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Abstract

Background: Random effects modelling is routinely used in clustered data, but for prediction models, random
effects are commonly substituted with the mean zero after model development. In this study, we proposed a
novel approach of including prior knowledge through the random effects distribution and investigated to what
extent this could improve the predictive performance.

Methods: Data were simulated on the basis of a random effects logistic regression model. Five prediction
models were specified: a frequentist model that set the random effects to zero for all new clusters, a Bayesian model with
weakly informative priors for the random effects of new clusters, Bayesian models with expert opinion incorporated into
low informative, medium informative and highly informative priors for the random effects. Expert opinion at the cluster
level was elicited in the form of a truncated area of the random effects distribution. The predictive performance of the
five models was assessed. In addition, impact of suboptimal expert opinion that deviated from the true quantity as well as
including expert opinion by means of a categorical variable in the frequentist approach were explored. The five models
were further investigated in various sensitivity analyses.

Results: The Bayesian prediction model using weakly informative priors for the random effects showed similar results to
the frequentist model. Bayesian prediction models using expert opinion as informative priors showed smaller Brier scores,
better overall discrimination and calibration, as well as better within cluster calibration. Results also indicated that
incorporation of more precise expert opinion led to better predictions. Predictive performance from the frequentist
models with expert opinion incorporated as categorical variable showed similar patterns as the Bayesian models with
informative priors. When suboptimal expert opinion was used as prior information, results indicated that prediction still
improved in certain settings.

Conclusions: The prediction models that incorporated cluster level information showed better performance than the
models that did not. The Bayesian prediction models we proposed, with cluster specific expert opinion incorporated as
priors for the random effects showed better predictive ability in new data, compared to the frequentist method that
replaced random effects with zero after model development.
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Background
In many medical areas, prediction models are used to
support clinical practice [1].
When study data collected for the development of a

prediction model are clustered e.g., patients are registered
with the same general practitioner or farm animals live in
the same herd, there is often within cluster dependency. It
is suggested that the clustering structure should be taken
into account in the development of a prediction model, in
order to produce unbiased model parameter estimates [2],
whereas regression methods that assume independence
between subjects are inappropriate. In such situations,
random effects regression analysis can be a viable alterna-
tive, as it parameterizes the cluster level heterogeneity by
means of random effects, and allows predictions to be
made at the subject level [3].
Surprisingly, despite the routine use of random effects re-

gression modelling in etiological or intervention research,
this approach is hardly seen in prediction research [4]. This
is probably because generalization of the random effects
model is not straightforward [5], as the latent random coef-
ficient of a new cluster is considered unknown. In existing
clinical applications, e.g., Van der Drift et al. [6], the random
effects were removed from the model after selection of pre-
dictors at the model development phase. This is equivalent
to setting the random effects for all new clusters to zero. By
doing so, the prediction model simply ignores the cluster-
ing structure in new data, which may lead to a loss of pre-
diction accuracy [2].
Alternatively, one could maintain and estimate the

random effects for new clusters by incorporating
external cluster level information into the prediction
model. In medical practice for instance, some hospi-
tals are better at treating a certain disease than other
hospitals due to hospital specific characteristics. An
expert may be able to provide such additional infor-
mation about the hospitals. Methods for eliciting in-
formation from experts can be found in literature such
as Spiegelhalter et al. [7] and O’Hagan et al. [8]. In-
corporation of expert knowledge into the data analysis
can easily be done under the Bayesian framework. In
this paper, we propose a new approach that includes
cluster level expert knowledge as prior evidence for
the random effects in a prediction model and investi-
gate the benefit of this approach in the setting of new
clustered data.
The paper is organized as follows: in the Methods sec-

tion, we first review how one can develop and apply a
prediction model either in a frequentist or in a Bayesian
way. We then propose our approach of incorporating
expert opinion into the prediction model. Description of
the simulation studies is provided afterwards, followed
by the Results section. The paper concludes with a dis-
cussion of results and implications for future research.

Methods
Estimation at model development phase
At the model development phase, data containing measures
of the predictor(s) and outcome of interest are collected for
the purpose of estimating the model parameters. In empir-
ical applications, selection of relevant predictor(s) is often
performed first. In this study, we assume that relevant pre-
dictors were selected already and directly focus on param-
eter estimation.
We consider a simple logistic regression model with

one predictor measured on the subject level and random
effects at the cluster level. Let xij be the predictor and yij
be the observed binary outcome of subject i (i = 1,…, nj)
from cluster j (j = 1,…, J), and pij = p(yij = 1) be the latent
underlying risk for the observed binary outcome. A ran-
dom effects logistic regression model can be expressed
as:

logit pij
� �

¼ β0 þ β1xij þ uj

u j∼N 0; σ2u
� �

;
ð2:1Þ

where the logit (i.e., log-odds) of the latent underlying
risk of the outcome logit(pij) is equivalent to the linear
predictor LPij = β0 + β1xij + uj. The model can alterna-
tively be written in the form of:

pij ¼
1

1þ exp −LPij
� � : ð2:2Þ

The linear predictor consists of the regression parameter
β1 for the predictor, the average (fixed) intercept β0 and the
cluster specific random effect uj. The random effects are
assumed to have a normal distribution with mean zero and
variance σ2u.

Frequentist estimation
Within the frequentist approach, parameters of a logistic
regression prediction model are estimated via maximum
likelihood (ML). In our study, functions from the R pack-
age ‘lme4’ were used [9].

Bayesian estimation
Within the Bayesian framework, parameters are expressed
in the form of distributions rather than fixed values. Be-
fore observing the data, prior distributions that contain
the plausible values for the model parameters need to be
specified [7]. The prior distributions are subsequently up-
dated with observed data, resulting in posterior distribu-
tions. The posterior can be derived either analytically or
by sampling methods. In this study, Markov chain Monte
Carlo (MCMC) sampling was used.
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Prior distributions needed to be specified for parameters
β0, β1 and σ2u in model (2.1). Priors for the regression pa-
rameters β0 and β1 were assumed to be normally distrib-
uted, and prior for the variance σ2u had an inverse gamma
distribution. When there is no a priori evidence available,
one often uses weakly informative priors. A common
choice for a normal distribution is to fix the mean at zero
and take a large variance (here we used 1000 for the vari-
ance). For an inverse gamma distribution, small values are
often assigned to the hyperparameters (here we used 0.001
for both hyperparameters).

βα ∼ N ð0; 1000Þ ð for α ¼ 0; 1Þ;
σ2
u ∼ Inv−gamma ð0:001; 0:001Þ: ð2:3Þ

Estimates for the parameters of interest are provided by
the MCMC samples from the posterior distribution after
convergence. In this study, we used OpenBUGS (via R
package ‘BRugs’ [10]) to carry out the Bayesian analyses.

Prediction in new clusters
Let xsc be the predictor, ysc be the observed binary outcome
and psc be the latent underlying risk of the observed out-
come for subject s (s = 1,…, nc) from new cluster c (c = 1,
…,C). The prediction model developed and estimated from
model development data is applied to calculate the risk of
outcome for each subject in new clusters. The predicted
risk of outcome p̂sc is compared to the true latent under-
lying risk psc and the observed outcome ysc for the evalu-
ation of the predictive performance.

Frequentist prediction
In the frequentist approach, prediction for new clusters is
usually based on a model where point estimates for the re-
gression parameters are incorporated and the random effect
term is substituted with mean 0 (i.e., removed). This leads
to the predicted linear predictor.

cLPML

sc ¼ β̂
ML
0 þ β̂

ML
1 xsc; ð2:4Þ

where β̂
ML
0 and β̂

ML
1 are the estimated regression coeffi-

cients using maximum likelihood estimation and xsc con-
tains values of the predictor from subjects in new clusters.
Accordingly, the predicted risk for the binary outcome in
new clusters can be written as

p̂sc ¼
1

1þ exp −cLPML

sc

� � : ð2:5Þ

Bayesian prediction
In the Bayesian approach, by MCMC sampling, we ob-
tain the posterior distribution for the parameters β0, β1

and σ2u . In this study, instead of using summarized point
estimates, the full posterior for the parameters is
exploited for prediction. To explain the Bayesian predic-
tion, consider Table 1 in which a small part of the MCMC
output is listed.
The sampled values for parameters from iteration k,

denoted by ~β
ðkÞ
0 , ~β

ðkÞ
1 and ~σ2u

ðkÞ
, are presented in the left

hand part of the table. Predictions made for subjects in a
new cluster can be found in the right hand part of the
table. As the model development clusters and the new
clusters are assumed to be exchangeable, i.e., originated
from the same metapopulation, random effects for all
clusters are assumed to have the same normal distribu-
tion Nð0; σ2uÞ . For new cluster c, in each iteration, the

predicted random effect ûðkÞc can be drawn from distri-

bution Nð0; ~σ2
u
ðkÞÞ . For each subject s (s = 1,…., nc) from

cluster c, the estimated linear predictor is hence

cLP kð Þ
sc ¼ ~β

kð Þ
0 þ ~β

kð Þ
1 xsc þ û kð Þ

c ; ð2:6Þ

and the predicted risk can be obtained by.

p̂ kð Þ
sc ¼ 1

1þ exp −cLP kð Þ
sc

� � ð2:7Þ

Eventually, a predicted risk distribution based on all K
iterations is available for each subject. In this paper, in
order to compare the results between the Bayesian
models and the frequentist model, we used the median
of the predicted risk distribution as the summarized pre-
dicted risk p̂sc, resulting in a single estimate per subject.
By applying the Bayesian approach, we can maintain the

random effect term in the prediction model, which takes
uncertainty due to variance between clusters into account.
To improve the predictive ability of the Bayesian random
effects model, one may include cluster specific expert
knowledge as prior for the random effects on new clusters.
Demonstration of how this prior knowledge was incorpo-
rated into a Bayesian prediction model can be found in
the following section.

Bayesian approach with informative priors
In the previous section, for each new cluster c in each

iteration k, the predicted random effect ûðkÞc was sampled

from the entire random effects distribution Nð0; ~σ2u
ðkÞÞ .

This would add more uncertainty to the prediction
compared to the frequentist model that substituted the
random effects with the mean 0. However, if there is in-
formation available about the position of a new cluster
relative to other clusters, we may sample a value for

ûðkÞc from part of the distribution rather than the whole
distribution.
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Consider again the example of hospitals where some
hospitals are known to be better at treating a particular
disease than others. When we have no clue about the
relative risk of death for a disease from a particular hospital
regarding other hospitals, we sample a random effect for
the hospital from the entire random effects distribution.
However, if an expert is capable of using hospital level in-
formation to judge whether a hospital would provide below
or above average chance of survival, we could sample the
random effect from only the lower or upper half of the
distribution [11]. Suppose the expert says the hospital will
provide a below average probability of survival, the random
effect will accordingly be sampled from the lower half of
the distribution (see the first plot in Fig. 1). Further, if the
expert is more precise about the relative position of the
hospital with regard to other hospitals, the random effect
can also be drawn from a smaller area, such as one third or
one fifth of the distribution (see the second and third plots
in Fig. 1).

It is expected that more precise prior knowledge leads
to better predictions, under the assumption that an
expert provides information that matches the true value.
It is however likely that experts sometimes provide sub-
optimal judgments that deviate from the true quantity.
Incorporation of discrepant expert opinion into the pre-
diction model was therefore investigated as well. All
investigations were done through simulations. Details of
the simulation studies are presented in the next section.

The simulation studies
Data generation
One set of data containing 5000 subjects (n = 5000) was
generated for model development. The number of clusters
was set to 50, and the number of subjects per cluster was
100. Each cluster consisted of equal numbers of subjects.
For each subject, one continuous predictor was sampled
from the normal distribution N(0, 1) and allocated to the
subjects in all further analyses. The true value for the

Fig. 1 The random effects distribution divided into multiple truncated areas of equal proportions in 3 different scales. A truncated area contains
either half, one third, or one fifth of the distribution. Based on elicited expert knowledge for each cluster, a particular truncated area from each
scale is chosen and used as prior distribution for the random effect of the cluster. We considered a prior distribution that contains 1/2 of the
distribution as low informative, 1/3 as medium informative, and 1/5 as highly informative

Table 1 An example of using posterior samples from model development data analysis for prediction in a new cluster

Posterior from model development data Prediction for new cluster c

Iteration Subject 1 … Subject nc

k ~β
ðkÞ
0

~β
ðkÞ
1 ~σ2u

ðkÞ ûðkÞc
a x1c p̂ðkÞ1c

b … xncc p̂ðkÞncc
b

. . . . . . . . . .

. . . . . . . . . .

5001 −1.35 1.07 1.17 .50 1.11 .58 … −.46 .21

5011 −1.24 1.08 .88 −1.89 1.11 .13 … −.46 .03

5021 −1.36 1.18 1.28 −.06 1.11 .47 … −.46 .12

5031 −1.31 1.05 .98 −.64 1.11 .31 … −.46 .08

5041 −.94 .98 1.37 .26 1.11 .60 … −.46 .24

. . . . . . . . . .

. . . . . . . . . .

Median .52 .15

arandom effect sampled from the normal distribution Nð0; ~σ2
u
ðkÞÞ

bpredicted risk calculated by p̂ðkÞsc ¼ 1

1þ expð−~β
ðkÞ
0 þ~β

ðkÞ
1 xscþû

ðkÞ
c Þ
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regression parameter β1 was set to 1.5. The random effects
for clusters were sampled from a normal distribution with
cluster variance 0.822. This value corresponds to an intra-
class correlation coefficient (ICC) of 0.20, calculated from
the formula σ2u=ðσ2u þ π2=3Þ where the error variance has
a fixed value π2/3 in a logistic regression model [3].
The latent underlying risk of the outcome for each sub-
ject was calculated by computing the linear predictor.
The observed outcome was subsequently sampled from
a Bernoulli distribution using its underlying risk. By
adjusting the value of the fixed intercept β0, we set the
overall prevalence of the dataset approximately to 50%.
Finally, one new dataset was simulated by the exact same
setting and used to evaluate the different prediction models.
The simulation study thus contained one dataset for model
development and one dataset for prediction. The R code
for data simulation is provided in Additional file 2:
Appendix B. It is worth noting that each time if we
replicate a simulation study using the same settings with a
different seed, we get different samples for the model devel-
opment and prediction datasets, as there is randomness in-
volved in the sampling process. Comparisons of the relative
performance between models were hence carried out only
within the same sets of development and prediction data.

Analysis of simulated data
Five models were estimated using model development
data and applied to predict in new data. In the frequentist
model (denoted FREQ), ML estimates of the regression

parameters β̂
ML
0 and β̂

ML
1 were incorporated, and the ran-

dom effect term was replaced with 0. Within the Bayesian
approach, a prediction model using weakly informative
priors for the random effects was first specified and de-
noted BAYES.WI. Three more prediction models were
subsequently constructed where cluster specific expert
judgments were incorporated as prior information for the
random effects. Optimal expert judgment was defined as
choosing the truncated area from the random effects dis-
tribution which contained the true value of the random ef-
fect. Three scales were specified for the random effects
distribution on the basis of varying degrees of precision of
the expert opinion. In each scale, the distribution was di-
vided into equal sized truncated areas (i.e., equal propor-
tions). The model that used low informative priors which
contained half of the distribution was denoted BAYES.LI.
Similarly, the model that used medium informative priors
which contained one third of the distribution was denoted
BAYES.MI, and the model that used highly informative
priors which contained one fifth of the distribution was
denoted BAYES.HI. For each Bayesian prediction model,
two posterior chains were sampled and thinned by the
interval 10 (i.e., taking every 10th observation). Within
each chain 100 samples were saved after convergence was

reached, leading to 200 posterior samples in total for pre-
diction in each subject from the new clusters.

Discrepant expert opinion
Impact of including expert opinion that deviated from
the true random effect value as prior information was
explored in models BAYES.LI, BAYES.MI and BAYES.HI.
We defined discrepant expert judgment as selecting a
truncated area that was next to the ‘correct’ area that con-
tained the true value of the random effect. In the BAYE-
S.LI condition, it was straightforward, since the random
effects distribution was divided into two equal sized areas.
When the true value of the random effect was located in
one area, the other area would be chosen. However, in the
BAYES.MI and BAYES.HI conditions where the random
effects distribution was divided into more than two equal
sized areas, choosing a truncated area that was next to the
‘correct’ area indicated that the discrepant expert opinion
was still relatively close to the true value (see Fig. 1). Sup-
pose the true value was at the middle 1/5 truncated area
of the distribution, the discrepant expert opinion would
be selecting the second 1/5 or the fourth 1/5 truncated
area from the left hand side. In other words, discrepant
expert opinion with more precision (i.e., 1/3, 1/5) was less
off from the true value in comparison to the discrepant
expert opinion with least precision (1/2). The percentage
of new clusters that incorporated discrepant expert opin-
ion was set to 10, 30% or 50%.

Expert opinion as categorical variable in the frequentist
approach
In principle, one could also include prior knowledge in
the frequentist model. We performed simulations where
optimal expert opinion was incorporated as a fixed effect
in the frequentist model in the default scenario. First, in
the phase of model development, the true random effects
were used to create the additional predictor representing
the prior knowledge. For instance, when the true random
effect for a specific cluster was among the upper half of
the true random effects distribution, expert opinion for
this cluster was then coded into 1 when the lower half was
the reference category (coded 0). Likewise, expert opinion
was coded using a categorical variable with 3 or 5 levels
by placing the true random effects for the model develop-
ment clusters in the correct tertiles and quintiles, with the
second tertile and the third quintile as the reference cat-
egory respectively. The frequentist models with inclusion
of expert opinion coded into 2, 3, and 5 categories were
denoted FREQ.2, FREQ.3 and FREQ.5 respectively.
The resulting prediction models with expert opinion

were used to predict the outcomes in the new clusters.
Again, the expert knowledge (i.e., the scores on the cat-
egorical variable) for each new cluster was obtained by
placing the true random effect for the new cluster in
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the correct quantiles of the true random effects for the
model development clusters.

Assessment and comparison of model performance
The predictive ability of the models was assessed by Brier
scores, model discrimination and calibration. Brier score
was computed as the mean of the squared difference
between the observed binary outcomes and the pre-
dicted risks. Discriminative ability was assessed by the
concordance index (C-index) which equals the area under
the ROC curve. Model calibration was evaluated using the
calibration slope. The ideal value for the calibration slope
is 1, which represents perfect prediction. The further the
calibration slope deviates from 1, the worse the model is
calibrated [1]. Since in the simulation research, true latent
underlying risks of outcome are available, the calibration
was computed as the agreement between predicted risks
and true risks. The calibration slope was the linear regres-
sion coefficient for the predicted risk as the independent
variable, and the true risk as the dependent variable. It is
worth noting that in empirical data, true risks are not
available. Model calibration can hence be assessed by
using the observed binary outcome as the dependent
variable and the estimated linear predictor as the inde-
pendent variable in a logistic regression analysis [1, 12].
Brier scores were computed at the subject level (over-
all) for all models. Model discrimination and calibration
were measured both at subject level (overall) and cluster
level (within cluster). The within cluster measures were
summarized in mean and standard deviation over all clus-
ters. Calibration of the models was further visualized in
calibration plots where the predicted risks of outcome
were plotted against the true risks.

Sensitivity analyses
In order to check the influence of prevalence, ICC, sample
size and strength of the predictor on prediction, eight sen-
sitivity analyses were carried out. Each sensitivity analysis
consisted of one new simulation study that had default
simulation settings except for the specific feature that was
investigated. Impact of the between cluster variance
was evaluated by comparing the default ICC value 0.20
to 0.05 and 0.50. Impact of the prevalence was evaluated
by comparing the default prevalence value 50 to 10% and
25%. To examine the effect of smaller sample sizes on pre-
diction, we reduced in one sensitivity analysis the number
of clusters, resulting in n = 2000 subjects in total ( J = S =
20, nj = nc = 100), and in another sensitivity analysis the
number of subjects per cluster, resulting in n = 1000 sub-
jects in total ( J = S = 50, nj = nc = 20). Finally, by changing
the value for the model parameter β1 from 1.5 (default) to
0.5 and 3.0, we explored the influence of a weaker or a
stronger subject level predictor.

Results
As can be seen in Table 2, the frequentist model and the
Bayesian model without prior information showed, as
expected, approximately the same Brier scores, similar
discrimination and calibration at the overall as well as
the cluster level. The Bayesian models with informative
priors showed smaller Brier scores and larger overall
C-indexes. The increasing C-indexes also revealed a posi-
tive relation between the precision of expert opinion and
the overall discrimination. Further, difference in overall
calibration slopes suggested that the Bayesian models with
informative priors had better overall calibration. This can
also be inspected in the calibration plots in Fig. 2, where
the predicted risks were plotted against the true latent
underlying risks. Smaller difference between the predicted
and true risks can be seen for the Bayesian models with
informative priors, as the calibration plots from these
models were more closely around the diagonal line which
indicated equality between the predicted and the true
risks. It is noteworthy that, for the overall measures, differ-
ence between the frequentist model and the Bayesian
model with informative priors was larger than difference
among the Bayesian models with informative priors. Par-
ticularly between the Bayesian models with medium and
highly informative priors, there is much less difference in
the overall measures. Further, the frequentist models with
expert opinion incorporated showed fairly similar patterns
in results as the Bayesian models with informative priors.
When it comes to cluster specific predictive performance,

five models showed the same within cluster C-index means
and variances, suggesting the same discriminative ability at
the cluster level. This is because the random cluster effects
only contribute to discrimination of subjects from different
clusters. However, the Bayesian models with informative
priors showed better within cluster calibration, as their
within cluster calibration slopes were closer to 1 compared
to the frequentist model. In addition, inclusion of more pre-
cise cluster level expert evidence led to smaller standard
deviation for the within cluster calibration slopes.
Further, as shown in Table 3, when the percentage of

new clusters that incorporated discrepant expert opinion
was 10%, all Bayesian models with informative priors
still outperformed the frequentist model concerning the
Brier score, the overall discrimination and the overall and
within cluster calibration. When the number of clusters
that incorporated discrepant expert opinion increased to
30%, the model with low informative priors performed
similarly to the frequentist model, whereas the models with
medium informative and highly informative priors still per-
formed better. When the percentage was increased to 50%,
the Bayesian model with low informative priors showed
worse predictive performance than the frequentist model.
However, the Bayesian models with medium and highly in-
formative priors remained better in predictive performance.
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This phenomenon can also be seen in the 9 calibration
plots in Fig. 3.
Multiple datasets for model development and pre-

diction were generated using different seeds and re-
sults (not reported in the paper but available from the
first author) showed the same structure among the
prediction models. Furthermore, the eight sensitivity
analyses showed the same patterns for the five models
(see tables in Additional file 1: Appendix A), suggesting

robustness of the Bayesian prediction models using in-
formative priors. In addition, by varying the prevalence of
the true binary outcomes, we noticed that it was more
beneficial to add cluster specific priors to the random
effects when the prevalence was closer to 50%. Results
from different ICC values implied that in data with higher
between cluster variance, it was more useful to include
cluster specific expert opinion. In data with small cluster
size and in data with small amount of clusters, the

Fig. 2 Calibration plots for the five prediction models. Predicted risks are plotted against the true latent underlying risks for 5000 subjects from 50
equal sized clusters. The diagonal indicates the line of identity (i.e., predicted risks are equivalent to the true risks). Each dot represents a subject,
and each line formed by the dots represents a cluster

Table 2 Results from the prediction models for data simulated with prevalence = 50%, ICC = .20, n = 5000 (J = S = 50, nj = nc=100),
β1 = 1.5 (the default setting)

Optimal score FREQ BAYES.WI BAYES.LI BAYES.MI BAYES.HI FREQ.2 FREQ.3 FREQ.5

Overall Brier score 0 .191 .192 .179 .174 .170 .173 .170 .167

Overall C-index/AUC 1 .782 .781 .808 .818 .826 .822 .827 .833

Overall calibration slope 1 .911 .907 .957 .982 .989 .965 .972 .994

Within cluster C-index/AUCa 1 .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037]

Within cluster calibration slopea 1 .914 [.102] .914 [.102] .947 [.091] .956 [.078] .963 [.058] .954 [.092] .973 [.080] .977 [.062]
amean[sd]
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Bayesian models with cluster specific expert opinion still
showed better performance than the frequentist model.
Further, a weak predictor had negative impact on the fre-
quentist model, adding cluster level informative priors in
the Bayesian models showed clear improvement.

Discussion
The simulation study showed that the Bayesian model
with weakly informative priors performed similarly to
the frequentist model where the random effect term was
replaced with 0. It is hence possible to take the clustering
structure from the new cluster(s) into account by means
of keeping the random effects in the prediction model,
without the loss of predictive ability. An additional benefit
of using the Bayesian prediction models may be that they
provide for each subject a distribution for the predicted
risk. In many real world situations, such information may
be preferred in comparison to point estimates.
Improvement was detected in results from models that

had optimal cluster level expert opinion incorporated as
informative priors for the random effects in the Bayesian
approach as well as in the frequentist approach where
expert opinion was incorporated as categorical variable.
More specifically, these models showed better discrimin-
ation and calibration at the subject level, and better cali-
bration within individual clusters. Comparison between
these models also revealed that incorporation of more
precisely specified expert knowledge would lead to
better predictions. In addition, difference between the
models without expert opinion and the models with low in-
formative expert opinion (i.e., low informative prior for the
Bayesian approach and a categorical variable with two levels
for the frequentist approach) was larger than the difference
among the models with cluster level expert opinion.
Results further revealed that the prediction model with

low informative priors suffered the most from expert judg-
ments that deviated from the true values of the random
effects. When the percentage of clusters that include dis-
crepant expert opinion as prior information exceeds 30%,

the Bayesian model with low informative priors is not rec-
ommended. However, the other two Bayesian models with
medium and highly informative priors seemed less influ-
enced by incorporation of discrepant expert opinion and
still gave better predictions compared to the frequentist
model. This conclusion is however conditional on how
the random effects distribution is divided and how dis-
crepant expert opinion is defined. In this simulation study,
we divided the random effects normal distribution into
areas with equal proportions, hence intervals for the tail
areas were much wider than the intervals at the center
zone. We also assumed that when an expert provided
information that deviated from the true value, she would
select an adjacent area rather than select at random. Al-
though it may perhaps be realistic to make such assump-
tions, we could as a consequence not fully investigate the
impact of incorporating expert opinion that deviates from
true values as prior information in prediction. Future
studies may look further into this topic. Instead of only
using the neighboring truncated areas, all other discrepant
possibilities could be considered. In addition, the random
effects distribution may be divided into equal intervals
rather than equal areas.
To our knowledge, this study is the first attempt to

combine model development data with expert opinion
as prior information for random effects in prediction for
new clusters. The simulated expert elicitation method is
relatively novel as well. This method was also adapted
and used in the frequentist models where expert opinion
was incorporated as categorical variable in this study. It
is nevertheless a simulation research, and only limited
scenarios have been investigated.
Further, from a practical perspective, it may be a dis-

advantage and should be taken into account that the
Bayesian prediction models proposed in this study are
more time consuming than the frequentist prediction
models.
Model evaluation was performed both at the subject

and the cluster level. It is debatable which measures

Table 3 Results from the Bayesian models with informative priors including different percentages of discrepant expert opinion

FREQ BAYES.WI BAYES.LI BAYES.MI BAYES.HI

Percentage wrong
expert opinion

– – 10% 30% 50% 10% 30% 50% 10% 30% 50%

Overall Brier score .191 .192 .180 .192 .201 .174 .179 .182 .170 .173 .174

Overall C-index/
AUC

.782 .781 .806 .781 .764 .818 .808 .801 .826 .821 .818

Overall calibration
slope

.911 .907 .946 .874 .824 .982 .964 .950 .989 .988 .987

Within cluster
C-index/AUCa

.805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037] .805 [.037]

Within cluster
calibration slopea

.914 [.102] .914 [.102] .946 [.091] .939 [.100] .935 [.100] .953 [.077] .939 [.084] .935 [.085] .962 [.059] .953 [.068] .951 [.070]

amean[sd]
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are more informative for prediction models [2]. In clin-
ical practice, the within cluster measures might be
most relevant. Other measures such as sensitivity and
specificity which were not computed in this study
could be used for model evaluation as well in real
world applications.

Conclusion
In the context of simulated data, we investigated prediction
models which incorporated cluster level expert opinion in

new clusters. Results showed that the prediction models
with cluster level information were better at predicting
the risks for the outcome in a new cluster than the
commonly used frequentist model that replaced ran-
dom effects with zero after model development. We
focused on the Bayesian models we proposed, as it is
more intuitive to use the Bayesian approach when in-
corporating prior knowledge into the analysis. Future
research may focus on validation in real world data and
evaluation of clinical benefits.

Fig. 3 Calibration plots for Bayesian models using discrepant expert opinion as prior information for the random effects. Predicted risks are
plotted against the true latent underlying risks for 5000 subjects from 50 equal sized clusters. Clusters using optimal expert opinion are displayed
in grey color, whereas clusters using discrepant expert opinion are addressed in black color. The diagonal line is the line of identity (i.e., predicted
risks are equal to the true risks). Each dot represents a subject, and each line formed by the dots represents a cluster
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