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ABSTRACT

Human genetic variation in coding regions is funda-
mental to the study of protein structure and function.
Most methods for interpreting missense variants
consider substitution measures derived from ho-
mologous proteins across different species. In this
study, we introduce human-specific amino acid (AA)
substitution matrices that are based on genetic vari-
ations in the modern human population. We analyzed
the frequencies of >4.8M single nucleotide variants
(SNVs) at codon and AA resolution and compiled
human-centric substitution matrices that are funda-
mentally different from classic cross-species matri-
ces (e.g. BLOSUM, PAM). Our matrices are asym-
metric, with some AA replacements showing signifi-
cant directional preference. Moreover, these AA ma-
trices are only partly predicted by nucleotide substi-
tution rates. We further test the utility of our matri-
ces in exposing functional signals of experimentally-
validated protein annotations. A significant reduction
in AA transition frequencies was observed across
nine post-translational modification (PTM) types and
four ion-binding sites. Our results propose a purify-
ing selection signal in the human proteome across
a diverse set of functional protein annotations and
provide an empirical baseline for interpreting human
genetic variation in coding regions.

INTRODUCTION

The study of population genetic variation has led to count-
less scientific and medical applications. Illustrative exam-
ples include tracing of ancient migration patterns, estimat-
ing the pathogenicity of genetic variants, identifying func-
tional elements in the genome, and assessing the adaptivity
and conservation of genes and other genomic regions (1–3).
Such inquiries are predicated on robust background models
for the dynamics of genetic variation, which are expected to

accurately capture the propensities of different genetic vari-
ants in various contexts (4,5). For example, a common way
to identify functional elements in the genome is to quantify
evolutionary conservation, namely a deviation from the ex-
pected dynamics of genetic variation. Deciding whether the
variants observed in a genomic region deviate from the ex-
pected dynamics is dependent on the propensities assigned
to these types of variants under the background model. A
background model for single-nucleotide variants (SNVs) in
coding regions should be able to describe the probabilities
of synonymous and nonsense alterations (6,7), as well as
all the different types of missense variants (8). Models of
genetic variation in coding regions are also useful for esti-
mating the functional damage caused by variants in these
regions (9). Indeed, most prediction algorithms that esti-
mate the damage or pathogenicity of variants (e.g. SIFT,
Polyphen2 and CADD) rely on such background propensi-
ties (10–12). Although variant evaluation tools are heavily
used in clinical settings to assess the impact of mutations
on human diseases (13–15), the background propensities on
which they rely are usually based on long-term cross-species
evolution and are not optimized for variants within humans
(16–19).

Many models of genetic variation dynamics are based on
molecular clocks, which attempt to capture the time spans
per mutation events (20,21). However, unlike in other model
organisms, time-based mutation rates are challenging to es-
timate in humans, due to the lack of controlled environ-
ments and complex population and reproduction patterns
(e.g. migration, admixture, ancestral population-structure,
parental age and generation time) (22,23, Rahbari, 2016
#641,24,25). To overcome these challenges, an attempt to
estimate human mutation rates was made by counting de
novo mutations within parent-child samples. However, the
short timescale of such analyses (up to a few generations)
mostly ignores the effects of natural selection (26,27). An al-
ternative approach, which circumvents most of these chal-
lenges, is to ignore the timescales of mutation events and
focus instead on their relative probabilities.

Traditionally, studies of genetic variation dynamics in
coding regions make use of amino acid (AA) substi-
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tution matrices such as PAM and BLOSUM (28–30).
These matrices score AA substitutions by their likelihood
(or likelihood ratio), as derived from empirical observa-
tions. Specifically, these classic matrices rely on multiple se-
quence alignment (MSA) of evolutionarily related homolo-
gous sequences across species (31) for the deduction of sub-
stitution propensities. Notably, a minor error was observed
in the compilation of the original BLOSUM matrices (32),
and attempts to correct the matrices showed slightly im-
proved performance with respect to homology search (33).
Nevertheless, the original BLOSUM62 is still the de facto
standard and the default substitution matrix used across
protein database searches (e.g. in BLAST), sequence align-
ment and other bioinformatics tools (31,34–36). In the past
40 years, numerous other substitution matrices have been
developed to overcome many of the limitations of PAM and
BLOSUM, or to address specific tasks such as the identi-
fication of remote homologies (37,38), various genomic or
protein regions (e.g. protein domains) (39,40) or different
types of proteins (e.g. membrane proteins, enzymes, etc.)
(41).

AA substitution matrices also indirectly capture the
chemical and biophysical properties of AA and are thus
heavily used in the study of protein evolution (42,43). How-
ever, since existing matrices are all based on cross-species
homology, they are not optimized for human-centric stud-
ies. Additionally, current cross-species AA substitution ma-
trices lack directionality (i.e. they do not distinguish be-
tween substitution of a first AA to a second AA from a sub-
stitution of the second to the first).

The exponential growth in the number of whole-genome
and whole-exome sequences, including that of healthy hu-
mans (3,44, Fu, 2013 #637), provides an opportunity to
form a robust human-specific background model of genetic
variation. To this end, we exploited a rich collection of
>7M polymorphic sites in the exomes of over 60 000 un-
related, healthy individuals extracted from the Exome Ag-
gregation Consortium (ExAC) (44). From this comprehen-
sive dataset, we constructed a set of human-specific substi-
tution matrices. These matrices provide a solid baseline for
genetic and proteomic variation, which may be used for de-
riving evolutionary and functional insights. We analyze the
information contained in our matrices and compare them to
the classic matrices. We further used the developed method-
ology to expose protein-functional constraints, as reflected
by post-translational modification (PTM) and ion-binding
sites. We provide the community with a generic framework
for utilizing aggregated genetic variation data to produce
substitution matrices for a broad range of genetic, func-
tional and evolutionary tasks.

MATERIALS AND METHODS

Data

To construct human-specific codon and AA substitution
matrices, we combined genetic variation data with anno-
tations of coding genes. Human genetic variants were ex-
tracted from ExAC (44), which provides a good combina-
tion of quantity and quality of genetic data in the human
population. While ExAC is biased towards individuals of

European ancestry, it also includes other ethnicities. Specif-
ically, the distribution of ethnic groups in ExAC is: 36%
Finnish, 36% Non-Finnish European, 10% South Asian,
7% African or African American, 6% Native American,
5% East Asian and 1% Others. Importantly, the cohort of
ExAC was chosen to minimize bias of pathogenic variants,
by excluding individuals with rare genetic diseases. We treat
each variant as a substitution from the major allele, defined
as the most frequent allele in the population, to the minor
allele, which is any other allele observed in the specific ex-
omic location.

Functional gene annotations were based on the UniProt
database and the GENCODE project. The exact proce-
dure of combining genetic and proteomic annotations is
described in (45). Briefly, we used version 19 of GEN-
CODE (compatible with version GRCh37 of the human ref-
erence genome, which was used by ExAC). We recovered
the DNA sequences of the genes annotated in GENCODE
using UCSC’s reference genome. We considered only the
protein-coding regions of genes (annotated as ‘CDS’ in
GENCODE). Protein sequences and protein annotations
(e.g. PTMs) were taken from UniProt for all 20 168 re-
viewed human proteins (from the SwissProt section). We
only considered the GENCODE gene isoforms identical to
the primary UniProt protein sequences. We discarded genes
that failed this exact one-to-one mapping, ending up with
18 115 successfully mapped genes. These combined genetic-
proteomic gene entities allowed us to determine the protein-
level consequences of genetic variants (e.g. synonymous,
missense or nonsense). This pipeline is available as an in-
dependent open-source Python library (https://github.com/
nadavbra/geneffect).

ExAC recorded 8 307 864 high-quality genetic variants
(with ethnic distribution as detailed above). From this
dataset, 427 491 indels were removed. Of the remaining vari-
ants, 326 369 genomic positions contained multiallelic vari-
ants, which were counted as 631 985 nucleotide substitu-
tions, contributing 305 616 additional variants. From this
dataset, 82 991 nonsense variants were discarded. Of the
8 102 999 nucleotide substitutions, 4 693 538 were within the
coding regions of the 18 115 mapped protein-coding genes
and were interpreted as observed codon substitutions. Each
substitution of codons differing by exactly one nucleotide
was observed ∼9000 times on average (and at least 573 times
across all codon pairs; the total counts per each codon pair
is reported in Supplementary Dataset S1). The high num-
ber of observations, even for the rarest codon substitutions,
ensures the robustness of the estimated codon-substitution
probabilities to random noise.

PTMs and ion-binding site annotations

PTMs and ion-binding site annotations were extracted from
UniProt, except for ubiquitination annotations, which were
obtained from PhosphoSitePlus (46). For a small number
of cases, PTM proteomic locations of variants mapped to
locations on the reference genome coding for inappropri-
ate AA. We discarded these instances. Importantly, both
UniProt and Phosphosite annotations are supported by ex-
perimental evidence and literature support.

https://github.com/nadavbra/geneffect
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Constructing probabilistic substitution matrices from genetic
variation in the human population

HC1 (Human Codon substitution matrix to the power of
1) represents the estimated substitution probability of each
pair of the 61 coding codons (i.e. excluding the three stop
codons). Each non-diagonal entry of HC1 was calculated
by:

HC1
c1,c2 =

∑
v∈Vc1→c2

fv
∣∣Vc1

∣∣ (1)

Where Vc1→c2 denotes the set of all variants substituting
codon c1 to c2 (c1 �= c2), Vc1 the set of all variants substi-
tuting c1 to any codon (including a self-substitution), and
fv the frequency of the c2 allele in a variant v substituting
c1 to c2 (as derived from ExAC).

The diagonal values were calculated by:

HC1
c,c = 1 −

∑

c′ �=c

HC1
c,c′ (2)

We assumed the directionality of each variant to be from
the major to the minor allele. In particular, we always have
that fv ≤ 0.5. Note that the major allele is not always the
reference allele (i.e. the allele matching the human reference
genome). Specifically, this is not the case in ∼8% of the
∼5M processed variants. Since ExAC’s only offers aggre-
gated data about each exomic position independently, this
construction ignores possible dependences between vari-
ants.

The non-substitution (diagonal) values of the matrix
complement the sum of each row to 1. This, along with the
normalization in Equation (1), yields a row-stochastic ma-
trix, meaning that each row i of the matrix can be inter-
preted as the distribution of conditional substitution prob-
abilities (from the ci codon to every other codon). Each en-
try, in turn, may be interpreted as the conditional proba-
bility of observing c2 in a genomic position where c1 is the
major allele.

The amino acid substitution matrix HA1 (Human Amino
acid substitution matrix to the power of 1) is derived from
HC1 by considering codon frequencies:

HA1
aa1, aa2 =

∑

c1∈Caa1

∑

c2∈Caa2

rc1 · HC1
c1,c2 (3)

Where Caa1 and Caa2 denote the sets of codons that code for
the AA aa1 and aa2, respectively, and rc1 is the frequency in
which aa1 is coded by the c1 codon, relative to all the codons
of aa1 (i.e. rc1 = |Vc1 |∑

c2∈Caa1
|Vc2 | ).

As with HC1, an entry of HA1 may be conceived as the
conditional probability of observing AA aa2 in a proteomic
position in which aa1 is the major allele.

As HC1 and HA1 were generated through statistical anal-
ysis of single-nucleotide variations, substitutions between
codons that differ in more than one nucleotide cannot be di-
rectly inferred. Since most codon pairs differ by more than
one nucleotide, both HC1 and HA1 are sparse matrices. To
estimate substitution frequencies between pairs of codons
requiring multiple consecutive substitution events to tran-

sition between them, we treat HC1 and HA1 as the transi-
tion matrices of Markov chains. For every number of con-
secutive substitutions k, the k-th power matrices HCk (Hu-
man Codon substitution matrix to the power of k) and HAk

(Human Amino acid substitution matrix to the power of k)
represent the Markov chains that are the result of repeating
the original Markov chains k times. To obtain a complete
substitution matrix (i.e. with non-zero substitution proba-
bilities for all possible substitutions), we chose to take HA1

to the power of 3, since 3 is the lowest number of nucleotide
substitutions required between each pair of coding-codons.
The resulting matrix is denoted HA3.

Comparing the AA substitution model to a nucleotide substi-
tution model

To examine to what extent our substitution matrix reflects
evolutionary signals at the AA level, we compared it to
a matrix derived from nucleotide substitution frequencies,
HAN1 (Human Amino Acid substitution matrix based on
Nucleotide substitution probabilities to the power of 1),
which we used as a simple background model. We first con-
structed a 4×4 nucleotide substitution matrix, HN1 (Hu-
man Nucleotide substitution matrix to the power of 1), de-
rived from the same set of variants used to construct HC1.
We then used this nucleotide-level matrix to derive an ex-
pected 61×61 codon substitution matrix, by considering the
probability of a codon substitution to be the product of the
probabilities of the single-nucleotide substitutions involved
in that codon (e.g. the substitution of CTG to TTA was as-
signed the probability of C to T multiplied by the probabil-
ity of T to T and the probability of G to A). This codon-level
substitution matrix was then projected into a 20×20 AA
substitution matrix, through the same process used to con-
vert HC1 to HA1 (see previous section). The resulting AA-
level matrix reflects the expected probabilities of AA sub-
stitutions given only the substitution preferences of single
nucleotides while assuming a lack of evolutionary pressure
at the level of codons or AA. By dividing the empirical HA1

with this background model (entry-wise), we obtained the
observed-to-expected probability ratios of all AA substitu-
tions and could determine which AA substitutions show a
substantial deviation from the background model. Addi-
tionally, we tested for statistical significance of each of the
deviations by using the entries of HAN1 as a background
model for the observed probabilities in HA1. Specifically,
for each AA substitution, we considered the probability of
that substitution (given the source AA) based on the corre-
sponding entry in HAN1. Based on this binomial distribu-
tion, we calculated the probability of obtaining the observed
number of substitutions underlying HA1 (i.e. |Vc1→c2 |) or
more extreme deviations from the expected probability, re-
sulting the reported p-values.

Deviation from symmetry

To quantify the strength of directionality observed in the
substitution matrix, we measured the deviation of AA sub-
stitutions from symmetry by calculating the ratios between
the conditional probabilities of substitutions to the con-
ditional probabilities of the opposite substitutions. For
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example, the directionality of the substitution of lysine (K)
to arginine (R) under HA3is measured by HA3

K,R

HA3
R,K

. In other

words, we divided HA3, entry-wise, by (HA3)T. To enhance
readability, the matrix shown in Figure 3A is lower triangu-
lar, and its entries are transformed by log2. This means that
positive entries signify substitutions that are preferred over
their opposite substitution.

Comparison to BLOSUM and PAM

To compare our substitution models to the score matrices of
BLOSUM, Spearman’s correlation coefficient (� ) was mea-
sured for each row of HA3 with each corresponding row of
the examined BLOSUM matrix (Figure 4). For each BLO-
SUM matrix, its average correlation with HA3 was used to
summarize these measurements. Furthermore, to examine
the effect of the power of the HA1 matrix on these correla-
tions, the average correlation coefficient was calculated for
each BLOSUM version and different powers of HA1. We
compared our models to the original (uncorrected) BLO-
SUM matrices, since they are the standard matrices used in
the field. Similar analyses were repeated for the PAM ma-
trices.

Functional annotation analysis

To demonstrate the capacity of our human-specific sub-
stitution model to reflect protein functional annotations
(Tables 1 and 2, Figure 5), we examined nine major
PTMs (acetylation, hydroxylation, disulfide bond forma-
tion, methylation, N-linked glycosylation, O-linked glyco-
sylation, phosphorylation, succinylation and ubiquitina-
tion; Table 1) and three types of ion-binding sites (zinc,
magnesium and iron; Table 2). For each PTM or ion-
binding site, we considered the set of variants at the an-
notated proteomic locations, and generated new codon
and AA substitution matrices corresponding to that sub-
set of variants (e.g. HA1

iron-binding, HC3
ubiquitination etc.).

These matrices were generated through the same method
by which the global matrices (e.g. HA1 and HC3) were con-
structed, and they differ only by the subset of used vari-
ants (within the ExAC dataset). To highlight the unique
aspects of the substitution profiles for these functionally
annotated sites, compared to unannotated sites (Figure 5),
each annotation-specific matrix was divided by its corre-
sponding non-annotation matrix, element-wise (i.e. the ma-
trix derived from all the other variants).

To test the significance of each annotation-specific sub-
stitution (e.g. lysine [K] to proline [P] in ubiquitination
sites), we examined two complementary aspects of signif-
icance, based on either (i) the number of annotated vari-
ants or (ii) their allele frequencies (AF). In terms of the
number of variants, a substitution may exhibit a signifi-
cantly higher or lower number of variants in sites anno-
tated by that PTM or ion binding. To test whether a sub-
stitution aa1 → aa2 is significantly associated with an an-
notation in terms of the number of variants, we considered
the set of all variants whose major allele is aa1, and used
Fisher’s exact test to determine if the subset of these vari-
ants that substitute into aa2 is enriched with the subset of

variants with the tested annotation. Likewise, to test dif-
ferences in AF, we used Mann–Whitney U test (two-tailed)
to compare the AF of the variants inducing the tested sub-
stitution which are in annotated versus unannotated sites
(e.g. lysine [K] to proline [P] variants in ubiquitinated ver-
sus non-ubiquitinated sites). In both tests, we required a
sample size of at least 50 annotated variants. To control
the false discovery rate, Benjamini–Hochberg FDR was ap-
plied for each of the two types of tests, across all annotation-
specific substitutions, with a significance threshold of 0.05.
In this work we show the annotation-specific substitutions
that are FDR-significant according to at least one of the two
tests (Tables 1 and 2 and Figure 5). Significant annotation-
specific substitutions are labeled as either enriched (E) or
depleted (D) for each of the two tests. With respect to the
number of variants, we consider it to be enriched if the odds-
ratio is >1. With respect to the AF test, we consider it to
be enriched when the average AF of annotated variants is
greater than that of unannotated variants.

RESULTS

Constructing human-specific coding substitution matrices

To construct an AA substitution matrix that is specific
to the human population (Figure 1A), we merged data
from two complementary sources: (i) the ExAC popula-
tion database, which reports on >7M high-quality single
nucleotide variants (SNVs) from the exome sequences of
60 706 non-related individuals (44) and (ii) genomic anno-
tations for all human coding genes. By projecting the >7M
SNVs on the gene annotations, we inferred >4.8M observed
codon substitutions, found in 37% of all codons in the hu-
man coding genome. Overall, 65% of the substitutions are
missense, 33% are synonymous and 2% are stop-gain (non-
sense) variants.

From these codon substitutions and their correspond-
ing allele frequencies (AFs), we constructed a 61×61
codon substitution matrix, denoted HC1 (standing for
Human Codon substitutions). The rows and columns of
HC1represent all codons (excluding the three stop codons),
with rows representing source codons and columns repre-
senting the target codons of substitutions. Rows are nor-
malized so that each entry represents the conditional prob-
ability of a codon substitution.

To provide substitution probabilities at AA resolution,
we transformed HC1into a 20×20 AA substitution matrix,
denoted HA1. As our construction relies on SNVs, HC1can
capture only pairs of codons that differ by up to a single let-
ter. As a result, 84% of all codon substitutions in HC1 are
assigned zero probability. Likewise, 57.5% of HA1values are
zero. To model the propensities of all replacements, we con-
sidered three consecutive transitions of HC1, thereby de-
riving a complete codon substitution matrix denoted HC3

(Figure 1B) and a corresponding AA substitution matrix
HA3 (Figure 1C). The numeric values of HC1, HA1, HC3,
and HA3, are provided in Supplementary Dataset S2.

Patterns of amino acid substitutions in the human population

We examined whether the observed 20×20 AA sub-
stitution frequencies are exclusively determined by the
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Table 1. Statistically significant AA substitutions in PTM sites

PTM annotation From AA To AA
# sub. w/

annotation
# sub. w/o
annotation

# variants
FDR q-value

AF FDR
q-value Trenda

Acetylation A A 212 1 54 569 1.94E-02 E
A T 51 91 640 4.15E-10 1.27E-02 D/D
A V 122 84 602 3.16E-02 D
K K 398 48 774 6.89E-03 E
K N 128 22 414 2.35E-02 D
K Q 63 10 543 4.75E-02 D

Disulfide bond C C 2014 25 117 9.70E-32 E
C F 311 5700 6.68E-03 D
C G 238 4429 8.13E-03 2.62E-02 D/D
C R 648 11 634 3.93E-04 6.99E-05 D/D
C S 412 8104 2.56E-06 1.01E-02 D/D
C W 175 3205 4.18E-02 D
C Y 870 16 183 6.68E-08 5.26E-05 D/D

Hydroxylation K K 105 49 091 7.65E-05 E
Methylation K K 54 49 140 2.36E-03 E

R R 154 86 468 3.05E-02 E
N-linked Glycosylation N D 657 16 080 1.79E-02 D

N H 274 7345 6.70E-03 D
N N 2441 51 886 2.25E-02 E

O-linked Glycosylation S S 82 1 48 408 1.74E-02 E
T T 105 1 42 197 1.44E-02 E

Phosphorylation S A 285 9066 4.08E-02 2.68E-03 D/D
S F 1054 25 354 4.47E-04 E
S L 1176 30 503 3.41E-02 D
S G 706 21 817 6.68E-03 D
S S 5403 1 43 087 1.96E-02 E
S T 669 19 274 3.39E-04 D
T T 1471 1 40 831 3.41E-02 D
Y H 85 15 654 1.38E-02 D
Y Y 454 50 960 3.06E-06 E

Succinylation K E 66 28 051 2.08E-02 D
K K 106 49 066 2.08E-02 D
K R 86 35 506 2.08E-02 E

Ubiquitination K E 4091 24 020 3.40E-10 D
K I 324 2060 1.47E-03 D
K K 7536 41 630 1.67E-06 3.47E-07 E/D
K M 422 2752 4.78E-02 5.41E-03 D/D
K N 2980 19 562 3.29E-10 7.44E-09 D/D
K Q 1477 9129 4.78E-02 D
K R 5420 30 168 1.30E-03 2.47E-09 E/D
K T 1589 9119 1.40E-07 D

aTrends of significant differences between annotated and unannotated residues. Symbols indicate enrichment (E) or depletion (D). When both statistical
tests, based on the number of variants (left) and allele frequency (right), are significant (q-value < 0.05), then two distinct symbols are shown. Synonymous
substitutions that maintain the same AA are shown in bold.

Table 2. Statistically significant AA substitutions in ion-binding sites

Ion-binding annotation From AA To AA
# sub. w/

annotation
# sub. w/o
annotation

# variants
FDR q-value Trend

Iron H H 70 45 629 8.67E-04 E
Magnesium D D 73 69 334 1.72E-04 E
Zinc H H 182 45 517 2.25E-06 E

H R 56 27 688 1.29E-03 D
C C 132 27 001 2.25E-06 E

transition propensities of nucleotide substitutions. To this
end, we constructed a 4×4 single-nucleotide substitution
matrix derived from all the reported SNVs, denoted HN1

(Figure 2A; Supplementary Dataset S3, Supplementary
Figure S1). This matrix accounts for all 16 single-nucleotide
replacement frequencies observed across coding regions in
the human population. From HN1, we derived a 20×20
AA substitution matrix, denoted HAN1, which represents
the expected AA substitution probabilities under the back-

ground model of single-nucleotide substitution propensities
described by HN1. We then compared the expected values
of HAN1to the empirically observed values of HA1through
an element-wise division of the two matrices (Figure 2B).
We observe that substitutions of tryptophan (W) to cys-
teine (C) or serine (S) are roughly 8-fold lower than ex-
pected by this naive nucleotide-based background model.
Similarly, a substitution from isoleucine (I) to lysine (K)
is 16-fold lower than expected. Overall, we reveal that
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Figure 1. Producing human-specific substitution matrices from population genetic variation. (A) We combined 4.8M SNVs with 18K gene annotations to
construct a human-specific codon substitution matrix, denoted HC1, in which each entry represents a codon substitution probability. To capture codon
substitutions that differ by more than a single nucleotide, we extended the sparse HC1 into a complete HC3matrix through a Markovian process. We further
derive corresponding matrices at amino acid resolution, HA1and HA3, in which each entry represents the probability of an amino acid substitution. (B)
HC3 (log10 scale). (C) HA3 (log10 scale).

the expected-to-observed ratios are >2 (or <0.5) for 11%
of AA pairs, and >1.5 (or <0.66) for 20% of AA pairs.
By considering HAN1 as a background model and test-
ing the likelihood of the observed probabilities in HA1, we
validated that the differences between the matrices across
all AA substitutions (as reported above) are indeed ro-
bust and could not have been produced by chance (P-
value < 1E-300; see Materials and Methods). These re-
sults expose evolutionary signals, even at the low resolution
of AA.

A probabilistic substitution model is substantially en-
riched by considering the directionality replacements. We
utilized information on the allele frequencies (AF) of ge-
netic variants to deduce the most likely direction of each ob-
served substitution. We measured the asymmetries of sub-
stitutions by the ratio between each AA replacement to
its opposite (Figure 3A) and highlighted extreme signals
of asymmetry (Figure 3B). Some AA substitutions show
an order-of-magnitude stronger tendency in one direction
compared to the other direction. The AA with the most
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Figure 2. Deviation from single-nucleotide propensities. (A) Values of
HN1, the human-specific single-nucleotide substitution matrix capturing
the propensities of nucleotide transitions (log10 scale). (B) Observed-to-
expected ratios of the entries in HA1 (log2 scale), based on a background
model derived from the 4×4 frequencies of nucleotide substitutions de-
scribed in (A). A log-ratio close to 0 signifies a substitution whose observed
frequency is as expected by the substitution tendencies of the nucleotides
in the involved codons. Negative log-ratios (colored pink) represent substi-
tutions that are less common than would be expected by their nucleotide
composition, while positive log-ratios (green) represent frequencies that
are higher than expected.

extreme directionality is tryptophan (W). Specifically, most
AA are more likely to substitute into this AA than the other
way around. Notably, serine (S) exhibits a 14-times higher
tendency to substitute into tryptophan (W) than the op-
posite substitution. Tryptophan is a biochemically distinct
AA, signified by maximal hydrophobicity, bulkiness and the
lowest solvation potential (47). From a structural perspec-
tive, tryptophan has been implicated in lipid anchoring of
membranous proteins (48), binding hotspots and substrate-
binding sites (49). Whereas tryptophan (W) emerges as a
target hub, valine (V) and isoleucine (I) tend to be source
hubs (Figure 3B).

Examining the directionality of AA substitutions (Figure
3) at codon resolution reveals that the directional signal is

often dominated by a specific codon substitution (Supple-
mentary Figure S2). For example, In the case of isoleucine
(I) to lysine (K), it is the AAA (K) to ATA (I) codon substi-
tution which dominantly defines the asymmetry of the AA
substitution, by occurring 8 times more frequently in that
direction than the opposite (Supplementary Dataset S3).
Similarly, we observe that valine (V) is more likely to sub-
stitute into tyrosine (Y) in the context of the target codon
TAT (Y), while an opposite tendency is in fact observed for
the second codon of tyrosine (TAC). Note that the substi-
tution of valine (V) to tyrosine (Y) requires more than one
step of nucleotide replacements.

Human-specific and cross-taxa substitution matrices capture
different signals

To highlight the unique features of the human-specific AA
substitution matrices, we compared HA3 with the (original)
BLOSUM and PAM matrices (Figure 4). We observe that
the correlation in substitution propensities between HA3

and the BLOSUM matrices is similar for BLOSUM62 and
BLOSUM100 (average across all 20 AA: � = 0.52; Figure
4A) but lower for BLOSUM30 (� = 0.45). As BLOSUM30
captures longer evolutionary distances, it is expected to be
more different from the human-specific matrix. BLOSUM30
also shows greater variability across different AA. Inter-
estingly, isoleucine (I) and tryptophan (W) exhibit higher
correlations for the scores of BLOSUM30 than those of
BLOSUM62 and BLOSUM100. It should be noted, however,
that AA-specific correlations are prone to noise, as they are
based on only 20 values (while the overall trend, based on
400 values, are much more robust).

A similar conformity analysis was performed for a set
of PAM matrices (Figure 4B). The observed correlations in
the case of the PAM matrices (average � of 0.61–0.68) are
higher than those observed for the BLOSUM matrices. The
most substantial conformity of HA3 is noted for PAM10,
which represents substitution probabilities between highly
similar protein sequences. A correlation analysis was also
performed for PAM1, yielding the highest conformity (�
= 0.69; Supplementary Figure S3). Notably, tyrosine (Y)
and cysteine (C) register consistently low conformity be-
tween the human-specific and cross-taxa matrices (BLO-
SUM and PAM). Similar analyses were also conducted
based on Pearson’s (rather than Spearman’s) correlation,
showing the same trends. However, the correlations in the
case of the BLOSUM matrices (average � of 0.75–0.80) are
higher than those observed for the PAM matrices (Supple-
mentary Figure S4).

HA3 represents the expected pairwise substitution proba-
bilities following three consecutive single-nucleotide substi-
tutions. We inquired whether the correlations reported for
HA3 are sensitive to the selection of exactly three transitions
in the Markovian process. We repeated the comparison be-
tween HAk and BLOSUM (Figure 4C) or PAM (Figure 4D)
for different values of k, namely following different numbers
of single-nucleotide transitions. We observe that the degree
of conformity is steady along many consecutive substitu-
tions. We conclude that these results are robust to the choice
of k = 3, which is the minimal number of single-nucleotide
substitutions required to obtain all possible AA replace-



8 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

Figure 3. Deviation from symmetry. (A) The asymmetry of an AA substitution is measured by the probability-ratio between each substitution and its
opposite (shown in log2 scale). Probabilities are derived from a version of HA3 which does not include synonymous probabilities (so that each row
represents the conditional probabilities of non-synonymous substitutions). (B) Network representation of AA substitutions that substantially deviate from
symmetry (defined by a ratio of at least 5). For example, serine (S) is 14 times more likely to substitute into tryptophan (W) than the other way around.
Wider arrows signify stronger asymmetry (i.e. higher ratios).

Figure 4. Comparison to the BLOSUM and PAM substitution matrices. (A) Spearman’s correlation coefficients (� ) between the rows of HA3 and the
corresponding rows of different versions of the BLOSUM matrices. For example, the rightmost bar refers to the consistency between the substitution
probabilities of glycine (G) according to HA3 and the corresponding substitution scores according to BLOSUM100. Dotted lines signify the average corre-
lation coefficients across all AA. (B) Spearman’s correlation coefficients (� ) between the rows of HA3 and the corresponding rows of different versions of
the PAM matrices. (C) The average correlation coefficients between BLOSUM matrices and different powers of HA1. Increasing powers of HA represent an
increasing number of consecutive substitutions (which signify longer evolutionary timescales). (D) Average correlation coefficients between PAM matrices
and different powers of HA1.
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Figure 5. Enrichment of AA substitutions in PTM and ion-binding sites. Each edge represents a substitution between a source and a target AA in the
context of a specific annotation (indicated by edge color). Dashed arrows indicate ion-binding annotations. Edges are annotated with the log2 ratio of the
substitution probabilities between annotated and unannotated sites. Arrow widths signify the magnitude of these ratios.

ments. HC3 and HA3 have the distinct advantage of avoid-
ing ad-hoc numerical manipulations to pull codon substi-
tution probabilities away from zero, such as adding a small
epsilon term (for codons that differ by more than one nu-
cleotide). Instead, the Markov chain framework rigorously
imputes probabilities for all codon substitutions.

The human-specific substitution model exposes protein func-
tion preservation

We investigated how AA substitution tendencies change in
the context of protein functional sites. To this end, we ex-
amined nine prominent PTMs (acetylation, disulfide bond,
hydroxylation, methylation, N- and O- glycosylation, phos-
phorylation, succinylation and ubiquitination) and three
types of ion-binding sites (zinc, magnesium and iron). Alto-
gether, we examined 92 625 experimentally validated func-
tional sites covering 12 746 unique proteins. We tested for
differences in AA substitution propensities between anno-
tated and unannotated sites according to two complemen-
tary aspects of significance: (i) the number of variants and
(ii) their allele frequencies (AFs). We found 41 substitu-
tions with significantly different propensities in the context
of specific PTM sites (Table 1). For example, alanine (A)
to threonine (T) substitutions are significantly depleted in
acetylated sites with respect to both the number of observed
variants (FDR q-value = 4.2E-10) and their allele frequen-
cies (FDR q-value = 1.3E-02). The most significant associ-
ation is the conservation of cysteine (C) residues involved
in disulfide bonds (FDR q-value = 9.7E-32). We attribute
this result to the fundamental importance of disulfide bonds
in stabilizing the structural fold of a protein. Generally, we
find residues to be preserved in the majority of PTMs, while
variants causing AA replacement (i.e. missense variants) are
generally depleted. For ion-binding residues, 5 AA substi-
tutions were found to be significantly different in annotated
sites (Table 2). A complete summary of all AA substitutions
with respect to all PTM and ion-binding sites is available in
Supplementary Dataset S4.

Having determined which AA substitutions exhibit sig-
nificant changes in functional sites, we applied our model
to examine these differences in the context of substitu-
tion propensities (Figure 5 and Supplementary Figure S5).

Specifically, we considered the entry-wise ratios of HA3

between annotated and unannotated sites by reconstruct-
ing the matrix for each of the two states (e.g. the substi-
tution propensity ratio between phosphorylated serine [S]
to alanine [A] and non-phosphorylated serine [S] to ala-
nine [A]). AA substitutions that appear particularly unfa-
vored in specific functional contexts are acetylated lysine
(K) to glutamine (Q), zinc-binding histidine (H) to arginine
(R), and hydroxylated alanine (A) to valine (V) or threo-
nine (T). Lysine (K) can undergo many types of PTMs, sev-
eral of which display a strong selection signal under our
model. Specifically, lysine (K) residues modified by ubiqui-
tin, acetyl, and succinyl show a high preservation tendency
compared to unmodified lysine residues. Even though we
considered each lysine (K) independently, it should be noted
that the same lysine residues can be used for different PTM
types, depending on cell state. For example, the majority of
succinyl-modified lysine residues overlap with acetylation
sites (50). We did not analyze less prevalent types of lysine
modifications (e.g. sumoylation) due to limited experimen-
tal evidence.

Collectively, these results are best explained by a signal
of negative selection associated with major functional sites
in the human proteome. We conclude that a human-centric
model of AA substitution propensities based on genetic
variation in the human population is a powerful and intu-
itive tool to study AA across functional contexts such as
PTMs and ion binding.

DISCUSSION

In this study, we have presented a set of data-driven novel
substitution matrices at codon and AA resolutions based on
the natural occurrence of genetic variation in the healthy
human population. This human-centric approach reflects
the short evolutionary timescale of modern humans (51),
while the classic BLOSUM and PAM (as well as many
others) substitution matrices are based on MSA sequences
from organisms whose common ancestor is dated back
many millions of years. The purpose of this work is to
highlight patterns in human genetic variation that are not
captured by the traditional substitution matrices, which
were designed for remote homology searches. Despite this
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fundamental difference, HA3 still shows a moderate cor-
relation with the classic matrices (Figure 4). In particu-
lar, matrices that reflect shorter evolutionary distances (e.g.
BLOSUM100 and PAM10) exhibit higher similarity to the
human-centric matrix.

In this work, we used a Markov chain model to derive
the non-sparse matrices HC3 and HA3 from the empirical
HC1 and HA1 matrices. The construction of these matri-
ces through a Markov chain process assumes that multiple-
nucleotide codon changes are derived from independent
single-nucleotide substitutions. In reality, complex codon
changes can sometimes occur as a single indel event, for
example through a series of alterations by the DNA repair
systems (52). Indeed, codon substitution frequencies show
substantial variability between species due to differences in
DNA repair pathways (53). This is one reason why gen-
eralization of human-centric substitution models to other
taxa would be inappropriate. As future work, richer models
could be utilized to create more accurate matrices.

Notable differences in substitution propensities between
the cross-species and human-centric evolutionary contexts
are observed for cysteine (C), tyrosine (Y) and tryptophan
(W) (Figure 4). These AA are specified by unique biochem-
ical, functional and structural features (43). Specifically,
these three AA have a strong interface propensity and a
negative solvation potential (54), and contribute uniquely
to folding and protein-protein interaction interfaces in the
human proteome (55). Furthermore, these AA are the most
likely to occur in rare mutations causal of human disease
(56).

We argue that a human-centric model is more appropri-
ate for assessing the impact of human mutations in cod-
ing genes, a practice central to genetic consulting and the
identification of causal mutations in human diseases. For
the task of non-synonymous mutation inference, dozens of
prediction tools and algorithms have been developed. With
few exceptions (e.g. FIRM, (45)), the vast majority of these
tools (e.g. Panther, PhD-SNP, PolyPhen2, SIFT, SNAP, and
SNPs&GO MutPred, nsSNPAnalyzer) incorporate long-
range evolutionary information from cross-species conser-
vation into the underlying model (15–17,57–59). We antic-
ipate that the incorporation of short-term, human-centric
models such as HA3 could be beneficial to mutation impact
evaluation.

Key processes in multicellular organisms are mediated by
a network of PTMs (e.g. differentiation, cell division, in-
flammation and metabolism). In humans, most proteins are
subject to multiple PTMs, which greatly increase the pro-
teome’s functional repertoire (60,61). Even though ∼200
types of PTMs have been detected by mass spectrometry,
only a handful have been systematically studied (62,63). In
this study we focused on 9 common types of PTMs and 3
types of ion binding (which may only occur in 10 specific
AA), limiting our analysis to experimentally-validated sites.
Notably, PTM detection is condition-specific and quite sen-
sitive to experimental protocols. Despite this inherent noise,
we were able to establish the enrichment or depletion of
certain AA replacements in the context of functional an-
notations with high confidence (Tables 1 and 2). A partic-
ularly strong signal was detected for phosphorylation sites
(phosphotyrosine, phosphoserine and phosphothreonine),

ion-binding sites, and cysteine residues that form disul-
fide bonds. Indeed, many human diseases result from mis-
sense mutations in codons of cysteine which destroy essen-
tial disulfide bridges (64,65). Thanks to our human-specific
substitution models, we were also able to quantify the en-
richment of AA substitutions across PTM and ion-binding
sites (Figure 5).

Interestingly, even the short-term view explored in this
study exposes a robust signal of negative natural selection
at codon and AA resolution (Figure 2 and Supplementary
Figure S2). While most homologues showing high conser-
vation across species are under negative selection, this con-
servation is typically restricted to folded domains, while
loops, intrinsically disordered regions, interdomain linkers
and protein tails exhibit relatively low sequence similar-
ity across homologues. Nonetheless, such regions of low
conservation are actually the preferred targets for PTMs
(e.g. N’-acetylation in protein tails, or phosphorylation and
ubiquitination in loops and disordered regions). Due to the
lack of cross-species conservation in those sites and dif-
ferences in cellular contexts (e.g. species-specific kinome),
the question of whether human PTM sites are under neu-
tral, negative, or positive selection could not be resolved
with cross-species data and remained to be tested (66,67).
Our analyses provide evidence for purifying selection in un-
structured protein regions (Tables 1 and 2). Another ad-
vantage of studying the selection of PTMs from a human-
centric perspective is that exact PTM sites are often not
conserved between species. Indeed, the conservation sig-
nal for most PTMs is negligible across species, and some-
times even shows positive selection (68,69). It was proposed
that the amounts of modifiable sites, rather than their ex-
act positions, is the conserved property in many proteins
(70,71).

An essential property of the constructed matrices we
present is their asymmetry (Figure 3), while AA substitu-
tions matrices from cross-species MSA are usually symmet-
ric by design. Indeed, we have detected substantial asymme-
try for some AA (Figure 3B). Specifically, tryptophan (W)
and valine (V) appear to be central hubs of such directional
tendencies. We found that tryptophan (W), and, to a lesser
extent, glutamic acid (E) and glutamine (Q), are common
substitution targets. Valine (V), and, to a lesser extent, ser-
ine (S) and isoleucine (I), act as substitution sources. Over-
all, we categorized all 20 AA as substitution sources, tar-
gets or a mixture of the two (Supplementary Figure S5). In-
terestingly, the AA marked as sources include all 6-codon
AA (R, S, L) and most 4-codon ones. Inspecting the sub-
stitution matrices at codon resolution confirms that some
codons may dominate the signal at the AA level (e.g. the
ATA to AAA substitution dominates the asymmetric re-
placement of isoleucine to lysine). Under this view, the 6
serine (S) codons exhibit distinct substitution patterns, lead-
ing to broad functional implications (72). Specifically, re-
gions that are subjected to accelerated evolution tend to
substitute within a specific set of serine (S) codons, while
conserved regions in the same proteins tend to substitute
within the complementary set of serine codons. The specific
DNA (i.e. codon) alterations dominating some of the AA
substitutions, as observed in this work, might be attributed
to evolutionary processes at the DNA (rather than protein)
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level, which could be shaped by cellular mechanisms such
as DNA repair (53,73).

In summary, we have constructed human-specific substi-
tution matrices and characterized their unique properties.
Given the robustness and interpretability of these matri-
ces, we encourage their use as a baseline model for codon
and AA replacement in the human population. An example
of such analysis was demonstrated in the context of PTMs
and ion-binding sites (Figures 4 and 5), where our model
provided a robust baseline allowing the exposure of selec-
tion signal. This was allowed by partitioning of the protein
residue space within the human proteome into two groups
(e.g. those subject to a specific PTM and those that lack ev-
idence for it), and comparing the set of genetic variants oc-
curring in the human populations between these two groups
with respect to our AA substitution model (HA3). Similarly,
our model could be used to study differences with respect
to other protein or residue partitions (e.g. extracellular pro-
teins, protein–protein interfaces, proteins expressed in the
brain or those related to the immune system). To allow the
extension of this methodology to other datasets, including
specific human subpopulations, we provide the source code
of our methods (see Materials and Methods). Likewise, we
anticipate that our methodology could be easily applied to
other organisms with rich genetic variation data [e.g. mouse
(74) and primates (21,75)].

DATA AVAILABILITY

The ExAC dataset can be downloaded from
https://console.cloud.google.com/storage/browser/ details/
gnomad-public/legacy/exacv1 downloads/release0.3/
ExAC.r0.3.sites.vep.vcf.gz. The substitution matrices,
codon counts, and further results are available in the
supplementary data. The entire source code of this study
is available at http://www.github.com/tairsha/taxa-specific-
substitution-matrix.
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