recurrence. Studies have shown that downregulation of
USP15 expression can inhibit the proliferation and apoptosis of
liver cancer cells (159). In addition, xanthine oxidoreductase
(XOR) can interact with USP15 to enhance the stability of Kelch-
like ECH-associated protein 1 (KEAP1), which ultimately
promotes the accumulation of reactive oxygen species (ROS)
and liver cancer stem cells (CSCs) (160).

USP12 promotes HCC proliferation and apoptosis by
affecting p38 and MAPK pathways (161). USP16 is
downregulated in HCC, leading to Ct-HBx promoting the
tumorigenicity and malignancy of HCC (162). USP27
promotes its stability by interacting with SETD3 and
accelerates the growth of hepatoma tumor cells, and higher
expression of USP27 and SETD3 predicts poorer survival in
HCC patients (163). USP46 can promote MST1 kinase activity
through deubiquitination to inhibit tumor growth and
metastasis, suggesting that USP46 may be a potential
therapeutic strategy for HCC (164). USP8 can regulate the
expression of multiple receptor tyrosine kinases (RTKs) to
affect the drug resistance of liver cancer cells (165).
UBIQUITIN C-TERMINAL HYDROLASE

The family of UCHs includes UCH-L1, UCH-L3, UCHL5/
UCH37, and BRCA1-associated protein-1 (BAP1) (166). The
Frontiers in Oncology | www.frontiersin.org 8
UCH family has a classically conserved catalytic domain of about
230 amino acids in size (167). The domains of UCH-L5, UCH-
L1, and UCH-L3 contain an active site crossover loop (116, 166).
UCHL1 has been reported to be strongly associated with
Parkinson’s disease (PD) (168, 169) and Alzheimer’s disease
(AD) in humans (170). In view of the lack of current research
reports on the UCH family, here we only introduce the structure
and function of UCH37 and the research progress in HCC.

UCH37
Structure of UCH37
UCH37, also known as UCHL5, belongs to the human UCH
family and is the only DUB in the family that is associated with
the mammalian proteasome (171, 172). The protein structural
sequence of the protease UCH37 contains 329 amino acids and is
mainly associated with the Ub isopeptidase activity in the 19S
proteasome regulatory complex (173). It is also the only UCH
family of proteases capable of acting on the 19S proteasome
complex and cleaving Lys48-linked polyubiquitin molecules in a
unique manner (174). The three-dimensional structure of
UCH37 consists of two parts, a globular UCH domain and a
fibrillar unique C-terminal extension (175). Studies have shown
that NFRKB can inhibit its activity by interacting with the
extended structure of the C-terminus of UCH37 (173). During
deubiquitination, UCH37 is able to associate with the 26S
proteasome via Rpn13.

The Function and Research Progress of UCH37 in
Hepatocellular Carcinoma
Studies have shown that UCH37 is highly expressed in liver
cancer cells (HCC) and cancer tissues, and the prognosis of
patients is poor (176). Peroxiredoxin 1 (Prdx1) belongs to the
peroxidase family and plays a dual role in human tumorigenesis
(177). Multiple studies have shown that Prdx1 is involved in the
progression of human liver cancer, including tumor angiogenesis
(178), apoptosis, autophagy (179), and poor patient prognosis in
HCC (180). PRDX1 low expression can promote the
proliferation, migration, and invasion of HCC cells in vitro.
New research shows that the interaction of Prdx1 with UCH37
attenuates the effects of UCH37 on cell migration and invasion;
this interaction may be through the formation of a complex
rather than the deubiquitination of UCH37 itself, but the
mechanism of the two on the development of liver cancer has
not yet been elucidated (181). UCH37 can also act on the RNA
splicing factor PRP19 through deubiquitination (182), and their
interaction can promote HCC migration and invasion (176).

The protein chaperone GRP78 is often highly expressed in
human cancers (183), such as lung cancer (184), pancreatic
cancer (185), and breast cancer (186). GRP78 is also associated
with diseases such as tumor resistance, patient prognosis (187),
M2 macrophage polarization (188), and folding of nervous
system proteins (189). The latest study shows that UCH37 can
interact with the protein chaperone GRP78 by co-
immunoprecipitation and confocal laser scanning microscopy,
which provides new ideas and directions for the mechanism of
UCH37 in HCC (190).
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DUB-RELATED INHIBITORS

As we know, proteasome inhibitors have been developed and
used successfully in the treatment of some diseases (191, 192),
which lays the foundation for the development of DUB as a drug
research target. Currently reported inhibitors such as PR-619
and WP1130 can inhibit a variety of DUBs, of which WP1130
inhibits at least five DUBs: USP5, UCH-L1, USP9X, USP14, and
UCH37 (193). However, the development of specific inhibitors
Frontiers in Oncology | www.frontiersin.org 9
has been challenging, which is related to the highly conserved
structural features of the DUB catalytic site.

In the DUB family, UPS has been clearly regarded as one of
the most important drug targets, and the research and
development of inhibitors are more in-depth than those of
other families. Among them, USP14 has been researched and
developed as a more mature inhibitor. The research group of
Finley et al. identified more than two hundred inhibitors of
USP14 based on high-throughput screening of Ub-AMC
TABLE 1 | DUB-related targets, inhibitors, and pathways in HCC and corresponding articles.

DUB Downstream pathway, target protein Mechanism of action in HCC Article Inhibitors

OTU OTUB1 MIR-493-5P/OTUB1/FOXO3a Metastasis, proliferation, invasion, (38) \
OTUD3 OTUD3/ACTN4 Metastasis, proliferation (47) \
OTU6B HIF-1a/OTU6B/PVHL Promote HCC growth (48) \
ZRANB1 ZRANB1/SP1/LOXL2 Promote HCC growth (17) \

ZRANB1/Twist1 Growth, metastasis (49)
USP USP14 USP14/HIF-1a Metastasis, invasion, apoptosis (59) IU1, IU2, SB1-B-57

USP1 USP1/TBL1 Promote HCC growth (75) GW7674, ML323, 1-173
USP1/C-Kit Metastasis, proliferation, drug resistance (79)

USP10 USP10/Smad4 Metastasis
Activate TGF-b pathway

(87) Spautin-1, Wu-5

USP10/PTEN, AMPKa Activate M-TOR pathway (89)
GASAL1/MIR-193b-5p/USP10/PCNA Promote HCC growth (92)
USP10/YAP/TAZ Metastasis, proliferation (30)

USP39 USP39/ZEB1/AKT Metastasis, proliferation (105) \
USP39/FOXM1 Apoptosis (111)
SIRT7/USP39 Proliferation (107)
USP39/SP1 Proliferation (116)

USP USP22 USP22/ABCC1 Drug resistance (121) Macrocyclic
USP22/SIRT1 AKT/drug resistance (122)
USP22/SMAD4 AKT/promote MDR (117)
USP22/BMI1 Promote MDR (125)
USP22/HULC Drug resistance (130, 131)
HIF-1a/USP22 Cell stemness, glycolysis (128)
USP22/E2F6/DUSP1 AKT (129) WP1130, degrasyn

USP9X USP9X/b-Catenin Proliferation (133)
MIR-26b/USP9X/P53 EMT/drug resistance (136)
USP9X/LINC00473 Promote HCC growth (138)

USP2 USP2A/RAB1A Promote HCC growth (139) STD1T, 6TG, Q29, ML364, LCAHA
USP7 MIR-205/USP7 Promote HCC growth (144) Ursolic acid, GNE6640, XL188, FT671, ALM2, 1-8

CircRNA/MIR-34a/USP7 Reduce DNA damage (145)
METTL3/USP7 Metastasis, proliferation, invasion (146)
USP7/FEN1/P53 Promote HCC growth (148)
USP7/RPOX1/P65 Angiogenesis (149)
USP7/TR2P12/P14 Promote HCC growth (150)

USP4 USP4/CYPA Activate MAPK pathway (151) Degrasyn
USP4/TGFR-1 Activate TGF-b pathway (152)
MIR-148a/USP4 Metastasis, invasion, (153)

USP5 USP5/P53 DNA repair, (154) Degrasyn, Vialinin A
USP5/SLUG Activate EMT pathway (155)

USP13 USP13/C-MYC Promote HCC growth (156) Spautin-1
USP13/TLR4/MYD88 Activate NF-kB pathway (157)

USP29 HIF-1a/USP29 Glycolysis, drug resistance (158) WP1130
USP15 USP15/XOR/KEAP1 Cell stemness, ROS (159) WP1130
USP12 USP12/P38 MAPK Proliferation, apoptosis, (161) WP1130
USP16 USP16/CT-HBX Promote HCC growth (162) WP1130
USP27 USP27/SETD3 Promote HCC growth (163) WP1130
USP46 USP46/MST1 Growth, metastasis (164) WP1130
USP8 USP8/RTKS Drug resistance (165) HY50737A

HY0736
DC-U43-10

UCH UCH37 UCH37/PRDX1 Metastasis, invasion, (181) b-AP15, Ub-AMC, Ub-Rho
UCH37/GRP78 \ (190)
HCC, hepatocellular carcinoma; MDR, multidrug resistance; ROS, reactive oxygen species.
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hydrolysis assays; IU1 is the first specific inhibitor targeting
USP14, named IU1 (194). In addition, other inhibitors have been
developed: IU1 analogs, such as IU1-206 and IU1-248 and IU2
series (195); spautin-1 is a small molecule inhibitor of USP10 and
also inhibits USP13 (196). Recent research reports identify Wu-5
as a novel USP10 inhibitor that induces degradation of the FLT3
mutant protein (197). A ubiquitin variant (UbV) phage library
has also been used to develop an inhibitor-UbV.7.2 that can
target USP7 and USP10, which structurally enhances the affinity
for USP7 (198). A leukemia drug, 6-thioguanine, was found to be
a potent inhibitor of USP2, exhibiting a non-competitive and
slow-binding inhibitory mechanism for USP2 (199). Studies have
reported that inhibitors of USP8 include RA-9, DUB-IN-1,
DUBs-IN-2, and a novel inhibitor DC-U43 (200–202). Among
them, DC-U43-10 is a USP8 inhibitor with a novel scaffold,
which can bring new research directions for the development
and clinical research of USP8 inhibitors (203). Morgan et al.
screened a large number of cyclic peptide combinatorial libraries
and identified the first inhibitors of USP22, which have broad
prospects for development (204). Furthermore, WP1130 is a
general inhibitor. UCH37-specific inhibitors have not yet been
developed, but there are some non-specific DUB inhibitors
targeting UCH37 activity, such as b-AP15, Ub-AMC, Ub-Rho,
and WP1130 (195). Although UCH37 lacks specific inhibitors,
the developed multi-target inhibitors can also provide new
strategies and ideas for clinical drug development. We
summarize some inhibitors of DUB in Table 1.
SUMMARY AND OUTLOOK

Based on the introduction and analysis of some liver cancer-
related DUBs in this paper, it can be seen that DUBs play a
unique regulatory role in the occurrence and development
of HCC.

However, the regulatory mechanism of DUBs in liver cancer
is relatively complex, involving many pathways and targets, and
the development of targeted drugs has become an important
treatment method for patients with high DUB expression in
HCC. At present, molecularly targeted drugs and small molecule
inhibitors for ubiquitination and deubiquitination-related
enzymes have been used in the clinical treatment of cancer
(205, 206). Drugs such as oprozomib, ixazomib, and
bortezomib have achieved remarkable therapeutic results (207).
In the article, we also summarize some inhibitors of liver cancer-
related DUBs. The current research results show that the USP
family-related inhibitors are widely studied. Represented by
USP14, the research on IU1 is relatively mature and has great
Frontiers in Oncology | www.frontiersin.org 10
potential for clinical application. USP22, USP14, USP10, USP13,
USP7, USP2, and USP8, liver cancer-related DUBs, have also
been reported to have related small molecule inhibitors, but the
research and development are not mature enough. Using a large
library of cyclic peptides in high-throughput screening,
researchers recently identified the first inhibitors of USP22—
macrocyclic inhibitors. In addition, UCH37 of the UCH family
also has small molecule inhibitors, but these are not specific
inhibitors of UCH37. Due to the unique active structure of DUB,
there are still some difficulties in the development of many small
molecule inhibitors. In conclusion, the prospect of DUB
inhibitors as drug targets is still very impressive, and it will
also have great clinical application significance for the treatment
of human diseases in the future.

In this article, we introduce that OTUB1 OTUD3 OTUD6B
ZRANB1 USP14, USP1, USP10, USP39, USP22, USP9X, USP2,
USP7, USP4, USP5, USP29, USP15, USP12, USP16, USP27,
USP46, USP8, and UCH37 can affect the malignant degree of
HCC through the corresponding mechanism. Among them,
USP22, USP1, and USP9X were all related to drug resistance to
HCC; USP14, USP13, USP29, and OTU6B were all related to the
hypoxic microenvironment and HIF in HCC. As can be seen, the
relationship between the USP family and liver cancer is currently
the most frequently studied with the participation of a class of
DUBs, and many corresponding small molecule inhibitors have
also been studied for such DUBs. Therefore, we presume that the
USP family is the most promising biomarker for DUB for the
diagnosis and treatment of liver cancer. Among them, USP14
small molecule inhibitors are the most clinically significant drug
targets. However, the research progress on OTU and UCH
family in liver cancer is less. There are also very few reports on
Machado–Joseph domain-containing proteases (MINDY) and
zinc-dependent metalloproteinases (JAMMs), so the research on
the mechanism of DUBs in liver cancer is far from being in-
depth. There is still a lot of room for development in the study of
DUBs on the pathogenesis and treatment of liver cancer. The
development of related targeted drugs and the clinical
application of small molecule inhibitors will also become a
research hotspot in the future. These can provide new ideas
and research directions for the treatment of liver cancer in
the future.
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