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Abstract
Magnesium  (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions,  Mg2+ is essen-
tial for protein synthesis, energy production, and DNA stability. Disturbances in intracellular  Mg2+ concentrations, therefore, 
unequivocally result in delayed cell growth and metabolic defects. To maintain physiological  Mg2+ levels, all organisms rely 
on balanced  Mg2+ influx and efflux via  Mg2+ channels and transporters. This review compares the structure and the function of 
prokaryotic  Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular  Mg2+ homeostasis is orchestrated via 
the CorA, MgtA/B, MgtE, and CorB/C  Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity 
pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also 
have  Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional proper-
ties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41  Na+/Mg2+ transporters. 
In eukaryotes, TRPM6 and TRPM7  Mg2+ channels provide an additional  Mg2+ transport mechanism, consisting of a fusion of 
channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional 
regulatory pathways that determine their  Mg2+ transport capacity. Our review demonstrates that understanding the structure 
and function of prokaryotic magnesiotropic proteins aids in our basic understanding of  Mg2+ transport.
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Introduction

Magnesium  (Mg2+) is required as co-factor in over 300 enzy-
matic reactions and is therefore involved in many physiologi-
cal processes [1–3]. The involvement of free  Mg2+ can be via 
substrate complexes or directly to the enzymes themselves 
and is dependent on the spatial arrangement of water mol-
ecules [2]. This is influenced by the large hydration shell, 
which is 400 times larger when unhydrated and larger than 

other positively charged minerals, such as  Na+,  K+ and  Ca2+ 
[4]. In pro- and eukaryotic cells, the majority (± 90%) of the 
intracellular  Mg2+ is bound to ATP (MgATP). Among others, 
MgATP is essential for ATPase function, phosphorylation 
events, and glycolytic enzymes [5–8]. Ionised  Mg2+ acts as a 
co-factor for enzymes important for macromolecule synthe-
sis, such as DNA/RNA polymerases and tRNA synthetases 
[9–11]. Moreover,  Mg2+ plays a central role in protein syn-
thesis. Data from E.coli bacteria indicate that a single ribo-
some contains at least 170  Mg2+ ions [12]. In photosynthesis, 
 Mg2+ is located in chlorophyll molecules and crucial for the 
absorption of photons that is required for ATP and  O2 pro-
duction, a phenomenon that supports all multicellular organ-
isms [13]. Moreover,  Mg2+ is an antagonist for  Ca2+, which 
is of particular importance in the regulation of ion channel 
activity [1].

As  Mg2+ is central to enzymatic function and metabo-
lism, cells require a transport system to keep  Mg2+ levels 
stable. In vertebrates, the main magnesium-transporting 
proteins are transient receptor potential melastatin (TRPM) 
6 and -7, solute carrier 41 (SLC41), cyclin M (CNNM) 
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proteins, and mitochondrial RNA splicing protein 2 (Mrs2) 
(Table 1). These  Mg2+ channels and transporters often 
have a prokaryotic, bacterial and/or archaeal, orthologue. 
Although their function is to facilitate  Mg2+ fluxes, they are 
also permeable for other (trace) divalent cations (Table 2). 
While research generally focusses on characterisation of 
eukaryotic  Mg2+ transporters in mammalian cell models, 

many valuable insights can be obtained by examining their 
prokaryotic counterparts in greater detail. In prokaryotes, 
four major  Mg2+ channels and transporters have been iden-
tified, named after their role in Cobalt resistance (Cor) and 
 Mg2+ transport (Mgt): CorA, CorB/C, MgtA/B, and MgtE 
(Fig. 1). In recent years, structures of several prokaryotic 
 Mg2+ transporters and channels have been elucidated using 
cryo-electron microscopy and X-ray crystallography. Not 
only have these structures given insights into how these 
transporters/channels are regulated, but also reveal the 
function of their eukaryotic counterparts.

In this review, we compare the structure of the prokary-
otic  Mg2+ transporting proteins and interpret the functional 
similarities of their eukaryotic orthologues. All  Mg2+ trans-
porting superfamilies will be discussed in terms of struc-
ture and functional characteristics.

Main body

The CorA family and the mitochondrial  Mg2+ 
channel Mrs2 orthologue

In 1969, two groups identified active  Mg2+ transport in E. 
coli, which was temperature dependent, but independent of 

Table 1  Overview of proteins found in prokaryotes that regulate cel-
lular  Mg2+ levels and their orthologue families in eukaryotes

a The MgtE orthologues have currently only been described in unicel-
lular green and red algae (Viridiplantae and Archaeplastida, respec-
tively) [14, 15]
b TRP channels have been described in yeast, but to date no particular 
orthologues of TRPM6/7 have been identified

Prokaryote Eukaryote

S. cerevisae Plantae Metazoa

Superfamilies
 CorA Mrs2, Alr1/2, 

Mnr2, Lpe10
Mrs2-like proteins Mrs2

 MgtA – – –
 MgtE – MgtE-like  proteinsa SLC41
 CorB/C MAM3 DUF21(-CBS) proteins CNNMs

– –b – TRPM6/7

Table 2  Overview of prokaryotic and eukaryotic  Mg2+ channels and transporters and their ion selectivity

To note, two-electrode voltage clamp can only be used in relatively large in vitro models, e.g. oocytes. In addition, the intracellular compartment 
cannot be controlled and may therefore be not suitable to determine permeation profiles [24, 25]

Protein Transporting mechanism Ion selectivity Technique [reference]

CorA Channel Ca2+ >  Mn2+ >  Co2+ >  Mg2+ >  Ni2+ (in the constitutively 
open CorA D253K mutant)

Voltage clamp recording in oocytes [16]

Mg2+ >  Mn2+ >  Co2+ >  Ni2+ >  Ca2+ Competition assay in S. typhimurium [17]
Mrs2 Channel Mg2+ >  Ni2+ >  Ca2+ =  Mn2+ =  Co2+ Patch clamp recording in yeast [18]
CorB/C Exchanger Not reported
CNNM2 Transporter (?) Mg2+ >  Sr2+ =  Zn2+ =  Cd2+ =  Ni2+ >  Ba2+ =  Co2+ >  Fe2+ =  C

u2+ =  Mn2+ =  Ca2+
Voltage clamp technique in oocytes [19]

CNNM3 Exchanger (?) Mg2+ >  Fe2+ >  Cu2+ >  Co2+ >  Ni2+ >  Ca2+ Voltage clamp technique in oocytes [19]
MgtE Channel Mg2+ >  Mn2+ >  Ca2+ >  Na+ =  K+ Liposome-based transport assays [20]
SLC41A1 Na+-exchanger (?) Mg2+ >  Sr2+ =  Fe2+ ≥  Ba2+ =  Cu2+ >  Zn2+ =  Co2+ >  Cd2+ =  

Mn2+ =  Ni2+ =  Ca2+
Voltage clamp technique in oocytes [19]

SLC41A2 Na+-exchanger (?) Mg2+ >  Ba2+ >  Ni2+ =  Co2+ >  Fe2+ =  Mn2+ =  Sr2+ >  Cu2+ =  
Zn2+ =  Ca2+

Voltage clamp technique in oocytes [19]

SLC41A3 Na+-exchanger (?) Ba2+ >  Mg2+ >  Ni2+ =  Zn2+ >  Sr2+ =  Fe2+ >  Mn2+ >  Cu2+ =  
Co2+ >  Ca2+

Voltage clamp technique in oocytes [19]

TRPM6 Channel Zn2+ >  Ba2+ >  Mg2+ =  Ca2+ =  Mn2+ >  Sr2+ >  Cd2+ =  Ni2+ Patch clamp recording in CHOK1 cells [21]
Ba2+ >  Ni2+ >  Mg2+ >  Zn2+ ≥  Ca2+ Patch clamp recording in HEK293 cells [22]

TRPM7 Channel Zn2+ =  Ni2+ >  Ba2+ >  Co2+ >  Mg2+ ≥  Mn2+ ≥  Sr2+ ≥  Cd2+ ≥  
Ca2+

Patch clamp recording in HEK293 cells [23]

Ni2+ >  Zn2+ >  Ba2+ =  Mg2+ >  Ca2+ =  Mn2+ =  Sr2+ >  Cd2+ Patch clamp recording in CHOK1 cells [21]
MgtA P-type  Mg2+-ATPase Zn2+ >  Mg2+ >  Ni2+ =  Co2+ >  Ca2+ Competition assay in S. typhimurium [17]
MgtB P-type  Mg2+-ATPase Mg2+ =  Co2+ =  Ni2+ >  Mn2+ >  Ca2+ Competition assay in S. typhimurium [17]
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other cations, such as calcium  (Ca2+), potassium  (K+), or 
manganese  (Mn2+) [26, 27]. The molecular mechanism for 
 Mg2+ transport was identified in the context of cobalt  (Co2+) 
resistance. Exposure of E.coli to relatively high  Co2+ lev-
els disrupted growth, yet was inhibited in the presence of 
high  Mg2+ levels [28]. Mutants that displayed resistance to 
 Co2+-mediated growth retardation also showed decreased 
 Mg2+ transport, suggestive for shared uptake of these met-
als into bacteria [28]. The gene was identified in Salmo-
nella typhimurium and named corA (protein: CorA) [29]. 
Approximately half of the prokaryotes have the orthologue 
and is considered one of the main channels for  Mg2+ into 
cells (Fig. 1) [30]. Transport studies using radioactive 28Mg2+ 
also showed that CorA also allows efflux, which is depend-
ent on the extracellular  Mg2+ concentration [31]. Efflux was 
abolished upon mutagenesis of the genetic loci encoding 
Cobalt resistance B, C, and D (CorB, -C, and -D; literature 
on the characterisation of CorD is absent and will not be 
described further) [31, 32]. Similarly to MgtE, CorA uses the 
electrochemical gradient across the cytoplasmic membrane 
to transport its substrates [33, 34]. This dependence on the 
membrane potential means that the ion transport it promotes 
is influenced by changes in pH or by fluctuations in the con-
centration of other ions. CorA is, together with MgtE, the 

only primary  Mg2+ channel whose crystal structure is known 
in its entirety in the presence and in the absence of divalent 
cations  (Mg2+ and  Ca2+) [35–38].

The structure of CorA was solved in the bacterium Ther-
motoga maritima (TmCorA) using X-ray crystallography 
[34, 39]. The protein consists of a large N-terminal region, 
connected to a smaller C-terminal region through a long 
α-helix. The C-terminal region contains two transmembrane 
helices. To be functionally active, CorA associates with itself 
to form funnel-shaped homopentamers, which in total con-
tain ten transmembrane segments. The functional unit forms 
a central pore that crosses the membrane and reaches the 
intracellular region [35, 40]. The crystal structure revealed 
that cations bind to both the central pore and the intracellu-
lar region. The latter has regions rich in acidic residues that 
are located between the different subunits, where  Mg2+ ions 
bind and regulate channel activity [34, 35, 40]. In each subu-
nit there are five  Mg2+-binding sites. Upon binding,  Mg2+ 
ions increase the number of contacts between subunits and 
stabilise the closed conformation of the channel [38]. In the 
presence of  Mg2+, the pore is too narrow to allow ion entry 
[41]. In contrast, loss of binding of  Mg2+, the cytoplasmic 
N-terminus and gains flexibility, resulting in an asymmetric 
domain rearrangement. Ultimately, this allows the opening 
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Fig. 1  Schematic overview of prokaryotic  Mg2+ transport proteins. 
Cobalt resistance (Cor) and  Mg2+ transporting (Mgt) proteins CorA 
or MgtE form the major  Mg2+ influx systems in prokaryotes. How-
ever, the channels are rarely present together in the same species, i.e. 
prokaryotes either have CorA or MgtE channels. CorA and CorB/C 
can regulate  Mg2+ efflux from cells, although the dependency of 
CorA in relationship to CorB/C proteins remains unstudied. The 
MgtA ATPase is activated when extra- or intracellular  Mg2+ levels 
are low. In response to these cues, the PhoQ/P system is activated. 

Upon  Mg2+ restriction, PhoQ phosphorylates PhoP, which in turn 
results in transcription of mgta encoding MgtA. Low intracellular 
 Mg2+ concentration also enables efficient translation of the mgta tran-
script via a riboswitch. Translation results in expression of the MgtA 
ATPase, which hereafter localises to the membrane to regulate  Mg2+ 
influx via primary active transport. The intracellular  Mg2+ concentra-
tion is ultimately determined based on the expression of the channels/
transporters at the membrane and their activity
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of the pore and influx of  Mg2+ through the channel [42]. Yet, 
mutagenesis of the  Mg2+-binding sites in TmCorA did not 
result in a constitutive opening of the channel, leaving the 
mechanistic role of  Mg2+ in CorA gating unresolved [43]. 
Although the exact mechanism of opening or closing remains 
unknown, it has been postulated that the selectivity of CorA 
for  Mg2+ is due to a conserved motif located at the entrance 
of the pore. This motif, defined by a YGMNFxxMPEL 
sequence, located at the loop of the C-terminal transmem-
brane alpha helices (Fig. 2) [44]. Distant orthologues of 
CorA lost the MPEL motif and only share the conservation 

of the Gly-X-Asn (GxN) motif, of which the X represents 
hydrophobic amino acids Met, Val, or Ile (Fig. 2) [44]. CorA 
is likely permeable for hexa-hydrated  Mg2+, as it supports 
transport of  Co2+ and  Ni2+, which have the approximate same 
size as hydrated  Mg2+ [17, 32]. In addition, CorA could be 
inhibited to cobalt hexamine, a structural analogue of  Mg2+ 
as it competes with  Mg2+-binding resides in the cytosolic 
pore domain [41].

During evolution, this pentameric transporter remained 
important for  Mg2+ transport across all phyla (Table 1), 
as there are orthologues present in every phylum, as 

Fig. 2  Structure of CorA and its 
orthologue Mrs2; A Structure of 
the pentamer Cobalt resistance 
A of Thermotoga maritima 
(TmCorA, PDB: 3JCF) in 
complex with  Mg2+ (purple 
spheres, left panel) with one 
monomer highlighted. Right 
panel: zoom in on the surface 
of the transmembrane domain 
of CorA depicting the typical 
GxN motif that orthologues of 
CorA contain.  Mg2+ ions have 
been enlarged for illustration 
purposes. B Schematic depic-
tion of the monomer of CorA 
(up panel) and Mrs2 (bottom 
panel), with the location of 
the GMN motif located at the 
surface of the pore (white dot). 
Same colours as in A have been 
used to reflect the approximate 
strucuture and location. The 
schematic structure of the yeast 
homologue Mrs2 (PDB: 3RKG) 
has been depicted, which is 
based on on the cytoplasmic 
region COOH

TmCorA
Uniprot: Q9WZ31

N

COOH

ScMrs2
Uniprot: Q01926

N

N
3

N
1

N
2

C
1

C
2

C
3

C
4

N
1

N
2

C
1

C
2

C
3

C
4

α1α2α3

α6α7

α4

α5 α6

α7α8

α1α2

α3

α4 α5

Mg2+

Gly312

Met313

Asn314

Membrane

Cytoplasm

A

B
GMN

GMN

Membrane

Membrane

11.9% 
identity



Structural and functional comparison of magnesium transporters throughout evolution  

1 3

Page 5 of 17 418

extensively described in this review [44]. The first eukar-
yotic orthologues of CorA were identified in Saccharo-
myces cerevisiae; mitochondrial RNA splicing protein 2 
(Mrs2) and its homologue Lpe10. Both Mrs2 and Lpe10 
are located in the mitochondria, possibly as a result of the 
endosymbiosis that gave rise to these organelles, and inac-
tivating mutations in the genes cause decrease in  Mg2+ 
content in mitochondria and cells [45–48]. The Mrs2 pro-
tein mainly shows structural conservation to CorA and has 
low amino acid identity to it (11.9%), apart from the typical 
GxN motif in the pore (Fig. 2B). The α–β–α sandwich at 
the N-terminus is similar for CorA and Mrs2, although the 
latter contains an extra α–β at the start of the protein [49]. 
Only a few residues are conserved between TmCorA and 
Mrs2 that are important for  Mg2+ sensing [49]. Neverthe-
less, CorA expression partially alleviates the phenotype 
in mrs2-deficient yeast, highlighting the bacterial ancestry 
to this prokaryotic protein [46, 50]. Metazoa only contain 
one Mrs2 homologue, which exclusively is localised to 
the mitochondria [47]. Indeed,  Mg2+ plays a role in mito-
chondrial processes like the citric acid cycle, reactive oxy-
gen species (ROS) production, and apoptosis [51, 52]. In 
contrast to metazoa, many Mrs2 orthologues are present 
in plants, such as in Arabidopsis thaliana, containing ten 
genes encoding orthologues of Mrs2 (ARAth;Mgt), which 
may be due to independent gene duplications (TF328433) 
[53]. Arabidopsis Mrs2 is able to complement, at least to 
an extent, the growth of mrs2 mutant S. cerevisiae grown 
in  Mg2+ deficient conditions [54]. It is still not understood 
why many plants have multiple orthologues of Mrs2, 
although this may be explained by the spatial specific 
expression pattern [55–57]. Moreover, deficiency of one 
of the genes often leads to growth retardation, indicating 
that these proteins are non-redundant [54, 58].

The  Mg2+ transporting ATPase MgtA/B 
and orthologues

Studies demonstrating  Mg2+ influx in bacteria demonstrated 
that the kinetics of  Mg2+ transport changed based on the 
exposure to different extracellular  Mg2+ concentrations [29]. 
Concentrations as low as 10 μmol/L were sufficient for bacte-
rial growth and increased the Vmax of  Mg2+ transport, sug-
gesting there was more than one influx mechanism at hand. 
This observation ultimately led to the discovery of the mgtA 
and mgtCB loci in S. typhimurium, encoding for MgtA and 
MgtB/C, respectively [32].

The MgtA/B proteins belong to the P-type ATPase super-
family, which also includes the  Na+/K+-ATPase and the 
 Ca2+-ATPase, and use ATP hydrolysis to fuel  Mg2+ trans-
port [7]. S. typhimurium strains containing either wild-type 
MgtA or MgtB and mutant CorA displayed significant  Mg2+ 
influx when exposed to 20 μmol/L  Mg2+, with both MgtA 
and -B having a similar  Km as CorA in S. typhimurium [17]. 
Expression of the mgtA and mgtCB loci is modulated by the 
PhoQ/P two-component system, a phosphorylation relay that 
regulates virulence, pH, osmolality-induced stress, and  Mg2+ 
deficiency (Fig. 1) [59–61]. The membrane receptor PhoQ 
phosphorylates the transcription factor PhoP when extracel-
lular  Mg2+ concentrations decrease. This initiates transcrip-
tion of, among others, the mgta and mgtCB loci. In addi-
tion, the 5’ untranslated region (5’UTR) of mgtA undergoes 
conformational changes when intracellular  Mg2+ levels are 
low as consequence of the release of  Mg2+ ions of mRNA 
molecule and initiation of translation, a phenomenon known 
as riboswitch [62, 63]. This has led to the general belief that 
 Mg2+ influx is mainly regulated by CorA, but is promoted by 
MgtA/B upon  Mg2+ deprivation.

Fig. 3  Structure of the 
N-terminus of MgtA. Structure 
of the N-terminus of Magne-
sium Transporter A (MgtA) of 
Escherichia coli (MgtA, PDB: 
3GWI). Right panel: zoom in 
on the surface of the MgATP-
binding site with the four bind-
ing motifs. The xTG (yellow) 
is unique to the MgtA protein 
compared to members of the 
P-type ATPases. MgATP has 
been enlarged for illustration 
purposes and does not reflect 
the physical bindings sites with 
the protein

Mg2+

Gln511
Thr512

Ala513
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Elucidation of the structure of the N-terminus of MgtA 
revealed the X-Thr-Gly motif (xTG), with X coding for Asn, 
Asp, Gln, or Glu, which is likely involved in binding of the 
MgATP (Fig. 3) [64]. This motif is one of the four ATP-bind-
ing motifs in MgtA and is unique compared to  Ca2+ and  Na+/
K+-ATPases and shared in many of the MgtA homologues 
in various prokaryotes. In MgtB, the Thr is replaced by Ser 
in S. typhimurium (QSG) [64]. It has been postulated that 
QSG could result in higher affinity for the MgATP nucleo-
tide base compared to the xTG motif, but this has not been 
experimentally validated yet. Further characterisation of the 
MgtA/B protein structure is needed to understand the role of 
its unique motif in of  Mg2+ transport.

Although  Mg2+-ATPases have been postulated in ver-
tebrates, the molecular identity of a MgtA/B orthologue 
remains obscure. Many studies reported  Mg2+-dependent 
ATP hydrolytic activity in different organelles, such as the 
plasma membrane, endoplasmatic reticulum, sarcolemma, 
and microvesicles found in heart, muscle, and brain [65–70]. 
This may suggest the presence of a  Mg2+-ATPase, yet stud-
ies focussing on  Mg2+ transport by these  Mg2+-dependent 
ATPases are limited. Searching for orthologues of MgtA, 
homology detection using HHpred suggested that members 
of the ATPase 13 in human could be an interesting candidate 
[71, 72]. Inactivation of the ATP13A4 gene was associated 
with delayed language development and in overexpression in 
cells stimulates  Ca2+ influx [73, 74]. Members of the ATP13 
family transport a range of electrolytes or organic com-
pounds, such as  Ca2+,  Mn2+, or polyamines [75–77]. Interest-
ingly, Claudin 16 knock-out mice, a model that induces renal-
mediated  Mg2+ wasting, showed increased gene expression 
of Atp13a4 in the kidney [78]. In C. elegans, the orthologue 
of human ATP13A2, CATP-6, was found to regulate GON-2 
[79]. GON-2 is the orthologue of the  Mg2+ channel TRPM6 
and -7 in vertebrates, proteins that will be discussed in detail 
later. Functional assays, preferably with purified ATP13A4 
protein, could reveal whether these proteins could transport 
 Mg2+ and are the orthologues of MgtA/B.

The cellular  Mg2+ channel MgtE and its vertebral 
orthologue SLC41

In a corA, mgtA, and mgtCB deficient S. typhimurium 
MM281 strain, a genomic library was expressed of the Gram-
positive Bacillus firmus to identify additional  Mg2+ trans-
porters [80]. Cells that showed growth under  Mg2+ deprived 
conditions were selected for further genetic analysis, which 
led to the discovery of the mgte locus [80]. The MgtE  Mg2+ 
channel is present in both Bacteria and Archaea, although 
it appears to be largely absent in prokaryotes that express 
CorA (Fig. 1) [81]. Interestingly, the Gram-negative bacteria 
Dechloromonas aromatica and Magnetospirilllum magneto-
tacticum contain CorA homologues that are unusually long 

and have a N-terminus that exhibits homology to MgtE [44]. 
Just as CorA, MgtE is a non-selective cation channel, facili-
tating influx of  Mg2+,  Zn2+,Co2+, and  Ni2+ [80]. Similar to 
mgtA, the mgtE transcript undergoes structural changes via 
a riboswitch upon  Mg2+ deprivation, controlled by a tertiary 
structure called the M-box [82]. However, the M-box is not 
present in every species that expresses MgtE. For instance, 
Bacillus halodurans, B. subtilis, Clostridium acetobutylicum, 
Vibrio cholae, and Chormobacterium violcaceum have the 
M-box upstream of mgte, whereas this is absent in the mgte 
transcripts in S. aureus, Cornebacterium glutamicum, Myco-
bacterium bovis and T. maritima.

MgtE adopts a homodimeric structure that differs struc-
turally from the CorA proteins (Fig. 4A) [83]. The C-ter-
minal tail contains cystathionine β-synthase (CBS) domains 
that are found in various proteins including chloride chan-
nels and AMP-activated protein kinase (AMPK). The CBS 
domains are heavily conserved and found in all phyla, with 
over 50 proteins in H. sapiens [84]. The domain in MgtE 
binds MgATP and has a dissociation constant  (Kd) for ATP of 
approximate 172 μmol/L, suggesting that MgATP is usually 
bound to the CBS domains as cytosolic ATP levels in vivo 
are in the millimolar range [85]. Additionally,  Mg2+ ions 
bind to the N-lobe and plug (Fig. 4A), which is involved in 
the gating mechanism of the protein. Decreased intracellular 
 Mg2+ levels give flexibility to the N-lobe and the plug, ulti-
mately resulting in opening of the pore [20, 83, 86, 87]. The 
transmembrane spanning domains contain conserved D1 and 
D2 domains, defined by  PX6GN and P(D/A)X4PX6D motifs, 
respectively. Located at helices TM2 and -5, these domains 
contribute to the specificity for cation transport of the MgtE 
proteins [81, 88, 89]. In MgtE, the N-lobe and plug contain 
 Mg2+-bindings sites and are important for gating [20, 83, 86]. 
Through a strong interaction of the plug with the transmem-
brane, particularly TM2 and -5, the pore is closed. Loss of 
 Mg2+ disrupts the association of the plug with TM2 and -5, 
ultimately leading to opening of the pore. The interaction of 
the N-lobe and CBS domains is ambiguous and disordered 
in  Mg2+-free.

In 2003, bioinformatical approaches led to the identifi-
cation of the solute carrier family 41 (SLC41) in humans, 
mouse, and C. elegans, which is the eukaryotic homologue 
of MgtE [89]. Interestingly, MgtE orthologues have not been 
found in land plants, fungi and brown or red seaweed (Fig. 5) 
[15]. The identified proteins are homologous to the trans-
membrane spanning helices found in MgtE with the con-
served motifs  PX6GN and P(D/A)X4PX6D (Fig. 4B) [89]. 
The family has three members: SLC41A1, SLC41A2, and 
SLC41A3. The SLC41 family contains two times the  PX6GN 
and P(D/A)X4PX6D motifs, allow to proteins to potentially 
function as monomers or dimers to facilitate  Mg2+ transport, 
similarly to the prokaryotic MgtE proteins [90]. The dou-
ble motifs are only present in Archaea, choanoflagellates, 
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and metazoa, while uni- and multicellular algae and (cyano)
bacteria share contain only one  PX6GN and P(D/A)X4PX6D 
motif. In addition, the MgtE orthologues in Archaea and 
metazoa do not contain the CBS domains and the structure 
of the SLC41 family deviates considerably from the MgtE 
proteins (Fig. 4). In addition, bacterial MgtE orthologues act 
as a  Mg2+ channel, while SLC41 family members have been 
reported to work as  Na+/Mg2+ antiporters [89–94]. Taken 
together, this suggests that archaeal and metazoan MgtE/
SLC41 orthologues have taken a different evolutionary path. 
Detailed knowledge on the structure is absent, yet it is clear 
that the SLC41 family is distinct from MgtE proteins and 

might be differently regulated. To investigate this, large-
scale comparative, genomic analyses coupled to experimen-
tal studies are required to search for orthologues in differ-
ent phyla, which to date are limited. This could enable the 
field to study in depth the evolutionary relationship between 
SLC41 proteins and MgtE on a genomic level, while also 
offering opportunities for further biochemical and functional 
characterisation.

Electrophysiological studies in Xenopus laevis oocytes 
demonstrated  Mg2+ elicited currents upon mouse SLC41A1 
overexpression, yet other divalent cations, such as  Zn2+,  Fe2+ 
and  Cu2+ were also transported [91]. Transformation with 

Fig. 4  Structure of MgtE and 
its orthologue SLC41A1; A 
Structure of the dimer Thermus 
thermophilus  Mg2+ transporter 
TtMgtE (PDB: 2ZY9) in com-
plex with  Mg2+ (purple spheres, 
left panel) with one monomer 
highlighted. Right panel: 
zoom in on the pore of MgtE 
depicting the typical P(D/A)
X4PX6D motif that orthologues 
of MgtE contain. Both MgtE 
and solute carrier family 41 A 
1 (SLC41A1) have the  PX6GN 
and P(D/A)X4PX6D motifs. 
 Mg2+ ions have been enlarged 
for illustration purposes. B 
Schematic depiction of the mon-
omer of MgtE (upper panel) and 
SLC41A1 (bottom panel), with 
the approximate location of the 
 PX6GN (black) and P(D/A)
X4PX6D (white) domains. Same 
colours as in A have been used 
to reflect the approximate struc-
ture and location. The sche-
matic structure of the human 
homologue SLC41A1 has been 
depicted, which has been based 
on the estimated structure using 
AlphaFold(AF-Q8IVJ1-F1)

A

B
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pUC18 human SLC41A1 plasmids in the S. typhimurium 
MM281 strain, which is deficient in corA, mgtA, and mgtCB, 
displayed superior growth in  Mg2+ depleted conditions com-
pared to the those with empty pUC18 plasmids [92]. Expres-
sion of SLC41A1 resulted in decreased intracellular  Mg2+ 
using the fluorescent-sensitive probe Mag-Fura-2. Moreover, 
 Mg2+ extrusion was abrogated upon  Na+ removal, suggest-
ing a  Na+/Mg2+ exchange function to facilitate  Mg2+ extru-
sion [93]. Also for SLC41A2 and -A3,  Na+-dependent  Mg2+ 
transport has been observed [94, 96], yet cation specificity 
may differ between family members [97]. In contrast, Arjona 
et al. observed both  Na+-independent  Mg2+ uptake and extru-
sion using the stable isotope 25Mg2+[98], leaving the molecu-
lar mode of action of the SLC41 members to be elucidated. 
However, studies in vivo observed a clear role for SLC41A1 
and A3 in systemic  Mg2+ homeostasis. Knock-down of 
slc41a1 in zebrafish larvae decreased the  Mg2+ content and 
induced a transcriptional response of genes involved in  Mg2+ 
homeostasis [98]. Slc41a3 expression was increased in kid-
neys of mice fed with low-Mg2+ diets and Slc41a3−/− mice 
displayed hypomagnesaemia and increased intestinal  Mg2+ 

absorption [99, 100]. Yet, how SLC41A3 contributes to 
 Mg2+ homeostasis remains to be elucidated. While SLC41A1 
and -A2 are located at the plasma membrane, SLC41A3 is 
predominantly found in the mitochondria [90, 94, 98]. To 
date, no causal link has been made between mitochondrial 
 Mg2+ transport and systemic  Mg2+ homeostasis.

The  Mg2+ efflux proteins CorB/C and orthologue 
CNNM proteins

Although CorA was initially thought to be involved in both 
 Mg2+ influx and efflux, three other genes were identified 
in S. typhimurium; corB, corC, corD (Fig. 1). These loci 
were initially identified in a screen for  Co2+ resistance [31]. 
While CorA was essential for  Mg2+ efflux, individual or 
combined inactivation of corB, corC, and corD disturbed 
efflux in bacteria that were preloaded with 28Mg2+ [31]. 
These three loci have a low level of identity with CorA, 
yet CorB and CorC display high similarity, with both con-
taining CBS domains (Fig. 6). Functional and structural 
characterisation of CorD proteins have not been described 
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Fig. 5  Phylogenetic tree of SLC41A1 orthologues. SLC41A1 ortho-
logues are shared in all phyla, but limitedly in the Plantae king-
dom. SLC41 orthologue sequences were searched with NCBI 
DELTA-BLAST, on Uniprot or ORCAE. Proteins  sequences were 
then submitted to Pfam to confirm the presence of the conserved 
MgtE domain. Subsequently, a phylogenetic tree was constructed by 
maximum likelihood (bootstrap = 100) using MEGA11 [95]. Used 
sequences for SLC41A1 orthologues: Homo sapiens: NP_776253.3 
(NCBI); Danio rerio: XP_002663867.1 (NCBI); Drosophila mela-

nogaster: NP_001259335.1 (NCBI); Amphimedon queenslandica: 
P_003384010.3 (NCBI); Salpingoeca rosetta: XP_004993672.1 
(NCBI); Ostreococcus tauri: XP_003084242.2 (NCBI); Methanoc-
ulleus thermophilus: SDK06600.1 (NCBI); Synechocystis sp PCC 
6803: WP_010872029 (NCBI); Ulva mutabilis: UM021_0210.1 
(ORCAE); Escherichia coli: A0A6M0PR42 (Uniprot). Microcystis 
aeruginosa: WP_052276493.1 (NCBI); Thermococcus kodakarensis: 
BAD85647.1 (NCBI); Salmonella enterica: A0A5U8SZT2 (NCBI). 
Branches were multifurcated when bootstrap values were < 50
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to our knowledge, so its role in  Mg2+ transport remains 
unknown. The pore of the protein is located in the domain 
of unknown function (DUF)21, a structure that is poorly 
characterised in terms of distribution among species 
and function [101, 102]. The C-terminal end of the pro-
tein also contains a CorC domain of unknown function. 
Expression of the archaeal Methanoculleus thermophilus 
CorB (MtCorB) and bacterium Tepidiphilus thermophilus 

(TtCorB) in liposomes showed transport of  Mg2+ [101]. 
Expression of CorC in human embryonic kidney (HEK)293 
cells showed  Mg2+ extrusion when cells were exposed to 
 Na+, which was prevented when  Na+ was removed from 
the buffer. Mutational analysis of the Thermus parvatiensi 
CorC orthologue indicated that residue Asn94 (N94) might 
be important for  Na+ sensitivity. Indeed, mutagenesis of 
this residue showed decreased efflux compared to wild type 

Fig. 6  Structure of CorB and 
orthologue CNNM2; A Struc-
ture of the pentamer Metha-
noculleus thermophilus Cobalt 
of resistance CorB MtCorB 
(PDB: 7M1T) in complex with 
 Mg2+-ATP (purple spheres, left 
panel) with one monomer high-
lighted. Right panel: zoom in 
on residues of the CBS domain 
that bind MgATP. Residues 
highlighted are homologues to 
human Cyclin M2 (hCNNM2) 
associated hypomagnesaemia, 
seizure, intellectual disability 
(HSMR) syndrome Thre568Ile 
(MtCorB-p.Thr313) and 
hCNNM4 associated Jalili syn-
drome Arg407Leu (Mt-CorB-p.
Arg235). B Schematic depiction 
of the monomer of CorB (upper 
panel) and CNNM2 (bottom 
panel) using same colours as 
in A to reflect the approximate 
structure and location. The 
schematic structure of the 
human homologue has been 
depicted, which has been based 
on the estimated structure using 
homology modelling of CorB, 
as illustrated in Chen et al. 
(2021) [101]
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when overexpressed in HEK293 cells, being indicative that 
CorB/C might work as a  Na+/Mg2+ antiporter [102].

The vertebrate orthologues of CorB were first identified in 
mouse, and named ancient conserved domain protein (ACDP) 
1–4, which later were renamed as Cyclin M(CNNM)1–4 
[103, 104]. Earlier studies suggested a nuclear function of 
the protein [103], more recent evidence indicates that it acts 
as a  Mg2+ transporter in metazoa. Electrophysiological stud-
ies in X. laevis oocytes suggested that CNNM2 acts indeed 
as a  Mg2+ exchanger [105]. Additionally, studies in HEK293 
cells using the  Mg2+ probe MagnesiumGreen demonstrated 
 Mg2+ extrusion upon CNNM2 overexpression [106]. How-
ever, CNNM2 overexpression in HEK293 cells could only 
induce small  Mg2+ and  Zn2+-sensitive  Na+ currents, which 
were ablated when a patient-derived CNNM2 mutant was 
used [107]. In addition, other groups could not repeat the 
results using the  Mg2+-sensitive probe Mag-Fura-2 and failed 
to demonstrate changes in intracellular  Mg2+ levels upon 
overexpression [108]. Moreover, transport studies with the 
stable isotope 25Mg2+ could not detect  Na+-dependent  Mg2+ 
transport in HEK293 cells [109]. Consequently, a  Mg2+ sen-
sor role for CNNM proteins was hypothesised. However, the 
 IC50 value for MgATP binding of CNNM2 and CNNM4 are 
estimated to be approximately 160 and 45 μmol/L, respec-
tively [110, 111]. It is, therefore, difficult to imagine that 
these proteins sense  Mg2+ in the physiological situation.

The role of CNNM proteins remains disputed and has 
been discussed elaborately earlier [110, 111]. It should be 
mentioned that the different views may be dependent on the 
interpretation of findings using different in vitro models. 
Using magnesium sensitive probes, such as Magnesium-
Green and Mag-Fura-2, allows the determination of acute 
responses of CNNM protein upon various interventions, yet 
requires non-physiological concentrations of  Mg2+. In con-
trast, studies using the stable isotope 25Mg2+ are superior in 
investigating  Mg2+ fluxes, but do not provide information 
on intracellular  Mg2+ concentrations. In addition, only over-
expression studies have been performed that may not reflect 
the physiological situations. Recently, interaction partners 
have been identified that can modulate CNNM function. Cell-
specific expression of these proteins could exert different 
effects based on the model used. For instance, phosphatase 
of regenerating liver (PRL)1–3 are proto-oncogenic proteins 
that can bind to CNNM proteins and are postulated to inhibit 
CNNM-mediated  Mg2+ efflux [112–114]. Translation of the 
PRL proteins is induced upon a decrease in the intracellular 
 Mg2+ levels [115], which could then inhibit CNNM-mediated 
efflux. The ADP-ribosylation factor-like proteins (ARL) 15 
has recently been found to be involved in the glycosylation of 
the CNNM2 and CNNM3 and decreased CNNM3-mediated 
25Mg2+ uptake upon overexpression [116]. A recent study 
has shown that CNNM proteins can interact with the  Mg2+ 
channel transient receptor potential receptor type 7 (TRPM7) 

in vivo and vitro.[117] ARL15 reduced TRPM7-mediated 
currents in X. laevis oocytes upon heterologous overexpres-
sion, suggesting a potential, complex regulatory mechanism 
of ARL15-CNNM regulation on TRPM7 channel activity.

How the CNNM protein exert their function still remains 
to be determined, yet from a physiological point of view, 
it is clear for CNNM2 and CNNM4 that they are involved 
in systemic  Mg2+ homeostasis. Patients suffering dominant 
mutations in the CNNM2 gene present with hypomagnesae-
mia, seizures, and intellectual disability (HSMR) syndrome 
[107, 118, 119]. Patients have increased renal  Mg2+ wasting, 
fitting with the expression of CNNM2 in the distal convo-
luted tubule within the nephron [107, 109, 118]. Systemic 
and kidney-specific knockout of Cnnm2 in murine models 
and knock-down in zebrafish larvae have shown to result in 
mild hypomagnesaemia [120, 121]. Patients with recessive 
mutations in CNNM2 also suffer from brain abnormalities, 
such as demyelination and ventricular defects [118, 122]. 
Cnnm2 knock out are embryonically lethal and may suf-
fer exencephaly [121]. Similarly, Cnnm4 knock mice also 
develop hypomagnesaemia, which is attributed to intestinal 
malabsorption [123, 124]. It is expressed at the basolateral 
membrane of colonic enterocytes and facilitates  Mg2+ extru-
sion towards the blood compartment. Interestingly, patients 
suffering Jalili syndrome due to dominant mutations in the 
CNNM4 gene do not develop serum  Mg2+ disturbances, 
rather defects in amelogenesis and cone-rod dystrophy [125, 
126].

Structurally, CNNM proteins are similar to CorB/C 
(Fig. 6B) [101, 102]. The CNNM orthologues contain mul-
tiple functional domains. At the N-terminus, a relatively long 
peptide sequence encodes for a signal peptide domain, that is 
cleaved off at the endoplasmatic reticulum and subsequently 
degraded [109, 119]. The proteins are then targeted to the 
plasma membrane after glycosylation which likely takes 
place in the Golgi-apparatus, mediated via ARL15 [116]. The 
transmembrane domain, the DUF21 domain, consists of three 
transmembrane spanning helices. A fourth domain, located 
between helices 1 and 2 was predicted to be a short re-entrant 
loop [109]. The structure for CorB/C proteins has recently 
been solved and has shown that this juxtamembrane domain 
forms a belt-like structure around the three transmembrane 
domains [101, 102]. The intracellular domain of CNNM pro-
teins has extensively been studied. Similar to MgtE, CNNM 
proteins and CorB/C proteins contain CBS domains that bind 
MgATP [106, 127–129]. Binding of both, MgATP and free 
 Mg2+ ions, results in conformational changes, rendering the 
protein in closed. The CNNM protein subsequently contains 
cyclic nucleotide bind homology (CNBH) domains which, 
in contrast with the initial predictions (so their name), do not 
bind cyclic nucleotides, and perhaps regulate the function of 
CNNMs [128, 130]. It has been proposed that this domain I) 
limits the conformational changes of the CBS domains upon 



Structural and functional comparison of magnesium transporters throughout evolution  

1 3

Page 11 of 17 418

binding of  Mg2+/MgATP or II) functions as an adaptable 
regulator itself [128, 130]. One of the main differences with 
the CorB/C proteins is that the CNNMs have an extra trans-
membrane helix, that acts as a signal peptide and is cleaved 
off at the ER membrane, which is absent in CorB/C proteins 
(Fig. 6B) [109]. This results in a long N-terminal domain 
which is glycosylated and exposed to the extracellular space. 
In addition, studies have shown that the linker of the CBS1 
and CBS2 domains is a target for binding of proteins such as 
PRL1-3 and ARL15 [112–114, 116]. Interaction partners of 
CorB/C proteins have yet to be identified, so it is not com-
pletely certain that these prokaryotic proteins are regulated 
in a similar fashion as the CNNM proteins. Furthermore, 
the CNBH domain has replaced the CorC domain in the 
CNNMs. Contrary to its name, it does not bind cyclic nucle-
otides, but is involved in dimerisation of the proteins and 
facilitating the conformational changes of the CBS domains, 
which (indirectly) affect  Mg2+ efflux [128, 130]. The role of 
CorC domains in the CorB/C proteins in its function has not 
been studied thus far.

Apart from its homology to the CorB/C proteins, it is 
intriguing to mention a potential evolutionary link between 
MgtE and CNNMs as both proteins form dimers and con-
tain CBS domains. It is interesting to speculate that MgtE 
split in two different proteins during evolution; into the  Mg2+ 
transporting proteins SLC41 and the  Mg2+ sensors CNNMs. 
However, as elaborately reviewed earlier[131], structural 
knowledge of the CBS domains gives us insights that do not 
support this theory. Although both proteins bind MgATP at 
the CBS domains, the structural consequences are quite dif-
ferent. First of all, the location of the ligand binding in the 
CBS domains is not conserved in the two proteins. While 
the motif where MgATP within the CBS domains binds is 
present in both proteins, MgATP binds at another site within 
the CBS domains in MgtE, unlike in CNNMs [85, 86]. This 
was discovered due to identification of mutations in CNNM4 
(CNNM4-p.R407L) and CNNM2 (CNNM2-p.T568I) that 
cause the congenital disorders Jalili and HSMR syndrome, 
respectively [107, 118, 129]. Second, CNNM and MgtE pro-
teins bind ATP and  Mg2+ in a different manner [131]. Patch 
clamp studies in proteoliposomes indicated that the ability of 
intracellular  Mg2+ to close the MgtE channel is dependent 
on the presence of ATP [85]. This suggests that presence of 
ATP determines  Mg2+-sensitive gating of MgtE channels. 
Conversely, studies using a surface plasmon resonance sen-
sorgram with immobilised, recombinant CBS domains from 
CNNM2 demonstrated binding of ionised  Mg2+ to the CBS 
domains [106]. In contrast, ATP only binds in the presence 
of  Mg2+. Taken together, these findings suggest that MgtE 
binds  Mg2+ in an ATP-dependent manner, while conversely 
CNNMs bind ATP in a  Mg2+ dependent fashion. Thirdly, 
only four  Mg2+-bindings sites have been identified in CNNM 
orthologue, while MgtE contains seven. Lastly, binding of 

MgATP leads to “opening and closing” of the MgtE pore 
via the plug, while the CBS domains in CNNM adopt a 
“disc-like-flat” structure, which moves the DUF21 domain 
and closes the pore [85, 86, 101, 102, 114, 127, 130, 132]. 
Although these facts do not support MgtE as ancestor for the 
CNNM proteins, it cannot be ruled out that in time, MgtE 
orthologues adopted similar MgATP-binding properties as 
the current CNNMs.

The eukaryotic  Mg2+ channels TRPM6/7

The main entrance for  Mg2 into metazoan cells is via the 
transient receptors potential melastatin type (TRPM) 6 and 
7 channels, which are non-selective divalent cation channels, 
permeable for among others  Zn2+,  Mg2+, and  Ca2+ [133, 
134]. The protein subfamily TRPM is related to the TRP 
superfamily, consisting of cation transporters of which most 
respond to physical or chemical stimuli as reviewed exten-
sively [88, 135–137].

TRPM7 is expressed ubiquitously in the body and con-
sidered the main gateway of  Mg2+ into metazoan cells. Cells 
deficient of TRPM7 have decreased intracellular  Mg2+ levels 
and require  Mg2+ supplementation when cultured in vitro.
[138, 139] The TRPM6 channel is more uniquely expressed 
with high levels in the intestines and kidney, contributing to 
 Mg2+ homeostasis in vivo [133, 140, 141].

No evidence has been found for prokaryotic TRP ortho-
logues, yet different TRP subfamilies are found in unicellu-
lar eukaryotic organisms, such as algae (TRPP and TRPV), 
amoebozoans (TRPP and TRPML), and choanoflagellates, 
which are the closest single cell relatives to the metazoa 
(TRPML, TRPA, TRPV, TRPVL, TRPC, and TRPM), 
suggesting that the TRP channels evolved during the ori-
gin of the eukaryotes [142, 143]. Within the TPRM fam-
ily, the members TRPM6 and TRPM7 stand out, as they 
are specialised in  Mg2+ transport, yet structurally they are 
very similar to the other members of the TRPM channels 
(Fig. 7). They share a conserved N-terminus, the melastatin 
homology region, that has been postulated to bind ligands 
and modulate channel activity, through a coiled coil region 
at the C-terminal domain of the protein [144–147]. Further-
more, the proteins all contain a TRP domain, a sequence of 
approximately 25 amino acids. This domain has been shown 
important in TRPV, -C, -M, and -L channels for their activ-
ity [148]. It binds to phosphatidylinositol (4,5) bisphosphate 
(PIP2), a common modulator of channel activity, although in 
some, it activates the channel, whereas in others causes, inhi-
bition [135, 148]. The selectivity pore of TRPM7 is defined 
by its motif Phe-Gly-Glu (position 1045–47 in murine 
TRPM7) (Fig. 7A), facilitating  Mg2+ and  Ca2+ permeabil-
ity. Mutagenesis of Glu1047 to Gln, which is found in this 
motif in TRPM4, a monovalent cation transporter, abolishes 
the divalent permeability [144].
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TRPM6 and TRPM7 are specialised channels in the 
TPRM family for two major reasons. The channels form 
homo or heterotetramer structures, which is necessary for 
their activation. Yet, TRPM6 homotetramers are considered 
inactive, inferring that TRPM7 expression is always con-
comitant with TRPM6 [21, 134]. Secondly, both proteins 
are “chanzymes”, having a channel function and kinase 
domain. The structure of the kinase domain has not been 
solved yet, but from electrophysiological studies, the domain 
seems important for binding of ligands, such as MgATP, and 
is crucial for channel activity [149–152]. Deletion of the 
kinase domain leads to embryonic lethality in mice, while 
heterozygous deletion allows maturation of the animals, yet 
leads to defects in the hearth teeth and leads to decrease  Mg2+ 
levels in the body [149, 153, 154]. In addition to  Mg2+ and 
MgATP,  Zn2+ and  Ca2+ also directly regulate channel activ-
ity.  Mg2+ is postulated to bind to the linker between the chan-
nel and kinase domain, whereas there is a  Zn2+ binding motif 
located in the kinase domain, consisting of two histidines 
and cysteines [155]. Oxidation of the cysteines, for example 

induced by  H2O2 exposure, results in dissociation of  Zn2+ 
ions from the channel with inactivation as a consequence. 
These cysteines may, therefore, act as sensors for oxidative 
stress. Closing the TRPM7 channel may prevent further 
cell damage, as increased cytosolic  Mg2+ levels are asso-
ciated with increased ROS levels [156–158]. Furthermore, 
 Zn2+ influx has been implicated with neurotoxicity, while 
increased intracellular levels may induce  Ca2+-mediated cas-
pase activity and ultimately cell death [159–161].

Conclusions

Mg2+ homeostasis in both prokaryotes and eukaryotes is 
orchestrated by the interplay of various  Mg2+ channels and 
transporters, indicating a high degree of regulatory pathways. 
Although the structure of individual  Mg2+ transporters have 
significantly changed, the motifs that form the selective pore 
in CorA, CorB/C, and MgtE have all been conserved in their 
eukaryotic counterparts. Incredibly, the overall tertiary and 

Fig. 7  Structure of TRPM7; A 
Structure of the homotetramer 
transient receptor potential 
melastatin type 7 (TRPM7, 
PDB: 5ZX5) in complex with 
 Mg2+ (purple spheres, left 
panel) with one monomer 
highlighted. Right panel: zoom 
in on residues of the selectiv-
ity pore Phe-Gly-Glu that bind 
 Mg2+ B Schematic depiction of 
the monomer of TRPM7 using 
same colours as in A to reflect 
the approximate strucutre and 
location
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quaternary structure for CorA and CorB/C have been sus-
tained in MRS2 and CNNM proteins respectively despite 
low amino acid identity. This demonstrates the importance 
of these structures for  Mg2+ specific transport.

Despite these similarities, it is conspicuous that in unicel-
lular fungi, such as S. cerevisiae, CorA orthologues play an 
important role in  Mg2+ homeostasis with many paralogues/
homologues present in different subcellular compartments. 
However, metazoa only have the CorA orthologue, Mrs2, 
in mitochondria and do not have an evolutionary conserved 
CorA-like protein at the plasma membrane. Cellular  Mg2+ 
influx is mainly orchestrated via TRPM6 and -7 channels in 
these organisms, suggesting that these channels may have 
an evolutionary advantage compared to CorA orthologues. 
TRPM6 and -7 are responsive to different hormones and 
ligands [138, 162, 163] which allows fine-tuning of their 
activity. Moreover, they contain a kinase domain of which 
the function of  Mg2+ homeostasis is still poorly understood, 
despite extensive research. Unravelling the function of this 
domain, as well as further identification of interaction part-
ners and regulatory pathways may shine light upon the loss 
of CorA orthologues in favour of TRPM6 and -7 channels 
in metazoa.

To gain more insights into the similarities and differences 
between pro- and eukaryotic  Mg2+ channels/transporters, a 
few approaches could be considered. First of all, the struc-
tures of several eukaryotic  Mg2+ channels and transporters 
have not completely resolved, including SLC41 and MgtE 
proteins. To date, only predication tools (AlphaFold) have 
provided structural information of SLC41 proteins, but 
ultimately cryo-EM or X-ray crystallography is required to 
elucidate the overall structures. Transport characteristics, 
e.g. permeation or gating dynamics, could be investigated 
if structures are available. This would especially be valu-
able for SLC41 proteins, because they lack the CBS domains 
compared to MgtE channels. Second, extensive phylogenetic 
tracing would allow to determine the evolutionary link of 
SLC41 and MgtE proteins, which is particularly interest-
ing as MgtE orthologues appear to be missing in various 
phyla, such as land plants and fungi. In addition, it would be 
important to examine whether MgtA/B orthologues exist in 
eukaryotes. MgATPases have been postulated to be present 
in vertebrates, but have not been identified on a genetic level. 
Lastly, the mode of action of several transporters is often dis-
puted, frequently due the use of different experimental tech-
niques and models. Transport assays using specific isotopes 
or fluorescent probes in models such as liposomes directly 
would significantly contribute to the field. These assays are 
also valuable to determine the difference between paralogues, 
e.g. the CNNM or SLC41 proteins.

Of note, transporters discussed in this review may not 
be the only  Mg2+ transporting proteins in eukaryotes. For 

instance, Magnesium transporter 1 (MagT1) was postu-
lated as a  Mg2+ transporter in X. laevis oocytes [164]. It 
is expressed at the plasma membrane and its expression is 
increased upon low-Mg2+ conditions in HEK293T cells 
[165]. Yet, mutations in the MagT1 gene have been linked 
to N-glycosylation and immunodeficiency [166]. As many 
plasma membrane proteins are glycosylated, it is possible 
that MagT1 contributes to  Mg2+ homeostasis by modulating 
 Mg2+ channels and transporters at the membrane via glyco-
sylation. Members of the solute carrier proteins 25 (SLC25) 
are mitochondrial specific antiporters of MgATP and  HPO4

−, 
that indeed transport (indirectly)  Mg2+ [167]. Although mem-
bers of these transporters can also transport ADP, free  Mg2+ 
transport has not been observed. Lastly, the proteins Non-
imprinted in Prader-Willi/Angelman syndrome (NIPA) 1–4 
have been postulated to be  Mg2+ transporters [19]. Mutations 
in the genes are linked to Prader-Willi/Angelman syndrome, 
resulting in hypogonadism, hypotonia, intellectual disability, 
growth defects, and childhood obesity [168]. Expression of 
NIPA protein in heterologous systems, such as the X. laevis 
oocytes, indeed show  Mg2+ fluxes that can be ablated upon 
the introduction of patient mutations [169]. Yet, experimental 
data confirming the involvement of NIPA proteins in  Mg2+ 
transport in mammalian cells is largely lacking. Extensive 
reviewing of aforementioned proteins should be performed 
in homologous cell systems to determine  Mg2+ transport 
function.

In conclusion, to study the structural relationship between 
 Mg2+ transporters in different phyla enables the understand-
ing the origin and function of current mammalian magnesio-
tropic proteins. This broadens our current knowledge in  Mg2+ 
homeostasis in health and disease.
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