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While the causes of myriad medical and infectious illnesses have been identified,
the etiologies of neuropsychiatric illnesses remain elusive. This is due to two major
obstacles. First, the risk for neuropsychiatric disorders, such as schizophrenia, is
determined by both genetic and environmental factors. Second, numerous genes
influence susceptibility for these illnesses. Genome-wide association studies have
identified at least 108 genomic loci for schizophrenia, and more are expected to
be published shortly. In addition, numerous biological processes contribute to the
neuropathology underlying schizophrenia. These include immune dysfunction, synaptic
and myelination deficits, vascular abnormalities, growth factor disruption, and N-methyl-
D-aspartate receptor (NMDAR) hypofunction. However, the field of psychiatric genetics
lacks a unifying model to explain how environment may interact with numerous genes to
influence these various biological processes and cause schizophrenia. Here we describe
a biological cascade of proteins that are activated in response to environmental stimuli
such as stress, a schizophrenia risk factor. The central proteins in this pathway are
critical mediators of memory formation and a particular form of hippocampal synaptic
plasticity, long-term depression (LTD). Each of these proteins is also implicated in
schizophrenia risk. In fact, the pathway includes four genes that map to the 108 loci
associated with schizophrenia: GRIN2A, nuclear factor of activated T-cells (NFATc3),
early growth response 1 (EGR1) and NGFI-A Binding Protein 2 (NAB2); each of
which contains the “Index single nucleotide polymorphism (SNP)” (most SNP) at its
respective locus. Environmental stimuli activate this biological pathway in neurons,
resulting in induction of EGR immediate early genes: EGR1, EGR3 and NAB2. We
hypothesize that dysfunction in any of the genes in this pathway disrupts the normal
activation of Egrs in response to stress. This may result in insufficient electrophysiologic,
immunologic, and neuroprotective, processes that these genes normally mediate.
Continued adverse environmental experiences, over time, may thereby result in
neuropathology that gives rise to the symptoms of schizophrenia. By combining multiple
genes associated with schizophrenia susceptibility, in a functional cascade triggered
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by neuronal activity, the proposed biological pathway provides an explanation for both
the polygenic and environmental influences that determine the complex etiology of this
mental illness.

Keywords: schizophrenia, immediate early gene, long-term depression, EGR3, ARC, NFATC3, EGR1, Nab2

INTRODUCTION

Since the start of the 21st century, tremendous advances have
been made in the identification of genes associated with risk for
major neuropsychiatric illnesses such as schizophrenia, bipolar
disorder and depression. However, the field of psychiatry still
lags behind other areas of medicine in identifying even a single
gene that has been definitively demonstrated to cause any of these
mental illnesses. This is due in large part to the complex genetics
that underlie these disorders. Now, 15 years after the landmark
publication that identified Neuregulin 1 (NRG1) as a candidate
gene for schizophrenia (Stefansson et al., 2002), there remain two
unanswered questions at the forefront of the field of psychiatric
genetics: (1) how can the polygenic nature of susceptibility to
schizophrenia be explained? and (2) how do genes implicated in
risk for schizophrenia interact with environmental factors to give
rise to the disorder?

To address both of these questions, we have proposed
the hypothesis that numerous schizophrenia susceptibility
genes form a critical signaling pathway that is responsive
to environmental stress. Dysfunction of any of the proteins
in this pathway would reduce the normal activation of a
key transcription factor, early growth response 3 (EGR3), an
immediate early gene that is both associated with schizophrenia
in humans (Yamada et al., 2007; Kim et al., 2010; Ning
et al., 2012; Zhang et al., 2012; Huentelman et al., 2015), and
expressed at reduced levels in patients’ brains (Mexal et al.,
2005; Yamada et al., 2007). As a critical mediator of numerous
biological processes disrupted in schizophrenia, such as growth
factor signaling, myelination, vascularization, immune function,
memory formation and synaptic plasticity (Gallitano-Mendel
et al., 2007; Jones et al., 2007; Suehiro et al., 2010; Li et al., 2012;
Kurosaka et al., 2017), insufficient activation of EGR3may result
in neuropathology that gives rise to schizophrenia.

Schizophrenia risk is influenced by many genes in addition
to environmental factors. The illness has a prevalence rate of
roughly 1% worldwide, and its cause remains unknown. Studies
show concordance rates of approximately 50% in monozygotic
twins, roughly twice that of dizygotic twins, indicating that there
are both genetic and non-genetic determinants of schizophrenia
(McGue and Gottesman, 1991). Stressful events are associated
with schizophrenia risk. These include prenatal stress such
as nutritional deficiency, or exposure to famine, infection
(e.g., rubella, influenza, Toxoplasma gondii and herpes simplex
virus), or maternal stress. Stress during the perinatal period and
early life also increase risk for the illness. Examples include
obstetric complications and perinatal trauma, and stressful
life events such as childhood trauma (Corcoran et al., 2001,
2003; Mittal et al., 2008; van Winkel et al., 2008; Brown and
Derkits, 2010; Brown, 2011). Adding to the complex etiology

of this illness, the most recent genome-wide association study
(GWAS) of single nucleotide polymorphisms (SNPs) identified
108 genomic loci that influence schizophrenia susceptibility
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). To date, there is no consensus on a
mechanism to explain how so many genetic variations interact
with environmental factors to cause schizophrenia.

IDENTIFYING A PATHWAY

Immediate early genes are a class of genes that are rapidly
induced in response to a stimulus, in a manner that is
independent of protein synthesis. In the brain, they are expressed
within minutes of neuronal activity triggered by environmental
stimuli. A large number of immediate early genes encode
proteins that function as transcription factors (termed immediate
early gene transcription factors (Curran and Morgan, 1995)).
These genes are thus poised to translate changes in the
environment into long-term changes in the brain through the
regulation of their target genes. This presumably underlies the
critical role of many immediate early gene transcription factors in
memory formation, a process that requires long-term encoding
of environmental experiences.

We have hypothesized that this function of immediate early
gene transcription factors, as key regulators of the brain’s
gene-expression response to experience, uniquely positions them
to mediate the dual genetic and environmental influences on
schizophrenia susceptibility (Gallitano-Mendel et al., 2008).
We focus on the Egr family of immediate early genes since
they are activated in response to changes in the environment
(Senba and Ueyama, 1997; Martinez et al., 2002), and regulate
fundamental processes in the nervous system that are known to
be dysfunctional in schizophrenia. These include myelination,
vascularization, learning and memory, and synaptic plasticity
(Paulsen et al., 1995; Guzowski et al., 2001; Nagarajan et al.,
2001; Bozon et al., 2002, 2003; Flynn et al., 2003; Crabtree and
Gogos, 2014). In addition, Egrs are activated downstream of
N-methyl-D-aspartate receptors (NMDARs; Cole et al., 1989)
and growth factors (Schulze et al., 2008; Shin et al., 2010),
dysfunction of which have each been hypothesized to contribute
to schizophrenia susceptibility (Olney et al., 1999; Moises et al.,
2002; Calabrese et al., 2016).

We hypothesize that variations that reduce the normal
amount of Egr gene expression in response to environmental
stimuli would result in lower than normal levels function of
these processes. Specifically, this would result in insufficient
activation of Egr target genes, such as brain-derived neurotrophic
factor (BDNF) and activity-regulated cytoskeleton associated
protein (Arc/Arg3.1: hereafter referred to as ‘‘Arc’’; Li et al., 2005;
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Maple et al., 2017; Meyers et al., 2017a,b). Lower than normal
activation of these genes could account for the reduced levels of
white matter, reduced synaptic spine density, and deficiencies
in memory and cognitive processing, that are seen in patients
with schizophrenia, or hypothesized to underlie its pathogenesis
(Ingvar and Franzen, 1974; Saykin et al., 1991; Glantz and Lewis,
2000; Moises et al., 2002; Davis et al., 2003).

Several findings led us to focus specifically on Egr family
member Egr3 as we investigated this hypothesis. First, NRG1
was identified as a schizophrenia candidate gene in a large-
scale genetic association study (Stefansson et al., 2002). In mice,
Nrg1 was found to be essential to maintain Egr3 expression
in the peripheral muscle spindle (Hippenmeyer et al., 2002).
Subsequently the protein phosphatase calcineurin (CN) was
identified as a schizophrenia candidate protein based on the
phenotype of CN−/− mice, and the association of the gene
encoding one of its subunits (PPP3CC) with schizophrenia
in a Japanese population (Gerber et al., 2003). CN had also
been shown to regulate expression of Egr3 in the immune
system (Mittelstadt and Ashwell, 1998). Together, these findings
indicated that Egr3 was regulated downstream of three proteins
independently implicated in schizophrenia risk: NMDARs,
NRG1 and CN.

To answer whether Egr3may play a role in schizophrenia, we
investigated the behavior and physiology of Egr3-deficient (−/−)
mice. Our studies revealed that Egr3−/− mice display behavioral
abnormalities consistent with animal models of schizophrenia.
These include locomotor hyperactivity, a behavior produced
in rodents treated with drugs that cause psychosis in humans,
such as NMDAR antagonists—phencyclidine and ketamine,
and dopaminergic agents including amphetamines (Lipska and
Weinberger, 2000; Tamminga et al., 2003). The fact that this
activity is reversible with antipsychotic medications further
validates this as a phenotype relevant to schizophrenia (Freed
et al., 1984; O’Neill and Shaw, 1999). Egr3−/− mice show
locomotor hyperactivity in response to a novel environment
that is reversed with antipsychotic treatment (Gallitano-Mendel
et al., 2008). Schizophrenia is also characterized by cognitive
deficits, which a feature that led to Emil Kraepelin to define
the syndrome ‘‘Dementia Praecox’’ (Kraepelin and Robertson,
1919). Egr3−/− mice have deficits in spatial memory as well
as defects in hippocampal long-term depression (LTD), a form
of synaptic plasticity (Gallitano-Mendel et al., 2007, 2008)
normally activated in response to stress and novelty (Manahan-
Vaughan and Braunewell, 1999; Kemp and Manahan-Vaughan,
2007). Notably, both NMDARs and CN, proteins that regulate
induction of Egr3, are also required for memory formation
and LTD. This suggested that EGR3 was functioning in a
signal transduction cascade of proteins that were activated in
the brain in response to novelty and stress, and required for
both memory formation and LTD (Gallitano-Mendel et al.,
2007).

We subsequently described that numerous of the key proteins
in this pathway were associated with risk for schizophrenia
(Gallitano-Mendel et al., 2008). This led us to hypothesize
that other genes in this pathway that shared the characteristics
of regulating memory and hippocampal LTD, such as the

EGR3 target gene ARC, should also be candidates for a role in
schizophrenia susceptibility (Gallitano, 2008). Indeed, numerous
genome wide association studies of copy number variations
(CNVs), de novomutations and SNPs (Kirov et al., 2012; Fromer
et al., 2014; Purcell et al., 2014), as well as our own resequencing
study that identified a schizophrenia associated ARC SNP
(Huentelman et al., 2015), have subsequently supported this
hypothesis.

Here we present the key proteins that comprise our proposed
biological pathway, shown in Figure 1. We begin with a brief
review of hippocampal LTD, highlighting its response to stress.
We follow with a section devoted to each protein in the pathway.
For each protein we: (1) summarize the evidence demonstrating
the regulatory relationships that support its position in the
pathway; (2) outline the findings indicating its roles in processes
that are disrupted in schizophrenia; (3) mention supporting
studies that demonstrate its genetic association with risk for
the illness (summarized in Supplementary Table S1); and
(4) if known, altered levels in the brains of patients with
schizophrenia. When available, we will also review the role for
each in synaptic plasticity, focusing on LTD, and define the
relationship of the protein being discussed with EGR3. We
will include a brief section on additional proteins for which
there is new evidence indicating a potential contribution to this
pathway.We briefly review the role of LTD in the neurobiological
response to stress and novelty. In the Discussion we propose
our hypothesis that this biological pathway mediates protective
neurobiological responses to stress. We then present a model
to explain how genetic variations in genes of this pathway
may produce a predisposition to schizophrenia that results in
illness in a manner dependent upon the stress history of an
individual.

LONG-TERM DEPRESSION, STRESS AND
MEMORY

LTD
LTD is a form of synaptic plasticity in which stimulation
results in a prolonged decrease in strength of the synaptic
connection (reviewed in Malenka and Bear, 2004; Kemp and
Manahan-Vaughan, 2007; Collingridge et al., 2010). One of the
most well-investigated forms of LTD is that produced by low
frequency stimulation of the hippocampal Schaffer Collateral
pathway, the axonal projections from CA3 neurons that synapse
onto CA1 pyramidal neurons. This process is essential for spatial
memory consolidation, and induces expression of immediate
early genes. Moreover, the stimulation that induces the highest
levels of immediate early genes also results in the longest
duration of LTD (Abraham et al., 1994) suggesting an important
functional role for immediate early genes in this form of synaptic
plasticity. The low frequency stimulation that induces LTD
also requires the function of NMDARs, as well as numerous
proteins in our proposed biological pathway for schizophrenia
susceptibility.

Compared to its counterpart long-term potentiation (LTP),
LTD has received much less investigative attention, and is
thus less well understood. NMDAR activation is an essential
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FIGURE 1 | Model for a biological pathway regulating memory, synaptic
plasticity and schizophrenia risk. Numerous schizophrenia-risk associated
proteins act either upstream or downstream of immediate early genes EGR3
and ARC. Red labels indicate proteins encoded by genes that map to the
108 loci for schizophrenia risk. Both EGR3 and ARC are activated by
environmental events, such as stress, via activity-dependent activation of
NMDARs. The resulting influx of Ca++ triggers Calcineurin/(CN) nuclear
factors of activated T-cell (NFAT) signaling which can induce EGR3 expression.
EGR3 positively regulates, and maintains expression of, ARC. NGFI-A Binding
Protein 2 (NAB2), which is a transcriptional target of EGR3 and EGR1, binds
to EGR proteins (EGR1, 2 and 3) to co-regulate expression of target genes.
This action includes feedback inhibition of EGR1 and EGR3, and NAB2 itself,
a critical element of the temporal regulation of activity-dependent genes.
Additional proteins that interact in the pathway include NRG1 which, via
binding to ERBB receptors, maintains expression of EGR3 (in muscle
spindles), and has been shown to activate NMDARs. BDNF, via binding to
Trk-B receptors, regulates EGR3-mediated expression of NMDAR subunit
NR1. EGR3, in turn, is required for activity-dependent expression of BDNF.
SRF is a transcription factor required for memory formation and long-term
depression (LTD), which regulates expression of EGR3 (and EGR1).
Perturbations in any components of this biological pathway are expected to
result in deficient induction of EGR3, and its target genes, in response to
neuronal activity, including that triggered by stress. Insufficient activation of this
pathway in response to stimuli may result in poor memory formation and
contribute to cognitive deficits. Deficient activation of the pathway in response
to stress may also result in insufficient neuroprotective processes and thereby
contribute, over time, to the neuropathology that gives rise to schizophrenia
(see Figure 2). Note that many interactions represented are taken from
literature on studies in immune system and have yet to be validated in the
brain. The shared roles of these proteins in the immune system may contribute
to association between schizophrenia and immune dysfunction. Abbreviations:
NMDAR, N-methyl d-aspartate receptor; NFATC3, nuclear factor of activated
T-cells; EGR1, 3, Early growth response 1, 3; ARC, Activity-regulated
cytoskeleton-associated protein. Additional potential contributing proteins are
indicated in gray include: SRF, serum response factor; BDNF, brain-derived
neurotrophic factor; NRG1, neuregulin 1; ErbB4, ErbB2 receptor tyrosine
kinase 4, Trk-B neurotrophic receptor tyrosine kinase 2. References:
Yamagata et al. (1994); Senba and Ueyama (1997); Mittelstadt and Ashwell
(1998); Rengarajan et al. (2000); Hao et al. (2003); Jacobson et al. (2004);
Kumbrink et al. (2005, 2010); Li et al. (2005); Ramanan et al. (2005); Etkin
et al. (2006); Lindecke et al. (2006); Bjarnadottir et al. (2007);

(Continued)

FIGURE 1 | Continued
Gallitano-Mendel et al. (2007, 2008); Gallitano (2008); Marrone et al. (2012);
Herndon et al. (2013); Ramirez-Amaya et al. (2013); Schizophrenia Working
Group of the Psychiatric Genomics Consortium (2014); Maple et al. (2015);
Pouget et al. (2016); Meyers et al. (2017a,b); Ramanan (personal
communication).

step in establishment of low frequency stimulation-induced
hippocampal LTD (Dudek and Bear, 1992; Mulkey andMalenka,
1992). Both GluN1 and GluN2B subunits have also been
implicated in mediating this form of LTD (Kutsuwada et al.,
1996; Manahan-Vaughan and Braunewell, 1999; Liu et al.,
2004). Early studies demonstrated that mice lacking the specific
GluN2B-containing NMDAR isoform had deficits in LTD
(Kutsuwada et al., 1996; Brigman et al., 2010). However, recent
work investigating the role of GLUN2B in this form of synaptic
plasticity have produced differing results, some of which may be
explained by technical differences in study methodologies (Chen
and Bear, 2007; Bartlett et al., 2011; Shipton and Paulsen, 2014).

As described in the sections below, numerous downstream
effectors of NMDAR activation have also been shown to be
critical for activity dependent LTD. These include CN, EGR3,
ARC, serum response factor (SRF) and BDNF (Zeng et al., 2001;
Etkin et al., 2006; Plath et al., 2006; Gallitano-Mendel et al.,
2007; Beazely et al., 2009; Mizui et al., 2015; Novkovic et al.,
2015; Bukalo et al., 2016; Kojima and Mizui, 2017). The roles
of several of the proteins that comprise our proposed pathway
for schizophrenia risk are not limited to this form of synaptic
plasticity. For example, NMDARs, BDNF and ARC are also
required for LTP. Interestingly, dysfunction in LTP has also been
hypothesized to play a role in schizophrenia (Rison and Stanton,
1995). However, the shared role of numerous core pathway genes
in the process of LTD stood out to us early on in the recognition
of this biological cascade (Gallitano-Mendel et al., 2007, 2008).
Since LTD had received so much less emphasis, at that time, this
seemed a coincidence worthy of further investigation.

Several features of LTD make this form of synaptic plasticity
of particular interest for a potential contribution to the
development of schizophrenia. Stress is one of the major
environmental risk factors for this schizophrenia (Holtzman
et al., 2013). Numerous studies have demonstrated a relationship
between stress and LTD (Rowan et al., 1998). For example,
while stress inhibits establishment of LTP in the hippocampal
CA1 region, it augments LTD (Kim et al., 1996; Xu et al., 1997;
Artola et al., 2006). The association of stress with schizophrenia
susceptibility suggests the possibility that disruption of the
normal LTD response to stress could result in pathology that may
increase risk for this, and potentially other, psychiatric illness.

A second intriguing role of LTD is that of encoding long-term
plasticity in response to novelty. Studies involving numerous
genes in the proposed biological pathway have demonstrated
an association between acquisition and retention of novel
information and establishment of LTD (Manahan-Vaughan
and Braunewell, 1999; Artola et al., 2006; Etkin et al., 2006;
Plath et al., 2006; Gallitano-Mendel et al., 2007; Kemp and
Manahan-Vaughan, 2007). Exposure to novelty enhances LTD
(Manahan-Vaughan and Braunewell, 1999) and also induces
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expression of pathway genes such as Egr3 and Arc, the latter of
which persists in the hippocampal dentate gyrus for up to 8 h
(Marrone et al., 2012; Ramirez-Amaya et al., 2013).

We have recently reported that this persistent expression
of Arc induced by a brief novel exposure requires Egr3
(Maple et al., 2017). We have also reported that Egr3
deficient mice, which have deficits in hippocampal LTD, also
demonstrate hyper-reactivity to novel environments. Not only
does exploration of a novel location induce LTD, but the reverse
is also true; that low frequency stimulation of the hippocampus
in vivo facilitates the exploratory behavior of rodents (Manahan-
Vaughan and Braunewell, 1999). It is intriguing to consider
whether dysfunction in these processes in humans may
contribute to the cognitive and memory deficits that are a key
feature of schizophrenia. These findings suggest it will be of great
interest to investigate whether other genes recently identified as
candidates for influencing schizophrenia risk may also play a role
in this specific form of hippocampal synaptic plasticity.

Response to Stress and Novelty
Stress and exposure to novelty are two of the major stimuli
that activate expression of immediate early genes, including
EGR3 and ARC, key output proteins in our proposed biological
pathway (Senba and Ueyama, 1997; Marrone et al., 2012;
Ramirez-Amaya et al., 2013; Maple et al., 2015). These stimuli
also facilitate induction of hippocampal LTD, a form of
synaptic plasticity associated with the formation and retention
of immediate memories of novel experiences (Rowan et al.,
1998; Manahan-Vaughan and Braunewell, 1999; Xiong et al.,
2003; Artola et al., 2006; Kemp and Manahan-Vaughan, 2007;
Collingridge et al., 2010).

Our prior work characterizing the phenotypes of Egr3−/−

mice revealed that Egr3 is required for the normal response
to stress and novelty (Gallitano-Mendel et al., 2007). Similar
behavioral abnormalities in the stress and novelty responses
have been reported in preclinical studies of other genes in the
proposed pathway including CN, SRF and ARC (Miyakawa et al.,
2003; Etkin et al., 2006; Kozlovsky et al., 2008; Bramham et al.,
2010; Weinstock, 2017).

Schizophrenia is also characterized by a heightened sensitivity
to stress, abnormal sensorimotor gating in response to stressful
stimuli, and abnormalities in habituation to novel and stressful
stimuli (Braff et al., 1992; Corcoran et al., 2001; van Os et al.,
2010; Holtzman et al., 2013; Kahn et al., 2015). The fact that LTD
is facilitated by novelty and stress, and is disrupted when genes
of our proposed pathway, numerous of which are associated with
schizophrenia risk, are dysfunctional, suggests an intriguing link
between this form of synaptic plasticity and the processes that are
awry in schizophrenia.

PROTEINS THAT FORM THE PATHWAY

NMDA Receptor
NMDARs are activated in response to neuronal depolarization,
which occurs when the brain responds to stimuli in the
environment. NMDARs are one of three major classes of
ligand-gated ionotropic receptors for glutamate in the brain.

They are multi-subunit Ca++ channels, formed by hetero-
tetramers of two glycine-binding (GLUN1), and two glutamate-
binding (GLUN2), subunits (Papadia and Hardingham, 2007).
The GLUN1 subunit, which has eight isoforms, is encoded
by the GRIN1 gene. In contrast, there are four subtypes
of GLUN2 subunits (GLUN2A, GLUN2B, GLUN2C and
GLUN2D), which are encoded by four different genes (GRIN2A,
GRIN2B, GRIN2C and GRIN2D, respectively). Each subunit
has three distinct domains, an external N-terminal domain, a
transmembrane domain that forms the channel pore, and an
internal C terminal domain (Carvajal et al., 2016). The NMDAR
is activated when glutamate binds to the GLUN2 subunit,
coincident with binding of co-agonists magnesium and glycine/
D-serine to GLUN1 (Balu, 2016). Depolarization of the neuron
is essential for NMDAR function, as this change in charge is
required to remove the Mg++ ion that blocks the channel pore
region, thereby allowing calcium to enter the neuron.

Evidence for a Role in Schizophrenia
The NMDAR hypofunction model of schizophrenia was
proposed in the 1990’s (Javitt and Zukin, 1991; Olney et al., 1999)
based on studies highlighting the ability of NMDAR antagonists,
phencyclidine and ketamine, to cause psychosis and memory
impairments in humans. The effect of these drugs in rodents
were the basis for subsequently defining ‘‘schizophrenia-like’’
behavioral abnormalities in animal models (Malhotra et al., 1997;
Lahti et al., 2001; Amitai and Markou, 2010; van den Buuse,
2010).

Mice deficient for the GluN1 subunit of the NMDAR show
schizophrenia-like behavioral abnormalities that are reversed
with antipsychotic treatment (Mohn et al., 1999). Studies
employing a conditional knockout of the GluN1subunit have
been used to identify specific cell types in which disruption of
the receptor results in cognitive and behavioral defects. Selective
disruption of the GluN1 gene in excitatory neurons of layer II/III
of the prefrontal and sensory cortices of mice causes impairments
in short-term memory and prepulse inhibition (Rompala et al.,
2013), andGluN1 gene inactivation in parvalbumin interneurons
caused deficits in habituation, working memory and associative
learning (Carlén et al., 2012).

Genetic studies also support the importance of NMDAR genes
in schizophrenia. Genome wide significant associations with
schizophrenia have been reported for at least two of the NMDAR
genes- GRIN2A and GRIN2B (Taylor et al., 2016). GRIN2A was
recently shown to be associated with schizophrenia in the largest
GWAS to date (SchizophreniaWorking Group of the Psychiatric
Genomics Consortium, 2014). Moreover, it is the sole gene at the
locus (108 loci-region 82), and thereby also contains the ‘‘Index
SNP’’, defined as the SNP with the greatest significance at the
disease-associated genomic locus (Please refer to Supplementary
Table S1 for details of all index SNPs found in genes from our
biological pathway). Genetic variation in the GRIN2B gene has
also been reported to be associated with schizophrenia (Awadalla
et al., 2010; Demontis et al., 2011; Kenny et al., 2014).

A large exome sequencing study of de novo mutations in
schizophrenia conducted by Fromer et al. (2014) used DNA
from 623 family ‘‘trios’’ (affected individual and both parents) to
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identify novel mutations in schizophrenia patients. They found
that de novo mutations are increased in schizophrenia patients
compared to the general population and, that these mutations
were enriched in genes encoding proteins forming the NMDAR
complex (Fromer et al., 2014), further supporting the hypothesis
that dysfunction of NMDARs, or their downstream processes,
increases risk for schizophrenia.

Postmortem brain tissue studies have shown region-specific
alterations in NMDAR subunits at both the gene and protein
levels. Weickert et al. (2013) showed decreased GRIN1 gene
and protein expression, and decreased GRIN2C gene expression,
in the dorsolateral prefrontal cortex regions of schizophrenia
patients compared to controls. In a separate study, Gao et al.
(2000) demonstrated high levels of GRIN1 and low levels of
GRIN2C mRNA in postmortem hippocampal samples from
schizophrenia patients compared with healthy controls.

Role in LTD
NMDARs have long been recognized to play critical roles in
hippocampal long-term potentiation (LTP) and LTD, forms of
synaptic plasticity that correlate with learning and memory (Bear
and Malenka, 1994; Malenka and Bear, 2004). LTP is defined as
the activity-dependent strengthening of synapses (Scharf et al.,
2002), while LTD refers to an activity-dependent decrease in
synaptic strength (Mulkey et al., 1994). Although NMDARs
influence both forms of synaptic plasticity, a role in LTD appears
to be a feature of numerous genes functioning both upstream and
downstream of EGR3, and is therefore the focus of this review.

LTD mediated by NMDARs is crucial for consolidation of
hippocampal dependent memory (Wong et al., 2007; Brigman
et al., 2010; Ge et al., 2010), and alterations in the ratio of
GLUN2A:GLUN2B subunits affects levels of LTD induced by a
low frequency (3–5 Hz) electrical stimulation (Cui et al., 2013).
Mice that lack GluN2B in pyramidal neurons in the cortex
and CA1 regions of the hippocampus show impaired NMDAR-
mediated LTD, and decreased dendritic spine density in CA1,
compared to wildtype mice (Brigman et al., 2010).

Relationship to EGR3
The connection between NMDAR activation and Egr3 gene
expression was first shown by Yamagata et al. (1994),
who demonstrated that high frequency stimulation of rat
hippocampal neurons that induces LTP also activates expression
of Egr3. Both Egr3 expression and establishment of LTP are
blocked by pretreatment with the NMDAR antagonist MK-801.
Thus, this form of activity-dependent expression of Egr3 in the
hippocampus requires NMDAR function.

Interestingly, Egr3 also influences the function of NMDARs.
Egr3−/− mice display deficits in the electrophysiologic response
of hippocampal neurons to drugs selective for GLUN2B-
containing NMDARs (Gallitano-Mendel et al., 2007). However,
the fact that quantitative reverse transcriptase polymerase chain
reaction (qRT-PCR) analysis did not reveal differences in the
levels ofGrin2bmRNA in Egr3−/−mice compared with controls,
suggests that EGR3 may not be directly regulating expression
of this NMDAR subunit (Gallitano-Mendel et al., 2007). Others
have reported that overexpression of Egr3 (but not Egr1) in vitro

regulates expression of an NMDAR subunit NR1-promoter-
driven reporter construct, a response that is BDNF dependent
(Kim et al., 2012). Thus, Egr3 expression is induced by neuronal
activity in an NMDAR-dependent fashion. In addition, Egr3 is
also required for function of GLUN2B-containing NMDARs,
though the mechanisms underlying this regulation have not yet
been established.

Calcineurin
A key process triggered by calcium influx through NMDARs is
the activation of calcium-dependent phosphatases, including CN
(Horne and Dell’Acqua, 2007). CN is a multi-subunit protein
consisting of two main subunits: the catalytic subunit calcineurin
A, and the calcium binding regulatory subunit calcineurin B
(Rusnak and Mertz, 2000). CN plays important roles in both
the immune system and the brain. In T-cells, mitogenic stimuli
increase levels of intracellular calcium, causing calmodulin-
mediated activation of CN. CN then dephosphorylates nuclear
factors of activated T-cell (NFAT) in the cytoplasm, causing
its translocation to the nucleus where it regulates expression of
target genes (Rao et al., 1997). In the nervous system, CN acts
in conjunction with NFAT proteins to regulate numerous critical
processes—reviewed elegantly by Kipanyula et al. (2016). These
range from developmental roles in corticogenesis (Artegiani
et al., 2015) and myelination (Kao et al., 2009), to activity
dependent synaptogenesis (Ulrich et al., 2012), to glial cell
activation, particularly in the context of neuroinflammation
(Neria et al., 2013).

Evidence for a Role in Schizophrenia
An increasing body of in vivo and genetic evidence suggests
a role for CN in the pathogenesis of schizophrenia.
Immunosuppressive drugs that block CN, such as cyclosporin A
and FK-506 produce side effects reminiscent of the symptoms
of schizophrenia. These include memory impairment, auditory
and visual hallucinations, paranoia, depression, and flattened
affect (Bechstein, 2000; Porteous, 2008; American Psychiatric
Association, 2013). Forebrain specific CN knockout mice show
cognitive and behavioral abnormalities consistent with animal
models of schizophrenia, such as working memory deficits (Zeng
et al., 2001), increased locomotor activity and abnormalities in
attention, social interaction and nesting behavior (Miyakawa
et al., 2003).

Human genetic studies have identified associations between
variations in PPP3CC, the gene that encodes the α-1 subunit
of calcineurin A, and schizophrenia, in both Caucasian (Gerber
et al., 2003) and Asian populations (Horiuchi et al., 2007;
Liu et al., 2007; Yamada et al., 2007). Yamada et al. (2007)
noted that EGR3 was located near PPP3CC (within a 252 kb
interval) on the short arm of chromosome 8, and showed
through linkage disequilibrium studies that they form distinct
regions of schizophrenia susceptibility. Although PPP3CC is not
listed as a candidate gene at one of the 108 loci associated
with schizophrenia, numerous other non-calcineurin protein
phosphatase genes do map to the loci identified in that GWAS.
These include: PPP1R13B, PPP1R16B, PPP2R3A and PPP4C.
This suggests the importance of protein-phosphatases in the
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etiology of schizophrenia. Notably serine/threonine phosphatase
PP1/PP2A is a crucial player in synaptic plasticity and LTD
(Mulkey et al., 1994).

Role in LTD
The forebrain specific CN knockout mice that display
schizophrenia-like behavioral abnormalities also have disrupted
hippocampal LTD, as well as deficits in hippocampal working
and episodic memory (Zeng et al., 2001). Notably, this
hippocampal LTD deficit phenotype is also seen in Egr3−/−

mice (Gallitano-Mendel et al., 2007). Several additional lines
of evidence suggest CN to be a crucial regulator of LTD. CN
regulates dephosphorylation, and subsequent removal, of a
membrane bound AMPAR subunit during LTD (Mulkey et al.,
1994; Sanderson et al., 2016), which is induced by transient
receptor potential cation channel subfamily V member 1
(TRPV1) receptor activation (Chávez et al., 2010). These
observations collectively highlight CN as an important regulator
of behavior, memory, and LTD and as a schizophrenia candidate
gene that regulates EGR3, making this protein an integral
component of our proposed biological pathway.

Relationship to EGR3
Evidence that CN regulates expression of Egr3 comes from
the immune system. T-cell activation induces expression of
Egr3, which, in turn, directly regulates expression of Fas-ligand
(Fasl). Expression of both Egr3 and its target gene is blocked
by the CN inhibitor cyclosporin A (Mittelstadt and Ashwell,
1998). Although a similar interaction has not been investigated
in the brain, the remarkable similarity in the behavioral and
electrophysiologic phenotypes of CN knockout, and Egr3−/−,
mice strongly suggests this molecular pathway is conserved in
the brain (Zeng et al., 2001; Miyakawa et al., 2003; Gallitano-
Mendel et al., 2007). Both CN knockout and Egr3−/− mice show
deficits in LTD, spatial learning (Zeng et al., 2001; Gallitano-
Mendel et al., 2007), and heightened responsiveness to handling
(Gallitano-Mendel et al., 2007; supplemental data, Miyakawa
et al., 2003). These intriguing initial findings support the need to
determine whether this regulatory relationship between CN and
Egr3 found in the immune system is also present in the brain.

NFATc3 (NFAT4)
The NFATs comprise a family of transcription factors that
regulate activity-dependent gene expression in the immune
system and the brain (Macian, 2005; Vihma et al., 2016). They
reside in the cytoplasm in an inactive, phosphorylated state.
Activity-triggered calcium entry into the cell stimulates CN to
dephosphorylate NFAT proteins, allowing them to translocate to
the nucleus where they activate expression of immediate early
genes (Abdul et al., 2010). NFATs can be shuttled back into
the cytoplasm via nuclear export sequences (nuclear localization
signal) that, once exposed, lead to rephosphorylation of NFATs
by kinases (Okamura et al., 2000) and subsequent inhibition of
NFAT-mediated gene transcription (Hogan et al., 2003).

The NFAT family comprises five genes, four of which
are calcium regulated and include NFAT1-4, and one that is
osmotic tension-regulated, namely NFAT5, in both humans

and mice (Vihma et al., 2008). NFAT proteins contain a
C-terminal Rel homology domain that enables them to interact
with other transcription factors (including EGRs) to co-regulate
expression of downstream genes. Additional protein regions
include an N-terminal domain that contains two CN binding
sites (Aramburu et al., 1998; Park et al., 2000), the nuclear
localization sequence, and serine residues that are sites of
phosphorylation (Kiani et al., 2000).

As transcription factors, NFATs regulate expression of a
wide array of genes ranging from cytokines (Klein et al.,
2006), to growth factors (Hernández et al., 2001), to cell-cycle
regulators (Caetano et al., 2002). In conjunction with CN, NFATs
mediate a variety of physiological processes such as angiogenesis
(Courtwright et al., 2009), osteogenesis (Winslow et al., 2006),
and cardiovascular system development (Schulz and Yutzey,
2004). In the nervous system the NFATs have numerous roles,
which include regulation of synaptic plasticity (Schwartz et al.,
2009) and neurotrophin signaling (Groth et al., 2007; reviewed in
Kipanyula et al., 2016).

We focus our discussion on NFATC3 (a.k.a. NFAT4), as it
regulates expression of Egr3, and it is the only family member to
show genome wide association with schizophrenia (Rengarajan
et al., 2000; Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014; Pouget et al., 2016). Nfatc3 is
expressed in the adult mouse cerebellum, hippocampus, choroid
plexus and ependymal cells as shown by in situ hybridization
studies, and in the midbrain, pons, striatum, and thalamus
using reverse transcription polymerase chain reaction (RT-PCR;
Vihma et al., 2008). The level of expression varies across these
regions with the highest expression in the mouse cerebellum and
granular cell layer of the dentate gyrus in human brain tissue
(Vihma et al., 2008). In vitro studies demonstrate that NFATC3 is
one of the most highly activated NFAT members following
neuronal depolarization (Vihma et al., 2016). To date, NFATC3
remains the only NFAT family member to show genome wide
association with schizophrenia and regulate gene expression of
immediate early genes, both of which are discussed below.

Evidence for a Role in Schizophrenia
NFATC3 maps to locus 85 of the 108 loci identified by
the psychiatric genetics consortium and is, in fact, the index
SNP for that locus (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). This initial finding
has subsequently been supported by a follow-up GWAS that
examined immune system-related genes from the original
consortium study in an extended cohort (Pouget et al., 2016).
Results of this validation study identified both NFATC3 and
EGR1 among the six immune genes that showed genome-wide
significance. Pouget et al. (2016) propose that NFATC3, which,
like each of the 5 candidate genes they followed up, is known to
have a predominantly ‘‘immune’’ role in peripheral organs, may
be playing a non-immune role in the brain.

The vast majority of work investigating the activity and
function of NFATC3 has focused on its roles in the immune
system. Studies of Nfatc3 knockout mice show reduced
numbers of CD4 and CD8 cells in the thymus and spleen,
and increased apoptosis of T-cells, suggesting the importance
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of Nfatc3 in T-cell development and survival. No brain
or nervous system phenotypes were reported in this study
(Oukka et al., 1998). However emerging data suggest that
NFATC3 has neuroprotective functions. It mediates astrocyte
activation in response to brain damage (Serrano-Pérez et al.,
2011; Yan et al., 2014), protection against apoptosis in
neuronal cells in vitro (Butterick et al., 2010), and growth
and differentiation of neuronal precursors (Serrano-Pérez
et al., 2015). NFATC3 also mediates neurodegenerative effects
including methamphetamine-induced apoptosis (Jayanthi et al.,
2005), and apoptosis via Fas activation in lithium-induced
neurotoxicity in vivo (Gómez-Sintes and Lucas, 2010). The latter
of these is reminiscent of Egr3-mediated regulation of Fasl in
T-cells (Mittelstadt and Ashwell, 1998, 1999; Rengarajan et al.,
2000). Although there are no published studies investigating the
role of NFATC3 in LTD, its position as an activity-dependent
regulator of Egr3 in this pathway leads us to hypothesize that
NFATC3 will be necessary for this form of synaptic plasticity.

Relationship to EGR3
In the immune system, CN regulates Egr3 expression in
response to T-cell activation, an interaction that is mediated
via NFATs. NFATC3 regulates expression of Egr3 in T-cells
in mice. Egr3 expression is reduced in amount and duration
in T-cells of mice lacking either NFATC2 or NFATC3, and
is nearly absent in NFATC2/C3 double knockout mice. This
regulation is direct, as both NFATC2 and NFATC3 are able to
transactivate the Egr3 promoter in vitro (Rengarajan et al., 2000).
We hypothesize that, in neurons, activity-dependent activation of
CN dephosphorylates NFATC3, allowing it to enter the nucleus
where it binds to the Egr3 promoter and activates its expression.
While NFATC2 may also regulate neuronal expression of Egr3,
as well as of Egr2, and potentially Egr1, the strong evidence
for NFATC3 interacting with EGR3 is the basis for including
this family-member as a critical component of our proposed
biological pathway.

EGR3
EGR3 is a member of the Egr family of immediate early gene
zinc finger transcription factors, and is activated downstream
of numerous schizophrenia candidate proteins, including NRG1,
NMDAR andCN (Yamagata et al., 1994;Mittelstadt andAshwell,
1998; Hippenmeyer et al., 2002). This family consists of four
genes, Egr1-4, that are activated in response to a wide range
of environmental stimuli, including stress (Senba and Ueyama,
1997).

Egr3 was identified through a screen for genes homologous
to Egr1. Like the founding family member, Egr3 is also
highly expressed throughout the brain, including in the
cortex, hippocampus, basal ganglia (Yamagata et al., 1994)
and suprachiasmatic nucleus (Morris et al., 1998), as well as
in the immune system and other organs (Tourtellotte and
Milbrandt, 1998; Mittelstadt and Ashwell, 1999; Tourtellotte
et al., 2001) Egr3 mRNA is highly induced in response to
electroconvulsive seizure in hippocampal and cortical neurons,
and in hippocampal dentate gyrus granule cells, by NMDAR
activation (Yamagata et al., 1994), prompting further research

into its role in synaptic plasticity and behavior (Gallitano-Mendel
et al., 2007, 2008).

Evidence for a Role in Schizophrenia and LTD
Investigations published by our group revealed that Egr3−/−

mice display schizophrenia-like behavioral abnormalities,
including locomotor hyperactivity that is reversed by
antipsychotic treatment. In addition, these mice show immediate
memory deficits, heightened reactivity to novelty, and disrupted
hippocampal LTD (Gallitano-Mendel et al., 2007). Induction of
LTD has recently been shown to inactivate fear-related memory
in vivo; however, we do not know whether Egr3 plays a role in
this process (Nabavi et al., 2014). Egr3−/− mice also display a
marked resistance to the sedating effect of clozapine, and other
second-generation antipsychotics, which parallels the resistance
that schizophrenia patients show to the side-effects of these
medications (Cutler, 2001). This phenotype may be explained,
at least in part, but the reduced level of serotonin 2A receptors
found in the frontal cortex of Egr3−/− mice, a feature also seen in
the brains of patients with schizophrenia (Williams et al., 2012;
Selvaraj et al., 2014).

Our research also showed that Egr3−/−mice exhibit increased
aggression in response to a foreign intruder (Gallitano-Mendel
et al., 2008). This response was abrogated by chronic clozapine
administration, despite the fact that the Egr3−/− mice are
resistant to the sedative effects of this antipsychotic (Gallitano-
Mendel et al., 2008). A similar phenomenon is seen in
schizophrenia patients treated with clozapine (Hector, 1998;
Chalasani et al., 2001; Chengappa et al., 2002), in whom the
anti-aggressive effect of the drug can be distinguished from its
sedating effect (Krakowski et al., 2006). These roles that Egr3
plays in memory, synaptic plasticity, and behavior, and the
response to antipsychotics that mimics that of patients, suggest
that abnormal function of EGR3 in humans may contribute to
schizophrenia pathogenesis or symptomatology.

Genetic association of EGR3 with schizophrenia has been
shown in Chinese (Ning et al., 2012; Zhang et al., 2012),
Japanese (Yamada et al., 2007) and Korean (Kim et al., 2010)
populations, and more recently in a population of European
descent (Huentelman et al., 2015). It was also reported that
decreased EGR3 mRNA levels were observed in postmortem
dorsolateral prefrontal cortex samples of schizophrenia patients
compared with controls (Yamada et al., 2007). In addition, EGR3
was identified in a screen for genes that are expressed at reduced
levels in the brains of schizophrenia patients that do not smoke
tobacco, and are normalized to control levels in patients that
smoke. Notably, EGR3 levels followed a pattern identical to that
of CN in the study, consistent with its regulation by CN in the
proposed biological pathway (Mexal et al., 2005).

The 8p chromosomal region, where EGR3 resides, is a
long-recognized hub for schizophrenia associations (Suarez et al.,
2006; Lohoff et al., 2008). A recent review highlighted that EGR3
was among 20 genes of interest for schizophrenia, map to the 8p
locus (Tabarés-Seisdedos and Rubenstein, 2009). Association of
an EGR3 SNP with decreased prefrontal hemodynamic response
was observed during a verbal fluency task in both healthy
controls and schizophrenia patients (Nishimura et al., 2014).
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Both human and in vivo animal studies suggest that
overexpression of EGR3 may also negatively impact non-neural
physiological processes, including immune system function.
High levels of EGR3 positively correlate with levels of
proinflammatory cytokines in peripheral monocytes of
schizophrenia patients (Drexhage et al., 2010). This may be
mediated through the Triggering receptor expressed on myeloid
cells 1 (TREM-1), a key regulator of inflammation in both brain
microglia and peripheral monocytes, as EGR3 directly binds the
TREM-1 promoter in monocytes (Weigelt et al., 2011).

These data support the hypothesis that EGR3 may function
as a master regulator of multiple processes that are relevant
to the pathophysiology of schizophrenia. In line with this
theory, bioinformatic analyses have predicted EGR3 to be a
central modulator of a regulatory network of microRNAs and
transcription factors associated with schizophrenia (Guo et al.,
2010). Despite these findings, EGR3 was not identified as a gene
residing at one of the 108 loci associated with schizophrenia.
Genome-wide association studies from the PGC schizophrenia
studies suggest that none of the SNPs in the region including
EGR3 showed a significant association. The SNP that showed
the lowest p value was an intergenic SNP, rs12541654 (p = 0.23,
OR = 0.99)1. However other EGR family members, such as
EGR1, and EGR coregulatory binding factor NGFI-A Binding
Protein 2 (NAB2), are each index SNPs at one of the 108 loci
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). EGR3 binds to NAB2 to co-regulate
expression of target genes, and is involved in co-regulatory
feedback relationships with EGR1, as well EGR1, EGR2 and
EGR3 can regulateNAB2 expression, demonstrating a functional
interaction of both of these schizophrenia associated genes in the
proposed pathway (Svaren et al., 1996; Mechta-Grigoriou et al.,
2000; Kumbrink et al., 2005, 2010; Srinivasan et al., 2007).

ARC
One of the first EGR3-target genes to be elucidated was Arc
(Li et al., 2005). Arc was originally identified as a novel transcript
in the adult rat brain that was rapidly and strongly induced
in response to electroconvulsive seizures (Link et al., 1995;
Lyford et al., 1995). Induction of Arc was observed in vitro in
PC12 cells following exposure to growth factors such as nerve
growth factor (NGF) and epidermal growth factor (EGF; Lyford
et al., 1995). Arc mRNA and protein are enriched in neuronal
dendrites, and ARC protein colocalizes with the actin cytoskeletal
matrix (F-actin; Lyford et al., 1995). These observations led to
its name ‘‘ARC’’. Further characterization of the role of ARC
protein in cytoskeletal function revealed that it also associates
with microtubules and microtubule associated protein (MAP2;
Fujimoto et al., 2004). ARC was also shown to maintain
phosphorylation of cofilin, the actin depolymerization factor, and
to promote F-actin formation (Messaoudi et al., 2007).

ARC is capable of localizing to NMDAR and postsynaptic
density (PSD) 95 protein complexes (Husi et al., 2000; Donai
et al., 2003) suggesting that it may be involved in synaptic
neurotransmission. ARC also binds to multiple components

1http://zzz.bwh.harvard.edu/code.html

of the clathrin-dependent endocytic machinery including
endophilin and dynamin, and decreases total and surface
AMPAR (GluR1) protein levels via endocytosis in hippocampal
neurons in vitro (Chowdhury et al., 2006). Numerous proteins
bind to ARC to mediate its many important roles in the nervous
system. Notably 4–8 of these binding partners, termed ‘‘ARC
complex proteins’’, were identified in schizophrenia GWAS
(Kirov et al., 2012; Fromer et al., 2014; Purcell et al., 2014) and
are discussed in depth in the next section.

Evidence for a Role in Schizophrenia
The behavioral phenotype of Arc−/− mice was recently
characterized and revealed schizophrenia-like abnormalities.
These include deficits in prepulse inhibition and recency
discrimination (indicative of cognitive dysfunction),
impairments in response to social novelty, hyperactivity in
response to amphetamine administration, and region-specific
alterations in dopamine (Managò et al., 2016). Though they
retain the ability to form intact short-term memory, Arc−/−

mice fail to form long lasting memories.
The necessity of Arc for normal memory and behavior

in mice suggest that dysfunction of ARC in humans could
result in abnormalities that increase risk to develop psychiatric
illness. Indeed, ARC mRNA expression is decreased in the
frontal cortex of schizophrenia patients (Guillozet-Bongaarts
et al., 2014). In addition, genes encoding proteins that bind
to ARC, ‘‘ARC-complex proteins’’, were identified in several
large-scale, genome-wide schizophrenia genetic association
studies. Kirov et al. (2012) reported that de novo CNVs in
the genes DLG1, DLG2, DLGAP1, CYFIP1, each of which
encode ARC-complex proteins, show significant enrichment in
individuals with schizophrenia. A separate case-control study
showed an enrichment of disruptivemutations in genes encoding
ARC-complex proteins in schizophrenia cases vs. controls
(Purcell et al., 2014). The nine mutations identified in this
study included nonsense, essential splice site, and framseshift
mutations, that occurred in nine genes, and were found only in
schizophrenia cases, with none occurring in controls (Purcell
et al., 2014). In addition, the study by Fromer et al. (2014)
that identified increased de novomutations in NMDAR-complex
gene in schizophrenia patients also revealed that these mutations
are enriched in genes encoding proteins associated with the
ARC-complex. Fromer et al. (2014) showed that loss of function
mutations are 17-fold enriched in genes encoding ARC-complex
proteins in their cohort and 19-fold enriched in the data set
from the Purcell et al. (2014) study. They concluded that
‘‘ARC disruption has particularly strong effects on disease risk’’
(Fromer et al., 2014).

These and other findings implicated ARC as a critical
protein in a synaptic pathway involving voltage gated calcium
channels, NMDARs, PSD95, FMRP, mGLuR and AMPARs, in
schizophrenia risk (Hall et al., 2015). Although these studies did
not report genetic association of variations in the ARC gene,
itself, with schizophrenia, our group subsequently reported the
first association of a SNP in the ARC gene with schizophrenia
in two separate populations (discussed below; Huentelman et al.,
2015). More recently, hypermethylation of eight CpG sites,
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and presence of several rare variants that reduce reporter gene
activity, were reported in the putative ARC promoter region of
schizophrenia patients vs. controls (Chuang et al., 2016). These
findings indicate that altered genetic and epigenetic regulation
of ARC expression, specifically that reduces ARC function, may
increase risk for schizophrenia.

Role in LTD
Like many of the upstream proteins in the proposed pathway,
ARC is also required for hippocampal LTD. NMDA-mediated
LTD deficits in Schaffer collateral-CA1 synapses were found
in slices from Arc−/− mice compared to wildtype mice (Plath
et al., 2006). In addition, mGLuR-mediated LTD was shown
to depend on rapid translation of ARC, and ARC-mediated
AMPAR endocytosis, in hippocampal neurons (Waung et al.,
2008).

Neuronal activity stimulates expression of ARC, which
then accumulates at the spines of inactive synapses, effectively
‘‘tagging’’ these synapses for remodeling. This process is
dependent on Ca2+/calmodulin-dependent protein kinase II
(CamKIIβ), and results in ARC-mediated AMPA receptor
endocytosis (Okuno et al., 2012). Minatohara et al. (2016)
suggest that ARC expression and localization during LTD
may increase the strength of the active synapses by causing
endocytosis of AMPARs at the inactive synapses. Arc−/− mice
also show decreased spine density and increased spine width
in CA1 pyramidal neurons and DG cells (Peebles et al., 2010),
suggesting that ARC plays a critical role in maintenance of spine
morphology that may impact learning and behavior. These data
suggest that decreased ARC expression results in deficits in LTD.

Relationship to EGR3
Previous research has shown that Arc is a transcriptional target
of EGR3 (Li et al., 2005). Our proposed biological pathway
(Gallitano-Mendel et al., 2007, 2008) combines environment
stress-responsive proteins EGR3, CN, and NMDARs, each of
which are associated with schizophrenia susceptibility. Since
mice deficient for these proteins share phenotypes of LTD and
memory deficits, similar to mice lacking Arc, we hypothesized
that the ARC gene should likewise be a schizophrenia candidate
gene.

To test this hypothesis, we used next generation sequencing
to resequence the ARC gene, and flanking regions, from
schizophrenia patient and control subjects from two separate
ethnic groups. These studies revealed association between the
ARC SNP and schizophrenia in both ethnic groups (Huentelman
et al., 2015). In a separate study, we found that the ARC SNP
was associated with response to cognitive remediation therapy
in a cohort of new onset psychosis patients (Breitborde et al.,
2017). Recently, a heritable chromosomal microdeletion that
encompasses several genes, including ARC, was also shown
to be associated with several neurodevelopmental psychiatric
disorders such as attention deficit hyperactivity disorder and
autism spectrum disorder (Hu et al., 2015) in addition to
schizophrenia. Overall, substantial evidence suggests that ARC,
an important regulator of synaptic function, memory, and
LTD, influences risk for schizophrenia, and possibly other

neuropsychiatric illnesses. As a direct target of EGR3, ARC
represents an important output element of our proposed
biological pathway.

ADDITIONAL GENES THAT INTERACT
WITH THE PATHWAY

Neuregulin-1
NRG1 was one of the first schizophrenia candidate genes to
be identified using molecular genetic methods at a genomic
locus defined by linkage analysis studies in family pedigrees
(Stefansson et al., 2002). It has subsequently been validated
in numerous populations, and supported by preclinical studies
(recently reviewed in, Mostaid et al., 2016). NRG1 regulates
EGR3 in human muscle and breast cancer cell lines (Sweeney
et al., 2001; Jacobson et al., 2004). In mice NRG1 regulates
Egr3 expression in developing muscle cells (Jacobson et al.,
2004), and this regulation is required to maintain development
of muscle spindles. These studies demonstrate a functional link
between these two schizophrenia-associated genes in two types
of human cell lines, and in vivo in mice (Hippenmeyer et al.,
2002; Jacobson et al., 2004; Herndon et al., 2013). Although
this regulatory relationship has not yet been validated in the
brain, we hypothesize that a similar regulatory relationship may
functionally link these two schizophrenia-associated genes in the
central nervous system as well.

No studies investigating LTD in NRG1 deficient mice have
been reported. However, the fact that NRG1 regulation of Egr3
in the muscle spindle is mediated by SRF (Jacobson et al., 2004;
Herndon et al., 2013), and loss of either Srf or Egr3 results in
memory and LTD deficits (Etkin et al., 2006; Gallitano-Mendel
et al., 2007), leads us to predict that NRG1 should also play
a critical role in this form of hippocampal synaptic plasticity.
Indeed, NRG1 impairs endocannabinoid 2-arachidonoylglycerol
(2-AG)-mediated LTD in rat hippocampal slices (Du et al., 2013).

Serum Response Factor (SRF)
We have previously highlighted SRF as a protein in the proposed
biological pathway for schizophrenia susceptibility based on its
requirement for both novelty memory and LTD in mice (Etkin
et al., 2006), as well its regulatory interactions with other proteins
in the pathway (Etkin et al., 2006; Gallitano-Mendel et al., 2007).
SRF is activated downstream of NRG1 in mouse muscle cells
(Herndon et al., 2013, 2014). In vitro studies demonstrate that
NRG1 is capable of stimulating SRF expression in human HeLa
cells expressing the NRG1 receptor ErbB4, and that this is
mediated by mitogen-activated protein kinase (MAPK; Eto et al.,
2010). SRF is also activated by CN/NFAT, in combination with
other factors, in lymphocytes (Lin et al., 2002; Hao et al., 2003).
In turn, SRF regulates expression of Egr1 and Egr2 in the brain
in response to novelty, and mediates the regulation of Egr3 by
NRG1 inmuscle spindle development (Hao et al., 2003; Ramanan
et al., 2005; Etkin et al., 2006; Herndon et al., 2013). SRF has
also been shown to regulate Egr3 expression in the hippocampus
(personal communication from Naren Ramanan).

Together with another transcription factor Elk-1, SRF
regulates expression of Egr1 in response to chemically-induced
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LTD (by 3,5-dihydroxyphenylglycine, DHPG; Lindecke et al.,
2006). And Srf -deficient mice have deficits in LTD (Etkin et al.,
2006). Interestingly two NRG1 schizophrenia-associated SNPs
from the original Icelandic haplotype occur in regions that show
predicted binding sites for SRF that are abolished by presence
of the SNPs (Law et al., 2006). Although we are unaware of
studies demonstrating that genetic polymorphisms in SRF are
directly associated with risk for schizophrenia at this time, we
hypothesize that the positioning of SRF in this pathway, and its
requirement for hippocampal LTD, will lead to identification of
such roles in the future.

EGR1
Egr1 is the foundingmember of the Egr family of immediate early
gene transcription factors. It was identified as a gene activated in
response to application of NGF to PC-12 cells in culture, and thus
named ‘‘NGF inducible A’’ NGFI-A (O’Donovan et al., 1999).
Egr1 was independently identified by other laboratories, which
accounts for its numerous aliases (zif-268, Krox-24, NGFI-A,
TIS8, ZIF-268, ZNF225). Egr1 is required for long-term memory
formation and late-phase LTP (Cole et al., 1989; Worley et al.,
1993).

While a number of studies have identified associations
between EGR1 and schizophrenia, the most significant is that
of the 2014 Schizophrenia Working Group of the Psychiatric
Genomics Consortium GWAS, in which EGR1 resides in region
69 of the 108 loci associated with the illness, and contains the
Index SNP for that region (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). In a follow-up study
examining the consortium dataset, Pouget et al. (2016) identified
six independent regions from the 108 loci where the SNP with
the lowest association p-value (the Index SNP) was in an immune
gene. EGR1 was one of the six.

Postmortem brain tissue studies have also identified EGR1
as one of a small number of genes differentially expressed in
schizophrenia patients compared with controls (Pérez-Santiago
et al., 2012). Studies have also identified differences in mRNA
levels of EGR1 in peripheral blood cells (Cattane et al., 2015; Xu
et al., 2016; Liu et al., 2017), and one study in fibroblasts (Cattane
et al., 2015), of schizophrenia patients compared with controls
Interestingly, the differences in EGR1 mRNA levels identified
by the two research groups were in opposite directions, which
may be due to methodological differences. In particular, the two
studies reporting reduced peripheral blood cell levels of EGR1
were examining schizophrenia patients during an acute psychotic
episode, while the other study did not specify the patients’ current
symptom status (Cattane et al., 2015; Xu et al., 2016; Liu et al.,
2017).

Studies in mice deficient for Egr1 demonstrate that both
long-term memory and LTP require function of this immediate
early gene (Jones et al., 2001; Bozon et al., 2003). Furthermore,
over-expression of Egr1 facilitates hippocampal LTP and
enhances long-term memory of spatial location (Penke et al.,
2013). Although Egr1 is upregulated in response to LTD
induction by DHPG (Lindecke et al., 2006), loss of Egr1 has not
been reported to result in LTD deficits.

As the foundingmember of the EGR family, EGR1 shares gene
sequence homology, andDNAbinding element recognition, with
EGR3. EGR1 and EGR3 are activated bymany of the same stimuli
and are expressed in the same cells in the brain (Yamagata et al.,
1994), though their proteins follow different temporal patterns of
expression and perdurance (O’Donovan et al., 1998).

Together EGR1 and EGR3 bind to the promoter, and
induce expression of, their coregulatory factor NAB2 in cells of
neuroectodermal origin (Kumbrink et al., 2010). NAB2 protein,
via interaction with the EGRs, subsequently feedback inhibits
its own expression (Kumbrink et al., 2010). These regulatory
relationships that EGR1 shares with EGR3 and other proteins
in the proposed pathway, as well as with NAB2, another
GWAS-implicated gene, strengthen the likelihood that the
position of EGR1 as an Index SNP in the 108 loci indicates an
actual role for EGR1 in schizophrenia susceptibility.

NGFI-A Binding Protein 2 (NAB2)
NAB2 is an activity-dependent immediate early gene that
functions as a transcriptional coregulatory protein by binding
to a specific recognition domain on EGR family transcription
factors EGR1, EGR2 and EGR3. In cells of neuroectodermal
origin EGR1 and EGR3 bind in concert to the promoter of the
NAB2 gene to induce its expression (Kumbrink et al., 2010).
NAB2 protein has both co-activation and co-repression actions.
Once bound to the EGRs, NAB2 feedback inhibits its own
expression, as well as that of EGRs (Svaren et al., 1996; Mechta-
Grigoriou et al., 2000; Kumbrink et al., 2010).

The regulatory relationships with schizophrenia-associated
EGRs (EGR1 and EGR3) suggest a role for NAB2 in
neuropsychiatric illness. Direct support for possible association
between NAB2 and schizophrenia comes from the 2014
Schizophrenia Working Group of the Psychiatric Genomics
Consortium GWAS. NAB2 is located at region 20 of the 108 loci,
and is one of the genes at the site of the locus’ Index SNP
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014).

The majority of studies involving NAB2 have investigated its
role in the immune system and cancer biology (Collins et al.,
2006, 2008; Hastings et al., 2017). The role of NAB2 in the
nervous system is much less well investigated, and the functions
of NAB2 in the brain are still largely unknown. As an immediate
early gene, Nab2 expression is induced in the brain in response
to stimuli (Jouvert et al., 2002). Among the stimuli that activate
Nab2 expression in neurons is BDNF (Chandwani et al., 2013). In
the peripheral nervous system loss of both Nab2, and its family
member Nab1, results in severe myelination defects (Le et al.,
2005).

No studies have yet been published examining the role
of NAB2 in memory or hippocampal synaptic plasticity, or
in behavior. However, unpublished data from our laboratory
indicate significant behavioral abnormalities in mice lacking
only Nab2 (Gallitano, unpublished observation). Despite the
paucity of published work on the role of NAB2 in the brain, the
regulatory relationships between NAB2, EGR1 and EGR3 link
this gene not only to other specific schizophrenia-associated
genes, but also to the proposed pathway for illness association.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 February 2018 | Volume 12 | Article 23

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Marballi and Gallitano Biological Pathway for Schizophrenia

FIGURE 2 | A developmental model for genetic predisposition to stress susceptibility. (A) Stress hormones cause detrimental effects on the brain, such as
decreased dendritic arborization, reduced density of synaptic spines, and decreased regional brain volumes, which are seen in schizophrenia. Stress also activates
EGR family immediate early genes, which mediate numerous beneficial processes, such as growth factor response, vascularization, synaptic protein expression, and
synaptic plasticity. The balance between these processes protects the brain from damage under stressful conditions. (B) Individuals carrying genetic variants that
impair the activation of pathway proteins may be fine under normal conditions. However, in the context of stress, the damaging effects override the insufficient
protective response, resulting in neurotoxic insults which, if sustained or repeated, may result in the neuropathology that gives rise to symptoms of schizophrenia. In
this manner, genetic variations in genes of the proposed pathway create a predisposition to develop schizophrenia in a manner dependent upon the stress history of
an individual.

Brain-Derived Neurotrophic Factor (BDNF)
Numerous studies have associated BDNF with mental illnesses,
including schizophrenia (Islam et al., 2017). The requirement
for BDNF, particularly its precursor (pro) form, for synaptic
plasticity and memory, suggests a mechanism linking BDNF to
neuropsychiatric disorders (reviewed in, Carlino et al., 2013).
Specifically, the human BDNF polymorphism that converts the
66 position amino acid valine to a methionine (Val66Met) has
been associated not only with mental illness risk, but also with
memory (Egan et al., 2003; Hariri et al., 2003; Hashimoto et al.,
2008; van Wingen et al., 2010).

BDNF is included in the proposed pathway as it has been
shown to induce expression of Egr3 in the mouse brain as an
essential step in regulating expression of GABAA receptor alpha
4 subunit (Roberts et al., 2006; Kim et al., 2012). In a separate
article submitted to this Research Topic issue (Meyers et al.,
2017a), we demonstrate that Egr3 is required for expression of
Bdnf in the mouse dentate gyrus 1 h following seizure, a stimulus
that induces high level Bdnf expression in this hippocampal
region. Thus, BDNF may function both upstream, as well as
downstream, of Egr3.

It was recently reported that BDNF-deficient mice display
defects in hippocampal LTD (Novkovic et al., 2015; Bukalo
et al., 2016). In addition, exogenous application of the precursor
(pro) peptide of BDNF facilitates development of LTD, a
process that requires function of GLUN2B containing NMDARs
(Mizui et al., 2015; Kojima and Mizui, 2017). Notably, the
hippocampal Schaffer collateral neurons in Egr3−/− mice, that
fail to develop LTD, are unresponsive to the GLUN2B selective
antagonist ifenprodil (Gallitano-Mendel et al., 2007), suggesting
that GLUN2B-containing NMDARs are critical for both BDNF-

and Egr3-, mediated LTD. These findings support a position for
BDNF in our proposed pathway for neuropsychiatric illness risk.

DISCUSSION

In this article, we review evidence supporting an activity-
dependent biological pathway that incorporates numerous
schizophrenia candidate genes with critical roles in the regulation
of memory and LTD, and that culminates in activation of the
immediate early gene transcription factor EGR3. The unique
position of immediate early gene transcription factors, at the
nexus between environmental events and regulation of the
neuronal response to activity, makes them ideally suited to
account for both the genetic and environmental contributions to
schizophrenia.

Additional proteins implicated in risk for schizophrenia, but
that have not yet been reported to affect LTD, interact with
this pathway either as upstream activators (e.g., NRG1) or as
transcriptional regulators (e.g., EGR1 and NAB2). Individual
genes in this pathway mediate neuroprotective functions
including myelination, vascularization, growth factor regulation,
and synapse formation, abnormalities in which are found in
schizophrenia (Milbrandt, 1987; Mechtcheriakova et al., 1999;
Jones et al., 2001; Jessen and Mirsky, 2002; Fahmy et al., 2003;
Fahmy and Khachigian, 2007; Gallitano-Mendel et al., 2007).
Dysfunction in any of the genes of this pathway would result in
disruption of these processes, and may thereby account for the
neuropathologic and clinical features of schizophrenia, including
deficiencies white matter, brain volumes, and cerebral blood
flow, reduced synaptic spine density, and deficits in memory and
cognitive processing (Ingvar and Franzen, 1974; Saykin et al.,
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1991; Glantz and Lewis, 2000; Moises et al., 2002; Davis et al.,
2003; Nabavi et al., 2014).

Moreover, numerous genes in the pathway have critical
functions in the immune system, particularly in T-cell activation,
underscoring a longstanding recognition of a relationship
between immune system and risk for schizophrenia. Finally,
numerous genes that are part of the originally-defined pathway,
as well as others that interact with proteins in the pathway,
have subsequently been identified in the 108 loci GWAS
(Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Notably, each of the pathway genes that is
at one of the 108 schizophrenia loci is, in fact, the Index SNP at
that locus. Together these findings strongly support the biological
relevance of our proposed pathway in schizophrenia.

In the ‘‘Introduction’’ section, we highlighted that there
are two unanswered questions at the forefront of psychiatric
genetics: (1) how can so many genes contribute susceptibility
to schizophrenia? and (2) how do genes implicated in risk for
schizophrenia interact with environmental factors to give rise
to the disorder? The concept of a biological pathway addresses
the first unanswered question by hypothesizing that numerous
genes share roles in a much smaller number of critical functional
processes. Disruption in these key biological processes create risk
for schizophrenia.

To account for the effect of environment, we propose a model
whereby genetic variations that decreased function of any protein
in the pathway will result in increased risk for schizophrenia
in a manner that is dependent upon the stress history of an
individual. Stress is commonly thought of as detrimental. Specific
negative consequences of stress demonstrated in animal and
human studies include stress-hormone mediated decreases in
dendritic arborization and spine density and reduced regional
brain volumes (reviewed in Lupien et al., 2009). However, despite
the pervasive experience of stress throughout life, most people
do not develop severe mental illness. This is presumably because
stress also activates molecular and cellular processes that are
protective. The balance of damaging and protective responses to
stress creates resilience and maintain homeostasis. This is shown
in Figure 2A.

We propose that the activity-dependent biological pathway
we have described here represents a component of the healthy
biological response to stress. The normal activation of the
pathway in response to stress triggers molecular and cellular
processes that protects the brain from the harmful effects of stress
hormones, and other detrimental elements of the stress response.
While extreme, or unremitting, stress conditions may over-ride
the buffering abilities of this protective arm of the stress response,
it is sufficient to withstand typical episodic stress that occurs in
daily life.

However, if an individual carries a genetic variation that
decreases the responsiveness of a critical protein in our proposed
pathway (Figure 2B), then exposure to stress will result
in the detrimental effects of stress that are not sufficiently
balanced by the protective elements. This preponderance of
damaging effects over time is hypothesized to cause the
neuropathologic features of schizophrenia that presumably
give rise to symptoms of the illness. In the absence of

sufficient stress, however, the lower level of function of the
EGR pathway may be sufficient to prevent neuropathological
consequences. This can explain how two individuals may
carry the same genetic variation, but be discordant for
schizophrenia.

In this manner, the proposed model would account for the
dual genetic and environmental contributions to schizophrenia
susceptibility, a crucial feature that has not been accounted for
by previous gene or pathway models. We hope that this pathway
and model provide the structure for investigation of additional
components that may contribute to the neuropathology
underlying schizophrenia and other neuropsychiatric disorders,
advancing the field toward identification of more effective
therapies, and perhaps one day a cure, for these illnesses.

We have focused on the role of our proposed pathway
in schizophrenia due to the large body of supporting studies
from human genetic, post-mortem, and basic science animal
studies. However, we hypothesize that this pathway is relevant
for other neuropsychiatric and neurodegenerative disorders in
which stress plays a role and memory is affected. Indeed,
EGR genes, and EGR3 in particular, has been implicated in
bipolar disorder, depression and Alzheimer’s disease (Hokama
et al., 2014; Pfaffenseller et al., 2016; Francis et al., 2017).
Although in-depth discussion of these disorders is beyond
the scope of this review, we look forward to application of
our proposed pathway to these illnesses by others in the
future.
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