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1  |  INTRODUC TION

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis 
(Mtb) and the organism has evolved with humans for >10 000 years.1 
Individuals with infectious TB generate droplet nuclei containing 

Mtb which, when coughed or breathed out, can remain in the air for 
several hours. Following inhalation of infected droplets, the bacilli 
need to overcome physical barriers and antimicrobial peptides, to 
reach the terminal alveoli, where they encounter elements of the 
innate immune system, most commonly macrophages and dendritic 
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Summary
Tuberculosis (TB) in humans is caused by Mycobacterium tuberculosis (Mtb). It is esti-
mated that 70 million children (<15 years) are currently infected with Mtb, with 1.2 
million each year progressing to disease. Of these, a quarter die. The risk of progres-
sion from Mtb infection to disease and from disease to death is dependent on mul-
tiple pathogen and host factors. Age is a central component in all these transitions. 
The natural history of TB in children and adolescents is different to adults, leading 
to unique challenges in the development of diagnostics, therapeutics, and vaccines. 
The quantification of RNA transcripts in specific cells or in the peripheral blood, using 
high- throughput methods, such as microarray analysis or RNA- Sequencing, can shed 
light into the host immune response to Mtb during infection and disease, as well as 
understanding treatment response, disease severity, and vaccination, in a global 
hypothesis- free manner. Additionally, gene expression profiling can be used for bio-
marker discovery, to diagnose disease, predict future disease progression and to mon-
itor response to treatment. Here, we review the role of transcriptomics in children and 
adolescents, focused mainly on work done in blood, to understand disease biology, 
and to discriminate disease states to assist clinical decision- making. In recent years, 
studies with a specific pediatric and adolescent focus have identified blood gene ex-
pression markers with diagnostic or prognostic potential that meet or exceed the cur-
rent sensitivity and specificity targets for diagnostic tools. Diagnostic and prognostic 
gene expression signatures identified through high- throughput methods are currently 
being translated into diagnostic tests.

K E Y W O R D S
children, diagnosis, differential expression, transcriptomics, tuberculosis

www.wileyonlinelibrary.com/journal/imr
mailto:
https://orcid.org/0000-0001-9878-4007
https://orcid.org/0000-0003-2582-4527
mailto:
https://orcid.org/0000-0001-5509-6351
mailto:
https://orcid.org/0000-0003-2767-6919
https://orcid.org/0000-0002-0641-1359
mailto:
https://orcid.org/0000-0002-2296-2302
http://creativecommons.org/licenses/by/4.0/
mailto:m.kaforou@imperial.ac.uk


98  |    KAFOROU et Al.

cells.2 If Mtb survives this encounter with the innate system and sen-
sitizes the adaptive immune system, as measured by tuberculin skin 
testing (TST) or interferon gamma release assays (IGRAs), the indi-
vidual is said to have Mtb infection (sometimes termed TB infection 
or latent TB infection). Commonly, the mycobacteria are contained 
by the immune system with only low numbers of organisms persist-
ing. However, if the bacilli overcome these constraints and multiply, 
symptoms and signs of TB disease develop, accompanied by radio-
logical changes in the lungs or other sites of disease. It may be pos-
sible to isolate mycobacteria from respiratory samples or samples 
taken from other sites of disease that can be cultured or identified 
using molecular tests. Overall, about 10% of individuals with Mtb in-
fection will progress to TB disease. Drug therapy given to individuals 
with Mtb infection is effective at preventing this progression and is 
termed TB preventive therapy (TPT or latent TB treatment). If an 
individual develops TB disease, then TB disease treatment can be 
given, which is again successful in most patients.

The natural history of TB in children and adolescents is different 
to adults. The risk of Mtb infection rises with age in a relatively lin-
ear way dependent on the prevailing TB prevalence in that context, 
reflecting cumulative exposure. However, the risk of progressing 
from Mtb infection to TB disease varies with age.3 Young children 
(<5 years of age) are at high risk of disease progression, with the risk 
falling to a nadir in primary school age children.4 This risk rises as 
children enter puberty, increasing earlier in females but with males 
then following and eventually overtaking females in adulthood. 
Work done in the era prior to antibiotics suggests that there is a 
“timetable” for TB in children, with almost all children who progress 
to disease doing so within a year or two of infection. In addition, the 
type of disease seen in children is different to adults. Young children 
typically have paucibacillary disease, a term implying that few or no 
organisms are commonly found in respiratory samples that undergo 
microbiological evaluation. TB disease in this age group usually pres-
ents as either intrathoracic lymph node disease or disseminated 
disease, including TB meningitis or miliary TB.5 As children enter ad-
olescence, they begin to develop adult- type disease with extensive 
parenchymal involvement and cavities. Large numbers of organisms 
are commonly isolated from respiratory samples that undergo mi-
crobiological evaluation.

The World Health Organization (WHO) defines children as 
<15 years and adolescents as 10 to <20 years. It is estimated that 
currently 70 million children have Mtb infection and each year 
1.2 million develop TB disease.6 It is estimated that an additional 
535 000 15 to <20- year- old develop disease each year.7 Only about 
half of the estimated number of incident cases of child TB each year 
are diagnosed and treated, and WHO suggests that 230 000 chil-
dren die of TB annually,6 with 96% of these being undiagnosed.8 For 
many years, global and most national guidance has been that chil-
dren <5 years and those living with HIV who have been exposed to 
an infectious case of TB should receive TPT. Guidance has been to 
treat following exposure given that tests of Mtb infection are rarely 
available in high TB- burden, low- resource settings. However, of the 
1.27 million children estimated to be eligible for TPT in 2017, only 

23% received treatment.9 The most recent WHO guidance expands 
TPT provision to also say that all household contacts of infectious TB 
patients can be given TPT following exclusion of TB disease.10 Very 
few of these individuals receive TPT each year. The WHO End TB 
Strategy seeks to reduce TB deaths by 95% by 2035, compared with 
2015 levels, as well as reduce incidence by 90% over the same pe-
riod, with children and adolescent comprehensively included in the 
Strategy. However, it is recognized that using current approaches, 
global progress will fall far short of these targets.11The COVID- 19 
pandemic has severely disrupted health services and TB programs. 
This disruption is almost certainly a factor behind the observed 25– 
50% fall in the detection and treatment of new TB cases which was 
observed in just a 3- month period in 2020.6 Though the impact of 
COVID- 19 control measures on Mtb transmission has not yet been 
defined, it is predicted that reduced case- finding and treatment 
during the pandemic will lead to increased TB mortality.12– 15

The End TB Strategy suggests that to achieve their ambitious 
targets new tools will be required. These include point- of- care di-
agnostic tests for TB disease, new tests to identify which individ-
uals will progress to disease in the future, as well as new vaccines 
and new drugs. To develop these tools, it is increasingly recognized 
that a more complete understanding of the immune response to Mtb 
is required, as well as a better understanding of how to use host 
responses to discriminate between clinical groups. One area of 
host response biology that has evolved substantially over the last 
10 years is transcriptomics or the study of RNA expression. In this 
article, we will discuss the role of transcriptomics in child and ado-
lescent TB, with a particular focus on transcriptomics in blood. We 
review the literature on studies that have employed transcriptomics 
to both better understand child and adolescent TB as well as de-
velop diagnostic tests.

2  |  CHALLENGES IN CHILD AND 
ADOLESCENT TB

There are multiple challenges facing the field of childhood TB, many 
of which could benefit from the application of transcriptomic ap-
proaches (Figure 1). Some of these challenges relate to decision- 
making around the clinical management of children, some to the 
development of new therapies or vaccines, and some to the way 
that clinical research in child TB is conducted. Below we first outline 
these challenges and then we systematically describe studies that 
have been done in this field.

2.1  |  Discriminating children with TB from children 
with other diseases

Children with TB disease generally have non- specific symptoms and 
signs that overlap with other common conditions seen in childhood. 
Radiological investigations, the most used being chest X- ray, are also 
frequently non- specific with abnormalities that could be consistent 
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with TB but also with other conditions. While TB disease in adults is 
usually diagnosed through the identification of Mtb in the sputum, 
this type of diagnostic confirmation is uncommon in children. There 
are two reasons for this. The first is that samples for evaluation can 
be challenging to obtain. As young children are unable to sponta-
neously expectorate sputum, more invasive sampling is required, 
including induced sputum (requiring nebulized hypertonic saline to 
stimulate coughing followed by aspiration of sputum from the phar-
ynx through the nose), gastric aspiration (the suctioning of stomach 
contents using a nasogastric tube to collect sputum coughed and 
swallowed during sleeping), and the collection of stool samples (to 
identify swallowed Mtb that has passed through the digestive sys-
tem). The second is that even if good quality respiratory samples are 
collected, microbiological evaluation using culture or molecular di-
agnostic testing only identifies Mtb in a relatively low proportion of 
children determined clinically to have TB disease (commonly about 
20%).16 It is assumed that this is due to the presence of few organ-
isms in respiratory samples. Given these challenges, new diagnos-
tic tests are required, ones that do not rely on the microbiological 
evaluation of respiratory samples.

Of the children who present to health facilities for evaluation of 
their clinical symptoms and signs, some will have TB, but many will 
not. Established symptoms required to classify a child as a presump-
tive TB case include any of the following17,18: (a) cough ≥2 weeks, (b) 
persistent, unexplained lethargy, (c) unexplained fever ≥1 week, (d) 
poor growth/weight loss over the preceding 3 months, or (e) cough 
<1 week with a known TB exposure in the previous 12 months. A 
positive TST or chest X- ray suggestive of TB are also criteria. A test 
that can discriminate presumptive TB cases who have TB from pre-
sumptive TB cases who have other causes for their symptoms would 
make a substantial impact on the vast under- diagnosis of child TB 
that is seen on a global scale. In turn, this could impact dramatically 
on child TB mortality.

In addition to children being brought to healthcare services for 
evaluation (termed passive case finding), active case finding strat-
egies seek to identify new, undiagnosed cases amongst high- risk 
populations. Children with HIV, those with malnutrition and those 
with any degree of immunosuppression should be considered at high 
risk. It is recommended that these children are regularly screened for 
TB disease. A further high- risk group is children recently exposed 
to infectious cases of TB, given the high proportion with infection 
and the substantial risk of disease progression in young children with 
recent exposure. Global guidance and almost all national guidelines 
suggest that after a new infectious adult TB case is diagnosed, the 
house should be visited, and all household members evaluated for 
TB disease. Systematic reviews of the yield of household contact 
tracing suggest that between 5 and 10% of children screened at 
home visits have prevalent TB disease.19,20 Deciding which children 
have TB disease, which have other diseases that are causing symp-
toms, and which are well, can be challenging as again, symptoms, 
signs, and radiology are non- specific. A test that could assist in iden-
tifying those children who need TB disease treatment would be very 
beneficial.

2.2  |  Predicting disease progression in TB- exposed 
children and adolescents

Following exposure to an infectious case of TB, and following ex-
clusion of TB disease, TPT is advised for young children and chil-
dren living with HIV.10 However, even though these children are at 
increased risk of developing TB compared with HIV- negative older 
children and adults, most of these “high- risk” children will not pro-
gress to TB disease. The only tests that are currently available that 
assist in decision- making are the tests of Mtb infection, namely the 
TST and IGRA. These tests signify immunological sensitization by 

F I G U R E  1  Overview of the role of transcriptomics in pediatric and adolescent TB, together with steps required for RNA quantification 
and bioinformatics analysis. Created with BioRe nder.com

http://biorender.com
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detecting Mtb- specific T- cell responses, and do not indicate if there 
are either viable bacilli in the child or if there is a high risk of fu-
ture disease progression. TB- exposed children with a positive TST 
or IGRA are at higher risk of disease progression than children with 
negative tests but still only a small proportion of those with posi-
tive tests will progress to disease.21 Children under 5 years with a 
positive IGRA/TST have a 2- year incidence of ~20% while in children 
over 5 years this risk is ~10%. Overall, for all TB- exposed children 
(irrespective of infection status), the risk is substantially below 10%. 
Increasingly there is recognition that older HIV- negative children 
and adults should also be given TPT following household exposure.10 
For these individuals, the risk of future disease progression is even 
lower.

This means that many well children, adolescents, and adults 
need to be given treatment to prevent each TB case. TPT involves 
several months of medication which can be challenging for children 
and families and puts additional strain on health systems. TPT is also 
seen as a low priority by health services and families and treatment 
completion rates for children are very low.22 Although rare, adverse 
events do occur, there are non- specific effects on the microbiome, 
and any unnecessary pill burden is ideally avoided. A biomarker that 
could identify which TB- exposed children and adolescents are at 
high risk of disease progression would allow targeting of interven-
tions to those most needing them.

Increasingly the concept of Mtb infection and TB disease being 
dichotomous disease states is being challenged and a dynamic con-
tinuum recognised.23 Under the most commonly accepted model of 
this continuum,24 those with incipient TB have detectable metabolic 
activity of Mtb, but without any clinical symptoms or signs, radio-
logical abnormalities or positive microbiology for Mtb. Those with 
sub- clinical disease do not have clinical symptoms or signs but may 
have radiological changes or it may be possible to isolate Mtb from 
respiratory samples. Individuals with incipient or sub- clinical disease 
are more likely to progress to clinically apparent disease and so any 
biomarker that could identify these clinical states, allowing appropri-
ate treatment, would be valuable.

2.3  |  Identifying children and adolescents 
who are not responding to TB disease treatment

Treatment outcomes for children diagnosed and treated for TB are 
generally good with low rates of mortality.25 However, there are 
several groups of children in whom the proportion with unfavora-
ble outcome is higher. These include children with certain forms of 
TB, most notably TB meningitis,26 and children with other conditions 
complicating their TB treatment, such as HIV co- infection or mal-
nutrition. Also, if a child is treated for drug- susceptible TB, based 
on clinical criteria, while having drug- resistant TB, then treatment is 
unlikely to be effective. Children with TB who are not given their TB 
drugs, or who do not take their drugs, do not do well and if a child is 
diagnosed with TB based on clinical criteria and fails to respond, one 
potential reason is that they do not have TB but have another cause 

for their symptoms, signs, and radiology. In contrast to younger chil-
dren, treatment outcomes for adolescents are less good,27 with high 
rates of treatment failure and death. In all these instances, it would 
be useful identify that a child or adolescent is not responding to 
treatment as early as possible to allow appropriate interventions. In 
clinical practice, it often takes several months to identify that a child 
or adolescent is not responding well to treatment. Failure to put on 
weight, persistence or worsening of symptoms, and worsening radi-
ology all indicate treatment failure, but these take time to detect and 
are not specific. For adult TB, where most patients are microbiologi-
cally confirmed at baseline, sputum smear, or culture conversion at 
2 months is used as a surrogate marker.28 While this marker is associ-
ated with favorable outcome, it is not a sensitive or specific indica-
tor and 2 months is late to be identifying a patient failing therapy. 
Although this 2- month microbiological conversion can be used for 
individuals who were microbiologically confirmed at baseline, this 
represents a small proportion of children treated for TB.

If it were possible early in therapy to identify children and ado-
lescents who were not responding to treatment, then that individual 
could be evaluated thoroughly. The patient could be counselled in-
tensively and supported to take their treatment if poor adherence 
was found to be a problem. Management of co- morbidities could be 
enhanced. Samples could be taken to evaluate for drug resistance 
and further investigations carried out to look for other diagnoses. 
Ultimately, it may be possible to use a change in biomarker status 
after several days to support the diagnosis of TB in those clinically 
diagnosed. It might be possible to conclude that those without any 
change in TB- specific biomarkers might not have had TB at baseline 
or have drug- resistant disease.

2.4  |  Tailoring therapy to disease severity and 
treatment response

In many areas of medicine, personalized precision therapy is becom-
ing more common with treatment targeted to host genotype, dis-
ease type, disease site, disease severity, and response to treatment. 
Yet for programmatic reasons, almost all TB cases are given the same 
combination of drugs, at the same dosages and for the same dura-
tion.18 Most children with TB do not need 6 months of therapy and 
some might be successfully treated with substantially shorter du-
rations. Early TB trials in adults demonstrated that although most 
patients with sputum smear- negative TB were cured after even 
2 months, an unacceptably high proportion relapsed.29 As it was 
not possible in those early studies to predict which patients might 
relapse, it was felt preferable to treat all patients with the minimum 
duration to achieve relapse free cure in >95%. This ultimately means 
overtreating most individuals and almost all children.

Increasingly there is recognition that different patients with 
different forms of TB may be appropriately treated with differ-
ent drug combinations, dosages, or durations. A recently com-
pleted phase 3 clinical trial called SHINE (Shorter Treatment for 
Minimal Tuberculosis in Children) recruited children with minimal 
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TB and randomized them to either the conventional 6 months of 
treatment or a new 4- month treatment duration using the same 
drugs.30 In children, minimal or paucibacillary disease accounts 
for two thirds of all childhood TB, and so, many children would 
be spared the additional and unnecessary 2 months of treatment. 
The trial found that 4 months of treatment were not inferior to 
the longer treatment duration. This exciting development has led 
to a revision to WHO guidance,31 but a key challenge is to reli-
ably define non- severe disease. For the trial, non- severe disease 
was classified as extra- thoracic lymph node TB or pulmonary TB 
which was sputum smear- negative and non- severe on chest X- ray. 
These are not easy to determine and are subject to substantial 
inter- investigator variability.

A biomarker that could discriminate severe disease from non- 
severe disease would pave the way for decision- making at base-
line that could be stratified, or ultimately personalized. In addition 
to stratifying children at baseline into different phenotypes that 
may benefit from different therapeutic approaches, it may also 
be possible to tailor treatment duration to therapeutic response. 
A biomarker that modelled the trajectory of response to treat-
ment would make it possible to decide when a child has returned 
to a “normal” state and at that point it might be possible to stop 
treatment.

2.5  |  Identifying which children and adolescents 
will develop disease- related morbidity

There is increasing recognition that many TB survivors suffer sub-
stantial morbidity. A fifth of children with TB meningitis die, but of 
survivors over half have permanent long- term neurological impair-
ment.26 Although data in children and adolescents are limited, over 
half of adults who have survived pulmonary TB have substantial 
respiratory morbidity, and those surviving TB have increased risk of 
death.32,33 Although severity of disease at baseline is a strong in-
dicator of long- term morbidity, the reasons why some individuals 
develop post- TB morbidity while others do not is poorly understood 
and is likely to be due to the host inflammatory response causing 
host tissue damage and scarring.

If it were possible to determine either at baseline or during treat-
ment, which individuals were likely to develop morbidity, it may be 
possible to intervene. This might include host- directed therapies 
(HDTs) at baseline to prevent future morbidity,34 or the early identifi-
cation of those with impairment and provision of supportive therapy.

2.6  |  Using biomarkers in clinical research for the 
evaluation of new drugs or vaccines

Demonstrating the efficacy of new anti- TB drugs or TB vaccines 
requires trial entry and exit points. Entry points are inclusion or ex-
clusion criteria while exit points are trial outcomes. For TB disease 

treatment trials, the entry point is TB disease, and the exit points 
include cure, treatment completion, treatment failure, death, or TB 
relapse. For TPT trials and most vaccine trials that aim to prevent TB, 
the entry point is the exclusion of TB disease, with the outcome of 
interest being TB disease or death. If a biomarker were able to dis-
tinguish children with TB disease from those without, the ascertain-
ment of these entry and exit points would be made much easier. In 
addition, if a biomarker was available that indicated children and ad-
olescents with Mtb infection who were at higher risk of disease pro-
gression, then TPT trials might opt to focus only on those individuals, 
making the sample size required for a trial much smaller. In addition, 
if surrogate biomarkers were identified that served as a correlate of 
disease or protection, ones which indicated future disease progres-
sion or treatment failure but at a much earlier timepoint than clinical 
outcomes, then the duration, sample size, and cost of clinical trials of 
new TB drugs (for both TPT and TB disease treatment) as well as for 
new vaccines, could be reduced.

2.7  |  Biological insight

The development of new vaccines and new HDTs requires an insight 
into the biological interaction between the host and Mtb. The aim 
of most vaccines is to either prime or modulate adaptive immune 
responses, so that when Mtb is encountered, the response is more 
effective and can either contain or eradicate the organisms before 
they proliferate and causes disease. The aim of most TB HDTs is to 
promote helpful inflammatory processes that assist the immune re-
sponse in containing or eradicating Mtb, while inhibiting the damag-
ing, destructive components of the host response that either assist 
bacterial proliferation or cause substantial host tissue damage that 
leads to mortality or long- term morbidity beyond the impact of Mtb.

By comparing the transcriptomic response of children who 
have been exposed to Mtb and do not progress to disease, with TB- 
exposed children who do progress, it may be possible to better un-
derstand the immune response that is effective in Mtb containment. 
Vaccines that seek to prevent TB, should aim to promote those im-
mune responses. When evaluating the impact of HDTs on TB patho-
genesis, it would be informative to compare children with TB and 
extensive host damage with child with minimal damage. In this way, 
destructive inflammatory pathways might be identified that could be 
treated with targeted HDTs.

2.8  |  Impact of coinfections on TB 
susceptibility and disease progression

Children and adolescents are infected with multiple pathogens 
during the first two decades. Consequently, TB- coinfections are 
common in high TB- prevalence regions,35 and there is growing rec-
ognition that coinfections may influence TB susceptibility, natural 
history, and the performance of diagnostics.36,37
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Infection with a co- pathogen may provoke an immune response 
which may disrupt anti- mycobacterial immunological pathways im-
portant for controlling and containing Mtb infection.

Growing evidence suggests that viral coinfections such as influ-
enza may increase susceptibility to Mtb infection or increase the risk 
of progression to disease.37– 42 Understanding the biology and immu-
nological consequences of coinfection on Mtb infection and disease 
is important as it could impact the performance of host immune- 
based TB diagnostics including transcriptomic signatures, and might 
also have implications for clinical decision- making and development 
of vaccines and immunotherapies.37

TB- HIV coinfection has been extensively studied, and it is esti-
mated that HIV increases the risk of incident TB disease in children 
eight- fold, with the risk higher in those more immunosuppressed.43 
Understanding how HIV increases TB susceptibility in children is 
incompletely understood and requires pediatric- specific studies. 
Comparing transcriptomic responses with TB in children living with 
HIV and in children without HIV may shed light on the mechanisms 
underlying their differing susceptibilities. In addition, the impact of 
HIV coinfection on the performance of transcriptomic- based di-
agnostic biomarkers must be understood for them to be clinically 
useful in coinfected populations, and it is possible that different 
transcriptomic TB signatures are required for HIV- positive and 
- negative children.

Since the COVID- 19 pandemic began in early 2020, over 540 
million confirmed cases of severe acute respiratory syndrome coro-
navirus 2 (SARS- CoV- 2) infection have been reported worldwide,44 
with the true number of infections likely to be substantially higher. 
Countries with high TB incidence such as India and South Africa have 
reported tens of millions of SARS- CoV- 2 infections to date.44 The 
pandemic has disrupted health services and TB control programs,12 
with significant drops in case finding and treatment6 and predictions 
that this will lead to increased disease burden and mortality.12– 15 
With their overlapping epidemiology, risk factors, and clinical pre-
sentations, studying the effects of Mtb- SARS- CoV- 2 coinfection 
should be a research priority.

Studies of Mtb- SARS- CoV- 2 coinfections are limited and focus 
on adults.13,45– 47 Their overlapping clinical presentations mean that 
distinguishing between SARS- CoV- 2, Mtb, and Mtb- SARS- CoV- 2 
coinfection can be diagnostically challenging. As with other non- 
Mtb pathogens, when a TB diagnosis is under consideration, the 
detection of SARS- CoV- 2 may exacerbate diagnostic uncertainty 
as current microbiological tests cannot distinguish between a col-
onizer, pathogen, and co- pathogen. A biomarker that measures the 
host immune response could provide insight as to whether the de-
tected pathogen is contributing to the clinical presentation or just 
a bystander. As with HIV coinfection, SARS- CoV- 2 will need to be 
considered when developing and evaluating host- based diagnostic 
biomarkers for TB.

In adults, TB disease is a risk factor for severe COVID- 19 disease 
and associated mortality,48– 51 but very few studies have considered 
the immunological effects of Mtb- SARS- CoV- 2 coinfection. A South 
African study has suggested an interaction via alterations in T- cell 

function including reduced Mtb- specific CD4+ cells in adults with 
COVID- 19 disease.52 Whole blood interferon- γ responses to SARS- 
CoV- 2- peptide stimulation have been observed to be lower in adults 
with TB and COVID- 19 disease compared with those with COVID- 19 
disease only.53 A recently published study of a Mtb- SARS- CoV- 2 co- 
infection mouse model reported the surprising finding that chronic 
pulmonary Mtb infection protected mice from the effects of a SARS- 
CoV- 2 challenge, with an associated expansion of pulmonary T and 
B cell subsets observed. SARS- CoV- 2 infection did not, however, 
affect Mtb.54 Further immunological studies of Mtb- SARS- CoV- 2 
interactions are needed to understand the potential impact of the 
COVID- 19 pandemic on TB susceptibility and should include pedi-
atric and adolescent populations. Comparisons of transcriptomic 
responses to Mtb in SARS- CoV- 2 infected and uninfected patients 
will highlight immunological pathways for further functional studies.

3  |  THE ROLE OF TR ANSCRIPTOMIC S

Induction of tissue and immune responses against Mtb and the intra-
cellular signaling between immune cells trigger a biochemical chain 
of events, which leads to the production of molecules needed for 
defence against Mtb. Untargeted host molecular profiling (transcrip-
tomic, proteomic, and metabolomic) in tissues from the site of dis-
ease using high- throughput methodologies can be employed to shed 
light on biological processes and identify key biological molecules. 
These methods can help identify biomarkers and provide an under-
standing of the dynamics of infection and inflammation, for example, 
through highlighting the key pathways involved in the biological pro-
cess. Studying the host transcriptome in the lungs55 or other disease 
sites56 can elucidate local pathogenic characteristics of the disease 
and the host immune response at the tissue or cellular level. Host 
transcriptomic analysis of bronchoalveolar lavage (BAL) or sputum 
samples has revealed strong type I/II interferon- mediated cytokine 
responses and T- cell activation in adults with TB.57

Due to accessibility, minimal invasiveness in collection, and the 
key role peripheral blood and its compartments play in host defense 
and immunity, peripheral blood has become the focus tissue for host 
transcriptomic studies in child and adolescent TB. This follows work 
done in adult studies which first established that immune changes 
associated with pulmonary disease can be identified and quantified 
in RNA derived from peripheral blood.58 In this review, we focus on 
transcriptomic profiling of whole blood cells and peripheral blood 
mononuclear cells (PBMC) in the context of Mtb infection and 
disease.

As RNA is sensitive to degradation, which can hamper the quan-
tification of results, specific RNA stabilizing systems are used for 
sample collection, shipping and storage that allow preservation of 
RNA. Different RNA stabilizing blood- sampling systems may in-
troduce differences in the downstream quantification results, with 
thousands of genes being reported as significantly differentially 
expressed (SDE) between RNA stabilizing reagents. This needs to 
be taken into consideration in study design and meta- analyses.59 



    |  103KAFOROU et Al.

Subsequently, fine- tuned protocols for RNA purification can ensure 
the quality, integrity and yield of isolated RNA, along with minimiza-
tion of potential DNA contamination.60 Recent studies have shown 
in vitro whole blood stimulation with Mtb antigen peptides, which 
has been used in proteomic biomarker discovery studies, can un-
mask transcriptomic signals that are not detectable in unstimulated 
samples61 or enhance the diagnostic potential of single gene markers 
in high burden settings.62

In terms of sample volume, although blood– volume dependent 
reduction in gene levels has been reported, transcriptomic profiling 
can be achieved with small volumes of blood, which is particularly 
important in young children. High quality RNA- Sequencing results 
have been reported in neonates using volumes as low as 0.5 mL of 
peripheral venous or arterial blood.63

4  |  TR ANSCRIPTOMIC S METHODOLOGY

4.1  |  Methods for RNA quantification

The “candidate gene” approach focuses on measuring expression for 
small numbers of genes and can be used when the genes of interest 
are already known. Reverse transcription quantitative polymerase 
chain reaction (RT- qPCR) is a sensitive, accurate, highly reproducible 
method able to detect very small amounts of RNA. It is considered 
a benchmark technology and forms the basis of various nucleic acid 
identification platforms with bedside use. Reverse transcription as 
a methodological step is shared between most protocols for RNA 
quantification. The fluorescence emitted at the end of each cycle of 
PCR is used for the estimation of the quantity of the starting mate-
rial.64 RT- qPCR has enabled multiple scientific breakthroughs and 
can now be used to simultaneously detect and quantify multiple nu-
cleic acids through multiplexing.65,66 The relatively new NanoString 
nCounter gene expression system first reported in 2008 (Nanostring 
Technologies, WA, USA) has introduced a new method for targeted 
RNA quantification based on color- coded probe pairs' ability to hy-
bridize with complementary mRNA and fluorescence.67 It can be 
used for quantification of custom genes or inventoried gene panels 
according to application area or biological process of interest.68

Transcriptome- wide profiling methods allow for systematic 
analysis of thousands of RNA molecules simultaneously in a high- 
throughput manner and provide a global quantitative profile of the 
cell or tissue of interest, without the need of a pre- existing research 
hypothesis. Microarray technology exploits the principles of specific 
hybridization between two DNA strands and the emission and de-
tection of fluorescence proportional to the amount of nucleic acid 
that is bound. For gene expression quantification, it involves reverse 
transcription of the isolated RNA to cDNA, followed by amplification 
and labelling with a fluorescent dye. Subsequently, the dyed cDNA 
is hybridized to the array under specific conditions, which permit its 
binding to complementary sequences already printed on the array, 
followed by washing to eliminate non- specific binding events, and 
insertion into a scanner that both excites the fluorescent dyes and 

records the emitted intensity. The fluorescence signal emitted by 
the probes reflects the abundance of the corresponding RNA tran-
script in the sample. Prior knowledge of the position of reference 
transcripts allows for relative quantification of the transcripts bound 
to specific probes.69,70 Gene expression microarrays have been used 
as the discovery tool in many TB transcriptomic studies,71,72 and 
although superseded by RNA sequencing (RNA- Seq), they are still 
being extensively used due to lower cost, years of standardization, 
and less intensive bioinformatic analysis needed.

Over the past decade, RNA- Seq has become an indispensable 
and popular tool for transcriptome- wide analysis with many ap-
plications in studying TB host response as it is independent from 
pre- existing sequence information. However, of the total RNA in 
a cell, 80% is ribosomal RNA (rRNA), 15% is transfer RNA (tRNA), 
leaving only 5% as mRNA and all the other RNA forms.73 To focus 
on the RNA molecules of interest, RNA- Seq libraries are prepared 
using either polyA+ selection (mRNA enrichment) or rRNA deple-
tion. rRNA depletion allows the detection of more transcripts includ-
ing non- coding RNA (ncRNA), small nucleolar RNA (snoRNA), and 
small nuclear RNA (snRNA). A comparison between the two meth-
ods has shown that although rRNA depletion captured more unique 
transcriptome features, for blood- derived RNAs, 220% more reads 
would have to be sequenced to achieve the same level of exonic 
coverage in the rRNA depletion method compared with the polyA+ 
selection approach.74 Globin transcript depletion is another critical 
step to obtaining data suited for blood transcriptome analysis. Total 
RNA from whole blood contains a large portion of globin transcripts, 
which originate from red blood cells and account for 80– 90% of 
total transcripts.75 These affect the quality and accuracy of gene 
expression profiling and mask the quantification of genes with low 
expression levels. Next Generation Sequencing (NGS) technology is 
based on detecting and recording light that is emitted when a com-
plimentary nucleotide is added to a particular fragment of cDNA. 
The light detected will determine the identity of the nucleotide 
(“base calling”) and subsequently the sequence of the whole “read” 
in single base- resolution. The reads are either mapped bioinformat-
ically to a reference genome or assembled de novo to produce the 
transcriptome, a base- resolution expression profile. Read mapping 
allows for the quantification of RNA and providing abundance es-
timates.76 RNA- Seq has revolutionized the field of transcriptomics, 
also allowing discovery of novel transcripts, alternative splicing, the 
detection of gene fusion events and allele- specific expression. RNA- 
Seq also permits simultaneous sequencing of pools of transcripts 
that may come from different organisms that coexist in the same 
environment, termed metatranscriptomics.77,78

4.2  |  Analytical approaches for transcriptome- 
wide profiling

The quality control, pre- processing and analysis steps for microar-
rays are mostly standardized, while RNA- Seq data analysis pipe-
lines, which are more complex and computationally demanding, can 
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consist of a greater variety of steps and tools. The abundance per 
feature per sample is the input for differential expression analysis 
for both quantification methods. After quality assessment and exclu-
sion of poor- quality samples, normalized microarray expression val-
ues are used for downstream analysis. For RNA- Seq, sequence reads 
need to be adapter-  and quality- trimmed, and then aligned either to 
the human genome or transcriptome.79 Features then are quantified, 
with low abundance features filtered and followed by normalization 
processes to account for biases, noise, and sequencing depth vari-
ation. Subsequently analytical approaches follow according to the 
biological and clinical questions that are being addressed (i.e., dif-
ferential gene expression analysis and alternative splicing analysis). 
Both microarray and RNA- Seq differential expression analysis work-
flows are followed by multiple testing corrections to control for false 
positive errors.

The data analysis workflow is quite different for studies intend-
ing to discover diagnostic vs. mechanistic transcriptional signatures 
of disease. The one shared component is a set of initial algorithms to 
identify gene sets associated with different disease states, termed 
differentially expressed genes. For biomarker discovery, feature se-
lection methods are employed to identify the marker or the combi-
nation of markers that minimize the classification error or maximize 
the accuracy of classification for patient subgroups, while eliminating 
noise and redundant genes. Feature selection methods are divided 
into filter, wrapper, and embedded methods.80 Filter methods select 
a feature subset from the original dataset by evaluating the relation 
between each input variable and the target variable (e.g., statistical 
methods or feature importance methods). They are usually used as a 
pre- processing step, followed by a machine learning algorithm. The 
wrapper methods search for a well- performing subset of features by 
training a model on it. These iterative methods add (e.g., forward se-
lection) or remove (e.g., backward elimination) features based on the 
performance of the trained model. The embedded methods combine 
the advantageous aspects of both filter and wrapper methods since 
they perform feature selection as part of the classifier construction. 
Many of these methods have an inbuilt penalization function to 
shrink the coefficients of the least important features toward zero 
(e.g., Least Absolute Shrinkage and Selection Operation regression) 
and keep in the model the most relevant features. Appropriate parti-
tioning of datasets, representing samples, into training and test sets, 
and the use of iterative resampling methods (e.g., cross- validation) 
can minimize overfitting, while independent validation datasets can 
ensure the robustness and generalizability of the findings. To evalu-
ate the performance of biomarker models, different point estimates 
and interval metrics are typically used for diagnostic tests.81– 83 
Results are benchmarked against a “gold standard” diagnosis, which 
poses a particular challenge for pediatric TB. However, for binary 
output case– control studies the minimal set of point estimates re-
ported are as follows: (a) the area under the operating receiver char-
acteristic curve (AUC), (b) sensitivity, which reflects the probability 
of test being positive with disease present and (c) specificity, which 
reflects the probability of being test negative with disease absent. 
In prospective recruitment studies, the positive predictive value 

(PPV), which reflects the probability of a patient having the disease 
when the test is positive, the negative predictive value (NPV), which 
reflects the probability of a patient not having the disease when 
the test is negative and likelihood ratios are reported in addition.84 
Confidence intervals are calculated to measure the reliability of the 
estimates. For case– control studies, the ratio of gold standard posi-
tive and negative individuals does not reflect the real prevalence of 
the disease in a community or hospital setting, as in observational 
studies. Given the dependency of NPV/PPV on the prevalence of 
the disease in the population, it is important to provide estimates 
of these values specific to scenarios in which such a diagnostic test 
would be applied. In this case, prevalence can be interpreted as “the 
probability before the test is carried out that the subject has the 
disease.”82

4.3  |  Understanding TB biology

Apart from biomarker discovery, interpreting differential expres-
sion results in terms of higher order biological processes or mo-
lecular pathways is a key outcome in transcriptomic analysis. One 
of the most commonly used resources is gene ontology (GO) data-
bases, which annotate genes according to a dictionary of annotation 
terms, to identify the terms that are over- represented or enriched.85 
Another commonly used annotation database is the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), a curated database 
of molecular pathways and disease signatures.86 Ingenuity Pathway 
Analysis (IPA-  QIAGEN) provides a series of different functionalities, 
allowing for the identification of significantly enriched canonical 
pathways, network analysis, and upstream regulating molecules.87 
In comparison to methods using overlap statistics such as the cu-
mulative hypergeometric distribution to identify whether a group of 
differentially expressed genes is enriched for a pathway or ontology 
term, a different method can be used termed Gene Set Enrichment 
Analysis (GSEA) which considers all of the genes in an experiment, 
rather than only those above specific cut- offs.88 There are different 
tools for performing GSEA analysis including MSigDB,89 g:Profiler,90 
and DAVID.91

Understanding the cellular composition of bulk tissues is critical 
to investigate the underlying mechanisms of many biological pro-
cesses. Molecular profiling using bulk RNA- Seq in heterogeneous 
tissues, such as blood, is confounded by the relative proportions of 
different cell types in the tissue. Single cell RNA- Seq data is quickly 
becoming the “gold standard” technique for cell specific expression 
profiles but is an expensive and data- analysis intensive technique. 
Flow cytometry is also widely used to estimate cell- type composi-
tion in bulk tissue experimentally and data on cell fractions obtained 
can inform differential gene expression analysis and allow model ad-
justment for cell fractions. However, flow cytometry requires isola-
tion of cells, laboratory equipment, and additional sample sacrifice.

When flow cytometry or single cell RNA- Seq data are not 
available, cell- type specific gene expression profiles and sample- 
specific cell type proportions can be estimated from bulk gene 
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expression data using computational deconvolution methods also 
termed in silico deconvolution methods. These methods are usually 
based on matrix factorization, which is employed to deconvolve a 
matrix of gene expression profiles from bulk gene expression data 
into two matrices, one for the cell- type proportions for each sam-
ple and another containing the gene expression profiles for each 
cell type. Some of the developed algorithms performing partial de-
convolution need either cell- specific gene expression profiles or 
cell- type proportions as input, and use marker genes or regression 
techniques to estimate the matrix of interest.92- 94 Other methods 
are able to estimate both matrices using only bulk gene expression 
data.95

5  |  BIOMARKERS IN CHILD AND 
ADOLESCENT TB

Parsimonious gene expression signatures that have the potential to 
be measured at a clinical setting, and particularly in a low resource 
clinical setting in TB endemic countries, can assist in successfully 
addressing the multiple challenges faced in the field of child and 
adolescent TB, and in particular disease diagnosis, prognosis, and 
treatment decision- making. A number of research studies have been 
published presenting results from gene expression analysis for the 
identification of diagnostic, prognostic, and treatment response bio-
markers (Table 1).

5.1  |  Transcriptomics as a diagnostic tool

The field of infectious disease diagnostics has embraced molecular 
tools that profile the host response and can enhance disease diag-
nostic pipelines, particularly when the detection of the pathogen of 
interest is challenging, as in pediatric TB.96 In clinical practice, a gene 
signature measured in blood that can distinguish pediatric TB from 
other diseases with similar presentation to TB would be of great 
value in evaluating symptomatic patients presenting to medical ser-
vices with symptoms of TB.

Two studies to date have discovered diagnostic gene signatures 
specific for pediatric TB in a hypothesis- free transcriptome- wide 
manner. Verhagen and colleagues in 2013 published the first mi-
croarray profiling study for pediatric TB biomarker identification in 
Warao Amerindian children.97 A signature of 116 genes identified 
by the random forest algorithm separated 9 TB cases from 9 with 
Mtb infection and 9 healthy controls in the training set, which was 
then subsequently validated in publicly available adult datasets.72,98 
Following random forest bootstrapping, the list was reduced to 10 
genes that was validated using RT- qPCR in the discovery cohort, 
and in 20 children with Mtb infection, 16 healthy children, and 18 
children with non- TB pneumonia. Further decision tree analysis in-
dicated that five genes classified 78% of the TB cases correctly with 
a 0% false positives for the Mtb infection group, 4% for the healthy 
controls, and 11% for the non- TB pneumonia cases.

In 2014, Anderson and colleagues described the discovery of 
transcriptional signatures for distinguishing culture- confirmed TB 
from diseases other than TB in a multicohort pediatric population 
(<15 years of age), comprising of HIV- positive and HIV- negative chil-
dren with symptoms and clinical findings that were suggestive of TB, 
using microarray analysis of host blood.99 Patient data from South 
Africa and Malawi were combined into a discovery set (80% training 
and 20% test). SDE transcripts were subjected to feature selection 
using elastic net that resulted in a 51- transcript signature with abun-
dance combined into a Disease Risk Score. The 51- transcript signa-
ture had a sensitivity of 82.9% (CI95% 68.6– 94.3), and a specificity of 
83.6% (CI95% 74.6– 92.7) in an independent validation cohort from 
Kenya (Figure 2). The sensitivity exceeded that of the Xpert MTB/
RIF assay which was 54.3% (CI95% 37.1– 68.6). Additional analysis 
provided estimates for sensitivity in the culture- negative groups of 
highly probable, probable, and possible TB. Using a similar discovery 
pipeline, a 42- transcript signature discriminated confirmed TB from 
Mtb infection with sensitivity of 94.3% and specificity of 100.0% in 
the independent validation cohort from Kenya.

In 2017, Gjoen and colleagues employed a dual color reverse 
transcription multiplex ligation dependent probe amplification assay 
(dcRT- MLPA) to assess the performance of 198 genes in a training 
set, comprising 47 pediatric TB cases (19 definite and 28 probable) 
and 36 asymptomatic household controls, and identified a 7-  and a 
10- transcript signature by using a combination of logistic regression 
and LASSO for feature selection.100 The 10- transcript signatures 
had an AUC of 0.94 (CI95% 0.88– 1.00), correctly classifying 22 of 
24 TB cases and 23 of 26 symptomatic non- TB cases, corresponding 
to a sensitivity of 91.7% (CI95% 71.5– 98.5) and a specificity of 88.5% 
(CI95% 68.7– 96.9). The 7- transcript signature also provided an AUC 
of 0.94 (CI95% 0.88– 1.00) but classified correctly only 21 of 26 symp-
tomatic non- TB cases.

A multicohort meta- analysis by Sweeney and colleagues in 2016 
included 14 datasets containing 2572 samples from 10 countries 
from both adult and pediatric patients and identified a 3- gene sig-
nature reporting an AUC for discriminating TB from other diseases 
of 0.84 (CI95% 0.80– 0.95) and from Mtb infection 0.88 (CI95% 0.84– 
0.92). For the comparison of TB vs. other diseases in the previously 
reported pediatric datasets from South Africa/Malawi the Sweeney 
3- gene signature had sensitivity of 68.5% and specificity of 74.0% 
and a sensitivity of 77.1% and specificity of 87.5% in the Kenyan 
dataset.99 The metrics for the pediatric dataset from South Africa/
Malawi are lower in comparison to the global metrics reported for 
TB vs. other diseases including the adult datasets (sensitivity 81%, 
specificity 74%), highlighting the need for pediatric- specific signa-
tures or the inclusion of genes that boost the performance in the 
pediatric datasets to account for the different nature of the disease, 
the different host response and the fact that pediatric TB needs to 
be discriminated from a different set of other diseases than adult TB 
in clinical practice.

A larger number of studies have been published that focus on 
discriminating TB from healthy uninfected controls and children with 
Mtb infection (Table 1). Although important as a proof- of- concept, 
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TA B L E  1  Studies that have used transcriptomic approaches in child and adolescent TB, presenting original patient recruitment data and 
analysis

First author
Year 
published

Country 
- Population Description of study

Number of children/adolescents 
analyzed (original data) Main findings of study

Verhagen97 2013 Venezuela Discovery (microarray) and 
validation (RT- qPCR) 
of gene expression 
signature to distinguish 
TB from children with 
Mtb infection, healthy 
controls and non- TB 
pneumonia (validation 
only)

9 TB patients, 29 with Mtb 
infection, 25 healthy controls 
and 18 non- TB pneumonia

A 116- gene signature for 
TB vs. Mtb infection 
and healthy controls 
with an average 
prediction error of 
11%, and a 9- gene 
signature for TB vs 
Mtb infection. An 
optimized set of 5 
genes had 4% false 
positive rates for 
healthy controls 
and 11% for non- TB 
pneumonia cases.

Dhanasekaran101 2013 India Whole- blood mRNA 
from 210 children 
was examined by 
dcRT- MLPA for the 
expression of 45 genes

13 children with TB disease, 
90 with Mtb infection, 107 
uninfected controls

A single gene 
discriminated 
between TB and Mtb 
infection (AUC 0.78). 
A 5- gene signature 
discriminated TB 
disease from controls 
(AUC 0.92). An 
11- gene signature 
distinguished Mtb 
infection from 
controls (AUC 0.72).

Anderson99 2014 South Africa, 
Malawi, 
Kenya

Discovery and validation 
of gene expression 
biomarkers from 
microarray data to 
distinguish TB from 
Mtb infection and TB 
from Other Diseases

149 children with culture- 
confirmed TB, 44 with 
unconfirmed TB, 71 with Mtb 
infection and 139 with Other 
Diseases

A 51- trasncript 
signature for TB 
vs Other Diseases 
and a 42- transcript 
signature for TB 
vs Mtb infection 
with sensitivity 
of 82.9% and 
specificity of 83.6% 
in the independent 
validation cohort.

Li62 2015 China Quantification by RT- 
qPCR of 7 genes in 
PBMC after ESAT- 6 
stimulation in children 
with PTB, EPTB and 
healthy controls

39 children with TB (3 smear 
culture positive and 26 culture 
negative) and 25 healthy 
controls

The expression of IL- 9 
separated children 
with TB vs healthy 
controls with an AUC 
of 0.92 after ESAT- 6 
stimulation.

Wang102 2015 China RT- qPCR was used to 
quantify miR- 31 
expression in PBMCs 
from children with TB 
and healthy controls

65 children with TB and 60 
healthy controls

The expression 
of miRNA- 31 
distinguished 
children with TB from 
healthy controls with 
sensitivity of 98.5% 
and a specificity of 
86.7%.
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First author
Year 
published

Country 
- Population Description of study

Number of children/adolescents 
analyzed (original data) Main findings of study

Zak110 2016 South Africa Discovery using blood 
RNA- Sequencing, 
and validation (RNA- 
Sequencing and RT- 
qPCR) of a signature 
to predict progression 
of Mtb infection to 
disease in adolescents 
(12– 18 years)

46 progressors and 107 matched 
controls

A 16- gene signature for 
TB progression which 
had sensitivity of 
53.7% and specificity 
of 82.8% in the 
12 months preceding 
TB in independent 
South African and 
Gambian cohorts.

Fletcher137 2016 South Africa Infants were vaccinated 
with BCG at birth and 
followed for 2 years. 
Blood was collected 
at 10 weeks. Host 
responses from the 
10- week samples were 
compared between 
those who developed 
TB disease within 
2 years and controls 
who remained healthy.

5726 infants were recruited. 29 
cases of confirmed TB were 
compared to 110 controls (55 
household controls and 55 
community controls).

Gene expression analysis 
did not show a 
difference between 
cases and controls.

Jenum104 2016 India Targeted analysis of 
transcriptional immune 
biomarkers in Mtb- 
antigen stimulated 
whole blood using 
dcRT- MLPA

88 children with intra- thoracic 
TB (6 months -  15 years); 
40 culture- confirmed, 
48 unconfirmed and 39 
asymptomatic

An 8- gene biomarker 
signature separated 
children with TB 
from asymptomatic 
siblings (AUC 0.88) 
in stimulated blood. 
12 genes were found 
associated with 
clinical groups toward 
culture- positive TB or 
toward a decreased 
likelihood of TB 
disease on the TB 
disease spectrum.

Zhou103 2016 China Identification of circulating 
miRNAs that can 
differentiate between 
TB and healthy 
controls

14 culture- positive TB cases, 14 
culture- negative TB cases and 
25 children with TB and 21 
healthy controls for validation

An 8- miRNA signature 
provided 95.8% 
sensitivity and 100% 
specificity for the 
discrimination of 
children with TB vs 
uninfected healthy 
controls

Gjoen100 2017 India Selection and optimization 
of 2 signatures for 
TB vs asymptomatic 
household controls, 
and other symptomatic 
non- TB cases, from a 
set of 198 genes using 
dcRT- MLPA.

71 TB cases (36 definite/35 
probable) and 36 
asymptomatic household 
controls, and 26 symptomatic 
non- TB cases.

A 7- and a 10- transcript 
signature with AUC 
of 0.94 in separating 
TB- cases from 
symptomatic non- TB 
cases regardless of 
culture status, and 
100% sensitivity for 
definite TB.

TA B L E  1  (Continued)

(Continues)
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this discrimination has less clinical utility. As this is a disease vs. 
healthy comparison, the host response is more perturbed, and the 
groups can be discriminated more easily and with fewer genes. In 
2013, Dhanasekaran and colleagues identified a 5- gene signature 
that can discriminate children with TB from healthy controls and an 

11- transcript signature that can discriminate children with TB from 
children with Mtb infection, using dcRT- MLPA in a pediatric popula-
tion in India.101 Wang and colleagues in 2015 reported that a single 
micro RNA (miRNA) can distinguish children with TB from healthy 
controls with sensitivity of 98.5% and a specificity of 86.7%,102 while 

First author
Year 
published

Country 
- Population Description of study

Number of children/adolescents 
analyzed (original data) Main findings of study

Hemingway121 2017 South Africa Longitudinal microarray 
blood gene expression 
analysis in children 
with TBM and 
comparison with 
children with PTB

9 children with TBM, (4 
timepoints) and 9 healthy 
controls; 13 children with 
TBM and 28 with PTB.

Reduced abundance 
of 68% of SDE 
genes in TBM vs 
healthy controls. 
The difference in 
abundance was less in 
PTB than in TBM.

Rohlwink122 2019 South Africa RNA- Sequencing on whole 
blood as well as on 
ventricular and lumbar 
cerebrospinal fluid 
of pediatric patients 
treated for TBM

20 TBM cases 20, 7 Non Mtb 
infection controls, and 24 
healthy controls

2230 genes were SDE in 
TBM cases vs healthy 
controls in blood, 
and 312 genes were 
SDE in ventricular 
CSF in TBM vs 
infection controls. 
TB disease processes 
differ between the 
periphery and the 
central nervous 
system, and within 
brain compartments.

Penn- Nicholson113 2020 South Africa, 
The 
Gambia, 
Ethiopia, 
Peru, 
Brazil

Identification of a 
parsimonious signature 
from the RNA- 
Sequencing Zak et al. 
data using RT- qPCR 
data, and subsequent 
validation as a 
signature for diagnosis, 
progression and 
treatment response.

46 progressors and 107 matched 
controls (Adolescent cohort 
study)

A 6- gene transcriptomic 
signature of TB 
disease risk, diagnosis 
and treatment 
response

Tornheim116 2020 India Longitudinal RNA- 
Sequencing from 
whole blood in cases 
during treatment 
and controls for 
the identification 
of differentially 
expressed genes.

16 TB cases and 32 TB- exposed 
controls

A 71 gene signature for 
TB diagnosis and a 
25 gene signature for 
treatment response

Johnson138 2021 India Performance of TB 
gene signatures 
in malnourished 
individuals (including 
children) with TB and 
Mtb infection

23 severely malnourished 
individuals with TB and 15 
severely malnourished TST 
positive household contacts

4913 significant 
differentially 
expressed protein 
coding genes in TB 
vs Mtb infection 
in malnourished 
individuals; 56.9% 
of the genes overlap 
with the 45 TB gene 
signatures included on 
the paper.

Abbreviations: AUC, area under the curve; CSF, cerebrospinal fluid; dcRT- MLPA, dual colour reverse transcription multiplex ligation dependent 
probe amplification assay; EPTB, extrapulmonary TB; PBMC, peripheral blood mononuclear cell; PTB, pulmonary TB; RT- qPCR, reverse transcription 
quantitative polymerase chain reaction; SDE, significantly differentially expressed; TB, tuberculosis; TBM, TB meningitis; TST, tuberculin skin test.

TA B L E  1  (Continued)
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in 2016 Zhou and colleagues identified a 8- miRNA signature that 
had 95.8% sensitivity and 100% specificity for the discrimination of 
children with TB vs uninfected healthy controls.103 Antigen specific 
stimulation has also been employed prior to gene expression quan-
tification. Li and colleagues reported that a single gene (IL- 9 mRNA) 
can separate children with TB vs. healthy controls with an AUC of 
0.92 after ESAT- 6 stimulation,62 while Jenum and colleagues re-
ported that an 8- gene biomarker signature separated children with 
TB from asymptomatic siblings in stimulated blood with an AUC of 
0.88.104

It is important to put these novel transcriptomic signatures in 
the context of the tools that are currently used to diagnose TB in 
children and compare performance. In a study of children with pre-
sumptive TB who were living with HIV, chest X- ray features that 
were consistent with TB provided a sensitivity of 71.4% and spec-
ificity of 50% when comparing confirmed TB against unlikely TB.105 
A systematic review and meta- analysis of the accuracy of IGRAs to 
discriminate children with confirmed TB disease from children with 
other diseases demonstrated a sensitivity of 75% and a specificity 
of 66%.106 Xpert MTB/RIF in sputum demonstrated a sensitivity 
of 64.6% and specificity of 99% in a systematic review and meta- 
analysis of performance against a microbiological (culture) refer-
ence standard. However, against a composite reference standard 
(including children diagnosed both clinically and microbiologically), 
the sensitivity was 19.7% with a specificity of 100%.107 Finally, in 
2022, the WHO revised their child and adolescent TB guideline and, 
in the operational handbook accompanying the guideline, suggested 
a clinical decision- making algorithm. The sensitivity of this algorithm 
(against a composite reference standard) was 85% with a specificity 
of 37%.108

5.2  |  Transcriptomics as a prognostic tool

A test that identifies children and adolescents who are at greater 
risk of disease progression would transform TB control by ena-
bling targeted preventive therapy for the population at risk in high- 
burden settings. While several studies have identified signatures in 
adults,109 few have included children or adolescents. In 2016, Zak 
and colleagues reported discovery of a 16- gene signature by blood 
RNA- Seq profiling in a cohort of 153 South African adolescents with 
Mtb infection, using samples collected at different timepoints prior 
to TB diagnosis, which was able to discriminate between TB progres-
sors from non- progressors (Figure 3).110 The prognostic performance 
of the signature was dependent on the time interval between sam-
pling and disease diagnosis. Signature performance was better when 
measured in samples collected more proximal to disease diagnosis 
than in samples collected at distal time points. At 6 months prior to 
diagnosis, the AUC was 0.79 (CI95% 0.76– 0.82). Subsequent valida-
tion using RT- qPCR, in the adolescent cohort, and in independent 
Gambian, Ethiopian, and South African adult cohorts replicated the 
findings. As the genes in the signature overlap with signatures of TB 
disease, it is evident that progressors have a host response similar to 

that of TB disease, albeit at lower magnitude, long before diagnosis 
is established. It is therefore most likely that such signatures identify 
incipient or sub- clinical disease, as recently confirmed in the CORTIS 
study.111 A subsequent study developed a more parsimonious signa-
ture in the adolescent cohort based on 6 genes (RISK6),112,113 which 
was further evaluated in an additional multi- country adult study for 
TB diagnosis.114 As for diagnostic tools, it is important to compare 
these transcriptomic prognostic signatures with other tools used for 
clinical decision- making. Although children <5 years with positive 
IGRA or TST tests are at ~8 times greater risk of TB disease progres-
sion than those with negative IGRA tests, only about 20% of children 
of this age with a positive IGRA/TST will progress to disease.21 A 
positive test therefore may have relatively high sensitivity, but low 
specificity.

5.3  |  Treatment response

Currently available tests have very low accuracy for monitoring TB 
treatment response and predicting failure or relapse in pulmonary 
TB even in adults.115 To improve disease outcomes, we need better 
biomarkers to identify appropriate responses to treatment, that will 
allow us to identify treatment failure early and enable shortening 
treatment. It has been shown that the RISK6 signature tracks treat-
ment response in adults,113 and has been evaluated in monitoring 
treatment response in a multi- country cohort (Figure 4),114 but stud-
ies in children are limited.

In 2020, Tornheim and colleagues identified a 25- gene list of dif-
ferentially i have spotted expressed genes for treatment response 
in children, in 16 pediatric Indian TB cases and 32 age-  and sex- 
matched TB- exposed controls. The 25- gene treatment response list 
was evaluated against adult datasets with AUCs of 0.90 (CI95% 0.74– 
1.00), 0.72 (CI95% 0.85– 0.94), and 0.50 (CI95% 0.36- 0.63).116

5.4  |  Mtb- SARS- CoV- 2 coinfections and how they 
impact transcriptomic biomarkers

COVID- 19 and TB disease are both primarily respiratory patho-
gens and cause overlapping clinical syndromes in children and ad-
olescents. A clinically useful transcriptomic diagnostic biomarker 
will need to discriminate between these two infections as well as 
other common respiratory pathogens. A recently published large 
scale systematic review and meta- analysis of COVID- 19 tran-
scriptomic signatures investigated their commonality with the 
transcriptome in TB disease. The authors identified 35 eligible 
COVID- 19 signatures associated with disease severity, derived 
from whole blood, PBMCs, and BAL fluid. Expression of these 
signatures was profiled on whole blood RNA- Seq samples from 
3 independent adult TB cohorts, comprising of patients with TB 
disease, Mtb infection, including those progressing (“progres-
sors”) and not progressing (“non- progressors”) to TB disease over 
the next 2 years, and uninfected controls. Twenty COVID- 19 gene 
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signatures were significantly associated with higher “COVID- 19 
risk scores” in TB disease patients and progressors, compared 
with non- progressors (P < 0.005). By comparison, an influenza 
signature score was zero across the cohort, regardless of TB 
status. From profiling 20 single- cell (sc)RNA- Seq immune cell 
population signatures, the authors found that neutrophil and 
monocyte COVID- 19 signatures generated the highest COVID- 19 
risk scores in TB disease and progressors, in contrast to adaptive 
immune cell signatures which were higher in non- progressors. 
The authors also performed a meta- pathway enrichment analy-
sis using whole blood transcriptomic data from one of the adult 
TB cohorts, a COVID- 19 whole blood scRNA- Seq dataset plus an 
influenza viral control cohort. In contrast to the influenza group, 
the COVID- 19, TB disease and TB progressor groups were all 
strongly enriched for interferon- γ and tumor necrosis factor re-
sponse pathways. Of the top 100 enriched pathways, just one 
(Hallmark of mTORC signaling) was unique to COVID- 19 and ab-
sent in TB and influenza.117 Not only does this study highlight the 
great potential for transcriptomic studies to elucidate underlying 
biological mechanisms of infectious diseases, but this work also 
suggests that pre- existing TB diagnostic signatures may perform 

less well in the context of COVID- 19 due to shared immune re-
sponses. Thus, when discovering and developing future diag-
nostic transcriptome- based biomarkers, it will be important to 
include COVID- 19 disease as a comparator group. In addition, the 
impact of SARS- CoV- 2 coinfection on the performance of pre- 
existing and future pediatric biomarkers should be determined, 
to enable them to be interpreted and deployed in real- world set-
tings where Mtb- SARS- CoV- 2 coinfection is likely to be common. 
Pediatric immune responses to SARS- CoV- 2 and Mtb infection 
differ from adults, and therefore, it is imperative that pediatric- 
specific studies are undertaken.

6  |  USING TR ANSCRIPTOMIC S TO 
UNDERSTAND CHILD AND ADOLESCENT TB 
BIOLOGY

Recent blood gene expression profiling studies have highlighted 
differences between adult and childhood TB in terms of pathways 
involved in host response during infection and disease and progres-
sion of infection to disease.

F I G U R E  2  Risk Scores and Sensitivity and Specificity in the Kenyan Validation Cohort, According to Diagnostic Group. Panel A shows 
the risk scores for tuberculosis according to study group, calculated with the use of a 51- transcript signature applied to the independent 
Kenyan validation cohort, in which culture- positive tuberculosis was reported in 35 patients, diseases other than tuberculosis were reported 
in 55 patients, and culture- negative tuberculosis was reported as highly probable in 5 patients, probable in 19 patients, and possible in 17 
patients. The bar within each box indicates the median score, the bottom and top of the box indicate the interquartile range, the bars below 
and above the box are at a distance of 0.8 times the interquartile range from the upper and lower edges of the box, and the circles indicate 
outliers; the horizontal line across the graph indicates the mean score. Panel B shows smoothed receiver- operating- characteristic (ROC) 
curves for the sensitivity and specificity of the risk score (solid lines) and the Xpert MTB/RIF assay (dotted lines). Panel C shows ROC curves 
based on an adjusted analysis in which the actual prevalence of disease was assumed to be 80% among patients in whom the disease was 
highly probable, 50% among those in whom it was probable, and 40% among those in whom it was possible. From Anderson and colleagues. 
New Eng J Med 2014; 370: 1712– 23
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6.1  |  Children with TB vs children with other 
diseases vs well children

Parsimonious gene expression signatures are the product of feature 
selection algorithms, which try to maximize accuracy in segregation 
and simultaneously minimize the number of genes in the selected 
set based on specific criteria. Although they include key molecules 
that are differentially expressed between groups, they do not cap-
ture the full picture of perturbation in blood gene expression in dif-
ferent TB states. Here, we present the results of pathway analysis 
using Ingenuity Pathway Analysis (IPA) on SDE genes in TB vs. Other 
Diseases from the datasets presented in the Anderson and col-
leagues' study, as well as an overview of concordance/discordance 
of gene expression in TB and Other Diseases in relation to Mtb infec-
tion as the baseline. The analytical steps for quality control and pre- 
processing were followed as reported in the original study, including 
background correction, variance stabilization and normalization, 
while the data from the HIV- negative children from South Africa, 
Malawi and Kenya were combined.118,119 Using a linear model cor-
rected for age, gender and site, we identified 1021 transcripts that 
were SDE (adj. P- value <0.0001, |log2FoldChange| > 0.25) between 
TB and other diseases (Figures 5 and 6). After performing ID map-
ping in IPA, 742 molecules (324 under- expressed in TB and 418 over- 
expressed in TB) were included in the pathway analysis. Figure 7 
shows the most significant canonical pathways, with Benjamini- 
Hochberg corrected P- values, z- scores indicating activation or in-
hibition. The significance indicates the probability of association of 

molecules from the list of SDE genes in the dataset with the canoni-
cal pathway by random chance alone. While Figure 8 demonstrates 
the interferon signaling pathway.

Differential expression analysis compares two patient groups 
in a direct way, identifying genes which are significantly differ-
ent between the two in terms of expression. However, elements 
of the immune response as captured by the transcriptome may 
exhibit similarity or dissimilarity in comparison to a baseline 
(control) group. Here, we present the concordant and discordant 
genes in TB and other diseases in relation to Mtb infection as a 
baseline.120

The concordance- discordance between the statistically differ-
entially expressed genes (adjusted P- value <0.01) between culture 
confirmed TB vs Mtb infection (11 533 SDE) and other diseases vs 
Mtb infection (5982 SDE) is shown in Figure 9, where a discordance 
and concordance score for homologous gene pairs was calculated 
based on their log2FoldChange and adjusted P- value. The plot high-
lights the high degree of concordance of over-  or under- expression 
of SDE genes between TB disease and Other Diseases in relation 
to baseline. Remarkably, only 5 genes were found to be discordant 
(over- expressed in TB vs. Mtb infection and under- expressed in OD 
vs. Mtb infection), while 4 out these 5 genes have been previously 
proposed as TB- specific transcriptomic biomarkers.99,110 Normalized 
expression of these 5 genes is shown for TB disease, Mtb infec-
tion, and Other Diseases (Figure 10), while network analysis using 
Ingenuity Pathway Analysis indicated the 5 discordant genes form a 
network downstream of IFN- a and IFN- g (Figure 11).

F I G U R E  3  Strategy for discovery and validation of the tuberculosis risk signature. Synchronization of the adolescent cohort study 
training set in terms of the clinical outcome. To ensure optimal extraction of a tuberculosis risk signature from the adolescent cohort study 
training set, the timescale of the RNA- Sequencing dataset was realigned according to tuberculosis diagnosis instead of study enrolment, 
allowing gene expression differences to be measured before disease diagnosis. Each progressor within the adolescent cohort study training 
set is represented by a horizontal bar. The length of the bar represents the number of days between study enrolment and diagnosis with 
active tuberculosis. During follow- up, each progressor transitioned from an asymptomatic healthy state (green) to pulmonary disease 
(red). The left graph shows alignment of PAXgene sample collection (black points) with respect to study enrolment. The right graph shows 
alignment of PAXgene sample collection with respect to diagnosis with active tuberculosis, for use in analysis. From Zak and colleagues. A 
blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet 2016; 387: 2312– 22
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6.2  |  Disseminated disease

Hemingway and colleagues employed blood gene expression profiling 
in children with TB meningitis (TBM) to identify temporal patterns of 
RNA during the course of the disease in comparison to healthy con-
trols, and a second cohort of TBM and pulmonary TB (PTB) to explore 
differences in the host response in these two disease manifestations 
in children.121 The authors identified a decreased abundance of mul-
tiple genes in TBM patients in comparison with healthy controls, 68% 
of SDE genes were under- expressed. The magnitude of differential 
abundance was less in PTB than in TBM. Most genes were involved 
in activation of leucocytes (P = 2.67E−11) and T- cell receptor signal-
ing (P = 6.56E−07). Multiple genes involved in T- cell activation showed 
decreased abundance in children with TB, suggesting that childhood 
TB is associated with an acquired immune defect. Although in silico 
deconvolution revealed a reduction in CD4+ T lymphocytes in TBM, 
when compared with healthy controls, the differences in gene expres-
sion were not explained by the differing cell proportions. The sup-
pression of genes in the T- cell response pathway was associated with 
reduced T- cell proliferative responses in vitro, indicating a functional 
impairment in responses is associated with the RNA transcriptional 
suppression.

In 2019, Rohlwink and colleagues conducted RNA- Seq both on 
whole blood as well as brain and spinal CSF of children with TBM to 
identify patterns of differential expression against healthy controls 
and non- TB cerebral infection controls in CSF.122 Differential gene 
expression analysis, functional canonical pathways and disease net-
works revealed that TBM is characterized by a significant increase in 
inflammasome activation, IL- 1 signaling and decrease in T- cell activa-
tion in blood and neural injury in CSF. The findings corroborated the 
lack of an effective T- cell response in pediatric TBM.

6.3  |  Transcriptomic profiles in children vs 
adolescents vs adults

The risk of progression from Mtb infection to disease is substantially 
lower in pre- adolescent children above 4 years of age than in post- 
pubescent adolescents and young adults.123 Blood gene expression 
profile analysis revealed that pre- adolescent children had lower lev-
els of myeloid- associated pro- inflammatory mediators than young 
adults. When compared with young adults, pre- adolescent children 
had higher levels of IFN- stimulated genes IFNAR2, MX2, OAS1, and 
STAT2, as well as B cells and M2 macrophages than adults.

To explore the difference between the immune response to 
Mtb between children and adults, Bah and colleagues analyzed 11 
datasets comprising 1073 patients from Africa, Europe, and South 
America, including three datasets from children.124 Pathway anal-
yses indicated that adults showed more IFN- driven innate immune 
pathways and downregulated adaptive pathways. Childhood spe-
cific upregulated genes were associated with inflammasome IL1RN– 
IL1R2 suppression axis, glucose transport, CO2 and O2 release, 
and cell surface interaction pathways while downregulated genes 
were associated with mRNA translation, protein metabolism, and 
amino acid transport. In childhood TB, the immune inhibitory mol-
ecules, IL1RN and IL1R2 which inhibit functional IL1 signaling, and 
molecules involved in generation of an adaptive immune response 
(CD40LG, HAL- DOB, CD28) that were downregulated is consistent 
with emerging evidence linking the cross talk between IL1 and type 
1 IFN to TB and which provide potential targets for host directed 
therapy. This could explain the observation that children have less 
pronounced adaptive immune responses to Mtb compared with 
adults, potentially resulting in disseminated forms of the diseases 
seen more frequently in childhood TB.

F I G U R E  4  Diagnostic performance and treatment monitoring in South American cohorts. (A) Comparison of RISK6 signature scores in TB 
cases at baseline, Week 8 after treatment initiation and after treatment completion (Post Rx). Also shown are the RISK6 signature scores in 
healthy controls from Brazil. Horizontal lines depict medians, the boxes the IQR, and the whiskers the range. Violin plots depict the density 
of data points. The P- value, computed by Mann– Whitney U test, compares RISK6 signature scores after treatment completion with those in 
controls. (B) ROC curves depicting performance of RISK6 for discriminating between baseline samples from TB cases and samples collected 
8 weeks after treatment initiation, or upon completion of TB treatment (Post Rx). From Penn- Nicholson and colleagues. RISK6, a 6- gene 
transcriptomic signature of TB disease risk, diagnosis, and treatment response. Sci Rep 2020; 10: 8629
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F I G U R E  5  Heatmaps showing clustering (Unweighted Pair Group Method with Arithmetic Mean or UPGMA method) of the top 50 
SDEs in (A) culture confirmed TB vs other diseases, (B) culture confirmed TB vs Mtb infection and (C) other diseases vs Mtb infection of the 
patients from South Africa, Malawi, and Kenya in Anderson et al datasets. Patients' clinical groups are highlighted at the bar on the top of 
each heatmap, with culture confirmed TB patients in red, patients with Mtb infection in green and patients with other diseases in blue. Only 
HIV uninfected patients have been included and shown on these heatmaps. Under- expression is depicted in blue and over expression in red

F I G U R E  6  Volcano plot showing the significant genes identified comparing culture confirmed TB cases vs other diseases (OD) from 
Anderson et al South Africa, Malawi, and Kenya HIV uninfected patient datasets. Genes that passed the thresholds for absolute value of 
log2FoldChange >0.5 and adj- p- value <0.05, were colored in green
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7  |  MULTI-  OMIC S APPROACHES

Despite the numerous insights obtained already by the analysis of host 
transcriptomic datasets, a single- layer of - omics is unlikely to capture 
the complete biological complexity of disease.125 Integrating multiple- 
omic levels, which represent multiple levels of biological organization, 
in a cross- layer manner, enables a more accurate reconstruction of 
the dynamic molecular networks underpinning healthy and diseased 
states.126 The popularity of multi- omic integration has grown rapidly 
during recent years, resulting in a vast range of integration methods 
for supervised and unsupervised analysis, using a range of statistical 
and machine learning approaches. By combining weak yet consistent 
alterations across different data layers, new insights have been ob-
tained in cancer127 and COVID- 19 disease pathogenesis,128 while a 
recent study used three different - omic layers for biomarker identifi-
cation for tuberculosis in the serum of adult patients with advanced 

HIV.129 Multi- omic integrative studies could be key in furthering the 
understanding of pathogenesis and disease progression in childhood 
TB and can be used to provide combinations of host markers across 
different layers that could increase their discriminatory performance.

8  |  CLINIC AL E VALUATION OF 
BIOMARKERS IN CHILDREN AND 
ADOLESCENTS

8.1  |  The challenge of unconfirmed TB

An important challenge for the development of biomarkers in child-
hood TB is the composition of children with unconfirmed TB. This 
is particularly relevant for the development of diagnostic tests for 
TB disease but has implications for prediction of future disease 

F I G U R E  7  Canonical pathway analysis 
results comparing confirmed TB to other 
diseases (OD) using Anderson et al 
datasets. (A) The orange and blue- colored 
bars in the bar chart indicate predicted 
pathway activation or predicted inhibition, 
respectively. Gray bars indicate pathways 
for which no prediction can be made due 
to insufficient evidence in the Knowledge 
Base for confident activity predictions 
across datasets. (B) Displays the number 
of molecules in the list of SDE genes, 
showing the up- regulated (red), down- 
regulated (green). The y- axis represents 
the percentage of molecules that are 
present in a specific Canonical Pathway. 
The total number of molecules in the 
pathway is shown
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progression and treatment response on therapy for TB disease. 
Children with unconfirmed TB fulfil established consensus clini-
cal and radiological criteria for disease but without microbiological 

confirmation.17,130 Children with confirmed disease tend to have 
more severe disease than those with unconfirmed disease, the dis-
ease has usually been present for longer, symptoms are often more 

F I G U R E  8  Canonical pathway example: Interferon Signaling Pathway. The molecules that are different shades of red color indicate up- 
regulation in the comparison of TB vs other diseases

F I G U R E  9  Concordance and 
discordance of the log2FoldChange of 
statistically differentially expressed 
genes in TB vs Mtb infection against the 
log2FoldChange of corresponding genes 
in OD vs Mtb infection from Anderson et 
al datasets. Each dot is colored according 
to the disco score and represents a gene: 
the stronger the red color the more 
concordantly regulated is the gene pair; 
the stronger the blue color, the more 
discordantly regulated is the gene pair
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pronounced and there are likely more bacilli in the child. Many bio-
marker studies have been developed comparing children with con-
firmed disease to children felt very unlikely to have TB disease. When 
tests are evaluated in children with a diagnosis of unconfirmed TB, 
performance is generally less good. However, it is in these children 
that tests are most needed. There are several explanations for why 
performance may be less good, and it is likely that all are to some ex-
tent evident. First, all children with unconfirmed disease have TB but 
have a milder form of TB that has a less pronounced transcriptomic 
signature than children with confirmed disease. Second, some of the 
children with unconfirmed disease have TB but the overall signature 
for children with unconfirmed disease is “diluted” by the children 
who do not actually have TB at all. Finally, the interaction between 
host and pathogen in unconfirmed TB is actually subtly different to 
the interaction seen in confirmed disease.

One approach to try to statistically deal with the analysis of 
diagnostic studies in which the “gold” standard is imperfect is using 
latent class analysis.131 Schumacher and colleagues have previously 
employed Bayesian latent class analysis to estimate the diagnostic 
accuracy of mycobacterial culture, smear microscopy, Xpert MTB/
RIF (Cepheid Inc.), TST, and chest radiography in childhood PTB, in 
a cohort of 748 hospitalized South African children. Transcriptomic 
signatures have not yet been evaluated using latent class analysis 
to define the reference standard. In the Anderson study,99 the au-
thors addressed the challenge of evaluating the 51- gene expres-
sion biomarker signature in children treated for TB, but without 
microbiological confirmation, by considering different scenarios 
where this population of children included varying combinations 
of “true” TB cases, and children incorrectly assigned as having TB 
by the clinical features. They used a range of estimates of the true 
prevalence of TB amongst those considered clinically as having 
highly probable TB, probable TB or possible TB, and used these 

estimates to evaluate the sensitivity of the TB Disease Risk Score, 
as well as to identify the children likely to have TB (High TB Disease 
Risk Score) and those unlikely to have TB (Low Disease Risk Score). 
The gradient in the performance of the risk score in the culture- 
negative groups was consistent with the different degrees of di-
agnostic certainty in each group. Another approach would be to 
evaluate change in transcriptomic signature early in treatment to 
see if some children in the unconfirmed group have changes that 
cluster with the confirmed group and some have signatures that 
cluster with the unlikely TB group.

8.2  |  Development of point- of- care tests

The use of these biomarkers in a clinical decision process either as 
standalone diagnostic tools or in conjunction with other tools needs 
to be studied further. Ultimately, prospective studies would be re-
quired in which the decisions about whether and when to initiate TB 
treatment are evaluated when using the new biomarkers. A concern 
in using transcriptional signatures as clinical diagnostic tools in re-
source poor settings is the complexity, cost, and time needed for the 
current methodologies for isolating and quantifying RNA from blood. 
The approaches described above have generally collected samples 
from children/adolescents and then divided the population into dis-
tinct clinical groups before identifying the minimal number of tran-
scripts that can effectively discriminate these groups. A discovery/
test approach is commonly used prior to validation in an external co-
hort. However, the next step necessary to make a signature like this 
useful clinically is to translate it into a true point- of- care test (POCT). 
For RT- qPCR based platforms, individual primers to each transcript 
need to be designed and these need to be then tested experimentally 
and validated externally. Platforms need to be robust, affordable, 

F I G U R E  1 0  Boxplots of the 5 discordant genes between two comparisons TB vs Mtb infection (baseline) and OD vs Mtb infection 
(baseline) from Anderson et al datasets. The bar within each box indicates the median score, the bottom and top of the box indicate the 
interquartile range, the bars below and above the box are at a distance of 1.5 times the interquartile range from the upper and lower edges 
of the box, and the circles indicate outliers; the horizontal line across the graph indicates the median score of the Mtb infected group
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reliable, and able to be used in low resource settings with intermit-
tent power supply and frequently at the extremes of temperature 
and humidity. Only a relatively small number of transcripts (typically 
fewer than ten) can be included in RT- qPCR POCTs for feasibility of 
engineering. POCTs have mainly, but not exclusively, been developed 
by commercial groups, with expertise in diagnostic test development 
and steps are currently being made toward cost- effective ways of 
measuring gene expression in the field efficiently by using recent 
advances in biotechnology and engineering.132 An early- prototype 
cartridge- based assay, the “Xpert MTB Host Response” Cepheid 
(Sunnyvale, CA, USA) measuring the Sweeney 3- gene signature dis-
criminated adults with TB disease from controls amongst people liv-
ing with HIV (>18 years) with an AUC of 0.89 (CI95% 0.83– 0.94) and 
AUC of 0.84 (CI95% 0.79– 0.89) for active case finding in a high burden 
setting.133,134 Similar studies on pediatric populations are needed to 
assess the potential of these signatures in pediatric TB.

8.3  |  Evaluation in real- time as point- of- care tests

Once a POCT has been developed it must be evaluated clinically to 
determine discriminatory accuracy in real- world conditions, ease- 
of- use, resource utilization, time to clinical decision- making and ul-
timately clinical outcome. Direct translation into clinical studies in 
which treatment decisions have been led by biomarker- based POCTs 
can guide preventive therapy in healthy individuals. The CORTIS 
trial recruited 2923 HIV- negative adults. Individuals with a positive 
11- transcript PT- qPCR test (the RISK11 signature) were randomized 
to TPT or no treatment while a sub- set of individuals with a nega-
tive RISK11 signature were followed with no treatment.111 Those 
with a positive RISK11 signature were at increased risk of hav-
ing prevalent TB and also of progressing to TB in the subsequent 
15 months. However, when comparing rates of incident TB between 
the RISK11- positive adults treated with TPT and those not treated, 

F I G U R E  11  Molecular network, constructed from the discordant genes identified in the disco plot from Anderson et al dataset. The 
molecules that are different shades of red color indicate up- regulation in the comparison of TB vs other diseases. The default number of 
molecules per network has been used, n = 35
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the risk of disease was not reduced. The research team are continu-
ing to explore reasons for this unexpected finding.

Unlike in adults, however, it can be challenging to conduct a 
study in children where clinical decisions, particularly around which 
symptomatic child should be treated for TB disease, are based on 
a transcriptomic POCT. In addition, any test that is to be used to 
guide clinical decision- making would need to be approved by medi-
cal regulators in the country used. A potential interim step would be 
to carry out a Simulated Clinical Impact study in which the biomarker 
POCT is conducted in real- time in parallel to the routine standard 
of care decision- making. In that way, real patient information (from 
children recruited to a prospective cohort) is later presented to inde-
pendent clinicians, and their clinical decisions, use of investigations, 
and therapeutic choices are compared when POCT results are made 
available at certain timepoints post presentation of child. Ultimately, 
biomarker tests need to be evaluated in comparison to other diag-
nostic approaches with the hard clinical endpoints being the out-
comes of interest. Additional data on time to treatment initiation, 
preferences of children, parents, and healthcare worker, and costs 
need also to considered.

8.4  |  Integration into treatment decision algorithms

In most clinical decision- making, the pre- test probability of a dis-
ease is combined with a test result to arrive at a post- test probability 
that then informs whether treatment should be started. For many 
children with presumptive TB, information from the clinical history 
and examination alone is sufficient to either reassure the healthcare 

worker that the child does not have TB or that the child is highly 
likely to have TB and should be started on treatment even if further 
tests were negative. In these instances, it is not necessary or helpful 
to perform testing. If the healthcare worker is not sufficiently reas-
sured or convinced of the need to start treatment, then biomarker 
testing can occur, but the interpretation of that test result should 
include data from the clinical history and presentation as pre- test 
probability of disease. In addition, if further tests are performed 
after the first biomarker (which might include other biomarkers or 
radiological investigations) the interpretation of these results should 
include clinical information as well as results from any tests already 
performed. So, in addition to evaluating biomarkers for their ability 
to distinguish clinical states in children, it is important going forward 
to evaluate how biomarkers can be incorporated into treatment- 
decision algorithms. Data driven approaches have been developed 
to combine clinical, radiological, and microbiological data for the 
evaluation of child TB.135,136 To date, these have not included tran-
scriptomic biomarkers. An illustrative example is shown in Figure 12.

9  |  CONCLUSIONS

Over the last ten years, transcriptomic approaches have led to 
the generation of multiple biomarkers in adults that can predict 
future TB disease progression, discriminate TB from other dis-
ease and monitor treatment response. Transcriptomics has also 
allowed for novel insights into the pathogenesis of Mtb infec-
tion and disease as well as better understanding of the host re-
sponse to this pathogen. Work in children and adolescents has 

F I G U R E  1 2  Illustration of an integrated TB treatment decision algorithm including biomarkers
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lagged but several seminal studies have demonstrated that the 
host response to Mtb varies with age and the discovery of child- 
specific biomarkers requires child- specific studies. As these 
signatures are developed, they will need to be translated first 
into POCTs and then rigorously evaluated in the relevant clini-
cal contexts, alone, and as part of integrated algorithms. In ad-
dition to the discovery of pediatric and adolescent biomarkers, 
transcriptomic studies in children are beginning to help us under-
stand the biology of Mtb infection and disease in this age group, 
which will be vital to develop better vaccines and therapeutics. 
Transcriptomics has the potential to substantially contribute to 
meeting global End TB targets.
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