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Solute carrier (SLC) transporters play important roles in regulating the movement of small
molecules and ions across cellular membranes. In mammals, they play an important role
in regulating the uptake of nutrients and vitamins from the diet, and in controlling the dis-
tribution of their metabolic intermediates within the cell. Several SLC families also play an
important role in drug transport and strategies are being developed to hijack SLC trans-
porters to control and regulate drug transport within the body. Through the addition of
amino acid and peptide moieties several novel antiviral and anticancer agents have been
developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1)
and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body.
A major goal is to understand the rationale behind these successes and expand the
library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of
prokaryotic homologues of the human PepT1 and PepT2 transporters have shed import-
ant new insights into the mechanism of prodrug recognition. Here, I will review recent
developments in our understanding of ligand recognition and binding promiscuity within
the SLC15 family, and discuss current models for prodrug recognition.

Introduction
Solute carrier (SLC) transporters are important determinants of drug pharmacokinetics and are
increasingly being identified as important therapeutic targets in their own right [1,2]. Poor oral bio-
availability is one of the leading causes of failure in preclinical and clinical drug development and is
viewed as a major challenge in the pharmaceutical and biotechnology industry [3]. One approach to
address this challenge has been the development of prodrugs that target the intestinal peptide trans-
porter, PepT1 (SLC15A1), which is highly expressed in the brush border membrane of the small intes-
tine [4,5] (Figure 1A). The central idea is to modify existing drug molecules so that they resemble the
physiological peptides found in the small intestine and thereby co-opt the peptide transporters into
driving drug their uptake into the body. Modifying drugs to improve their pharmacokinetic properties
results in so-called prodrugs, which are generally bioreversible derivatives of the parent drug molecules
that undergo an enzymatic or chemical transformation in vivo to release the active parent drug [6].
Over the past 10 years, significant effort has been made in the design of novel prodrug molecules with
improved pharmacokinetic profiles [7,8]. One successful approach has been to use amino acids as pro-
moieties, as these confer several advantages on the parent compound, including increased water solu-
bility and the targeting of intestinal SLC transporters for oral drug delivery [9].
However, targeting specific SLC transporters for carrier mediated uptake is still a major challenge

and made more difficult due to the absence of structural and biochemical information on many SLC
transporters [10]. Two members of the SLC15 family of proton-coupled peptide transporters, PepT1
(SLC15A1) and PepT2 (SLC15A2) exhibit remarkable ligand promiscuity, and are known to transport
many different drug molecules, including angiotensin-converting enzyme inhibitors, beta-lactam
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antibiotics, an N-methyl-D-aspartate receptor antagonist PD-15874 and 5-aminolevulinic acid, currently being
evaluated as a treatment for bladder and oesophageal cancer [11–13]. In a quirk of physiological fate, these
transporters perform a virtuous cycle if targeted correctly, with PepT1 being expressed in the small intestine
and so able to effectively transport drugs into the blood stream, and PepT2 expressed in the kidney nephrons,
acting to retain the drugs and exclude their excretion in the urine. Additionally, PepT2 is also expressed in the
problematic blood-brain barrier, where it functions to control peptide transport into the central nervous system
[14]. It is perhaps not surprising, therefore, that prodrugs targeting both PepT1 and PepT2 show favourable
absorption and retention profiles in animal models of drug disposition and are being actively pursued as valid
targets for improving biopharmaceutical and pharmacokinetic profiles in humans [15–17].
A major breakthrough in carrier mediated prodrug development was the introduction of the antiviral valacy-

clovir in 1995, marketed under the trade names Valtrex and Zelitrex. Valacyclovir is a prodrug derivative of the
antiviral agent acyclovir, which is used in the treatment of herpes virus as well as in prophylaxis against the
acquisition of infection and in the suppression of latent disease [18]. This was soon followed by another
prodrug, valganciclovir in 2001, which is used to treat cytomegalovirus infections in patients with HIV/AIDS
or following organ transplant [19] and marketed under the trade name Valcyte. The oral bioavailability of both
valacyclovir and valganciclovir improved to >50% for the prodrug derivative, which was attributed to its recog-
nition and transport by intestinal peptide transporter PepT1 [20–24]. Intestinal transporters are often targeted
for prodrug transport, as they function to rapidly transport a variety of chemical different molecules into the
blood stream from the diet [8]. Within the repertoire of intestinal SLC transporters, PepT1 stands out as

Figure 1. Peptide transporters are targeted to improve drug transport into the body.

(A) The addition of an amino acid to a drug molecule results in the generation of a prodrug (1) that is able to utilise the intestinal proton-coupled

peptide transporter, PepT1, for active transport across the cell membrane and into the body (2). Once in the cytoplasm, the prodrug is acted upon

by enzymes that cleave the linker bond (3) and release the parent drug (4). (B) Crystal structure of a POT family transporter showing the N- and C-

terminal bundles, coloured green and blue, respectively. The central peptide binding site is shown in surface electrostatics (blue positive; red

negative). The transporter is shown in the inward-open conformation, with the peptide binding site closed to the extracellular side of the membrane

and open to the cytoplasm. Two gates control access to the binding site, which alternately open and close in response to peptide and proton

binding. (C) The peptide binding site contains several specificity pockets that recognise peptides and their associated side chains.
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displaying the most extreme promiscuity [25]. This characteristic, coupled with the similarity of both amino
acid side chains to functional groups of drug molecules and the size of di- and tri-peptides to small molecule
therapeutics [11], has resulted in PepT1 being a major focus of prodrug design strategies [26–28]. However, the
lack of a high-resolution 3D structure and associated pharmacophore model for drug binding has hampered
progress [29]. Recently, however, three co-crystal structures have been reported that show two different bacterial
peptide transporters in complex with two prodrug molecules and the peptide-based photodynamic therapy
agent, 5-aminolevulinc acid [30,31]. Bacterial peptide transporters have proven to be valid model systems with
which to understand the molecular basis of peptide recognition within the human transporters [32–34]. In the
context of several previous structural studies showing how this family of transporters recognise and transport
physiological peptides across the membrane, a picture now starts to emerge of a unified binding mechanism
that will likely form the basis for developing a more accurate pharmacophore model for drug recognition and
transport within the human SLC15 family [35].

SLC15 transporters belong to the larger POT family of
proton-coupled peptide transporters
PepT1 and PepT2 belong to the much larger POT or PTR family of proton-coupled oligopeptide transporters,
with homologues found in all domains of life except the archaea [36,37]. POT family transporters belong to the
major facilitator superfamily (MFS) of secondary active transporters, and use the proton electrochemical gradient
to drive the concentrative uptake of di- and tri-peptides into the cell [38]. Structurally they contain 12 transmem-
brane (TM) spanning alpha helices, which pack together into two six-helix bundles in the membrane [39]
(Figure 1B). A central ligand-binding site is located within the centre of the molecule, flanked on either side by
the two six-helix bundles. Access to the central binding site is controlled by two gates at the extracellular and
intracellular end of the central cavity [40]. The gates themselves are made up of four pairs of helices, two from
each of the six-helix bundles [41]. Several studies have determined that the gates are opened and closed in
response to both peptide and proton binding, which appear to regulate the formation and breakage of conserved
salt bridge interactions made between the gating helices [42–45]. A remarkable feature of POT family transporters
is the promiscuity of the binding site, with the upper estimate for the number of di and tri-peptide ligands that
can be recognised and transported in the several thousand [46]. Here structural studies have built on previous
electrophysiological and biochemical transport studies to reveal a highly charged binding site that exhibits a pro-
nounced dipolar character (Figure 1C) [4,40]. Crystal structures and biochemical assays have further revealed a
general model for how peptides are recognised [34,47–49], with important roles for conserved hydrophobic and
polar pockets. In brief, the amino and carboxy termini of the peptides are recognised by conserved acidic and
basic side chains within the binding site, with specificity provided by pockets with varying degrees of polar and
hydrophobic character, which accommodate the different side chains. Additionally, several POT transporters also
appear to recognise peptides in different orientations, with larger tri-peptides accommodated in vertical orienta-
tions and smaller di-peptides being held in a more horizontal orientation [47,50]. Interested readers are directed
to towards recent reviews that discuss these results and the mechanisms for proton-coupled peptide transport
[33,38]. Here, we wish to focus instead on how two recent structures of prodrug complexes have expanded our
understanding of drug recognition and pharmacophore development.

Rationalising prodrug recognition
Recently two crystal structures of different POT family transporters in complex with the antiviral prodrugs
valacyclovir and valganciclovir were reported [30,31]. These two prodrugs are very similar, except for the pres-
ence of a methoxy group in the ganciclovir parent molecule and both are current prescribed to treat cyto-
megalovirus infections. The crystal structures revealed the two molecules in the central peptide binding site,
but interestingly in different orientations (Figure 2A). In the valacyclovir complex, which was captured in the
POT family transporter from Staphylococcus hominis, PepTSh, the prodrug molecule is seen with the valine
moiety orientated towards the extracellular gate, with the amino terminus making both a hydrogen bond and
salt bridge interaction with Asn347 and Glu418 (PDB: 6GZ9) (Figure 2B). The latter residue being an import-
ant component of the proton coupling mechanism [43]. The ester group, which connects the valine amino acid
to the parent drug molecule, interacts via another hydrogen bond to one of two conserved tyrosine side chains,
Tyr41, which was identified as playing an important role in ligand specificity [43]. Valacyclovir also contains
an ether bond, which belongs to the parent drug molecule, which also interacts with a conserved tyrosine,
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Tyr79, again identified as playing an important role in ligand specificity within the wider SLC15/POT family
[38]. Of particular interest is how the parent drug molecule is accommodated. As mentioned, in the peptide
complexes we have observed that large side chains are accommodated in specificity pockets. Indeed, we sug-
gested a similar situation may occur for prodrug molecules, with the drug component being accommodated
within the hydrophobic pocket we observed previously [51]. However, in this structure, the acyclovir compo-
nent is accommodated through a pi–pi stacking interaction with another tyrosine, Tyr163. Interestingly this
tyrosine forms part of the PTR2_2 (FYxxINxG) motif on TM4 in PepTSh, which forms part of the intracellular
gate in POT family transporters. The function of the PTR2_2 motif is currently unclear, but it is highly con-
served in the bacterial POT family transporters [36] and the equivalent tyrosine in rabbit PepT1 is essential for
transport [52], suggesting it may play a similarly important role in drug transport in the human proteins.
The second structure of a prodrug complex was reported DtpA, from Escherichia coli, in complex with valgan-

ciclovir (PDB: 6GS4) [31]. Although very similar to valacyclovir, the valganciclovir molecule sits in a different
orientation, flipped almost 180° relative to valacyclovir (Figure 2A,C). In this structure, it is the nucleoside ana-
logue that interacts with the conserved glutamate on TM10, Glu396 in this protein, via amid nitrogen N16
(Figure 2E). The conserved asparagine on TM 8, Asn325, that was observed interacting with the amino group in
valacyclovir, is not interacting with the prodrug in DtpA, instead this side chain makes an interaction to Glu396.
Similarly, to the valacyclovir structure, the carbonyl group on the nucleoside moiety interacts with another con-
served asparagine, Asn 160 on TM4. However, in the PepTSh structure, the asparagine is different, and on TM10.

Figure 2. Comparison of the crystal structure of POT transporters in complex with prodrugs valacyclovir and

valganciclovir.

(A) Overlay of the two prodrugs in their respective transporters. Valacyclovir (yellow) was captured in PepTSh (blue), while

valganciclovir (green) was captured in DtpA (brown). Amino acid positions are labelled for PepTSh. (B) View of the binding site

for valacyclovir in PepTSh (PDB: 6GZ9). (C) View of the binding site for valganciclovir in DtpA (PDB: 6GS4). (D) Schematic view

of the binding interactions for valacyclovir. (E) Schematic view of the binding interactions for valganciclovir. Hydrogen bonds

are shown in dashed red lines, distances shown are in Ångstroms.
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Also dissimilar to the valacyclovir structure, the hydrogen bond interactions with valganciclovir cease at the add-
itional methoxy group of the parent drug, which interacts with a conserved tyrosine on TM1, Tyr38. The remain-
ing valine amino acid is accommodated in a hydrophobic pocket formed by Try71, Phe289, Ily399 and Leu402.
What could account for this difference in binding orientation? Interestingly in the DtpA structure, the region

around TM10 is structurally very different when compared with PepTSh (Figure 3). In DtpA the region towards
the cytoplasmic end of the helix forms a disordered region, before reforming the helix and connecting into
TM11. In comparison, in PepTSh TM10 forms a single helical structure, with no similar disordered loop. Given
the importance that TM10 and 11 play in regulating access to the central peptide binding site during transport
[41], it is highly likely this structural difference will impact how these proteins recognise peptides and prodrugs.
Indeed, substrate preferences between di- and tri-peptides are much more pronounced in bacterial members of
the POT family, with reports that the E. coli YjdL transporter preferring di-peptides over larger tri-peptides for
example [53]. It is possible that similar differences in helix structure within the different POT family transpor-
ters have resulted in altered substrate preferences and peptide binding orientations. Unfortunately, it appears
that sequence alone is insufficient to determine whether this structural characteristic is present in the mamma-
lian transporters, as the sequence of the proteins in this region is very similar between DtpA and PepTSh.

An emerging pharmacophore and peptide binding model
A key aim of research into the POT family of peptide transporters is to gain a working understanding of how
these proteins recognise and transport drug molecules across the cell membrane. An accurate pharmacophore
model, supported by cell and biochemical transport assays has been a key goal of the transport field [35]. After
several years of effort from multiple researchers around the world, we now have a selection of high-quality crystal
structures of POT family transporters in complex with different physiological peptide ligands (Table 1). These
include six complexes with di-peptides and three with tri-peptides. Given the reasonable sequence identity
between the mammalian and bacterial proteins, we can use these structures to gain important insights into how
the mammalian peptide transporters might recognise peptides and drug molecules in the human body.

Figure 3. Helix 10 in DtpA adopts an usual conformation compared with PepTSh.

Structural comparison of the TM10 and TM11 helices in DtpA and PepTSh. Helix 10 in DtpA adopts an unwound conformation

towards the cytoplasmic end of the helix, resulting in a pronounced displacement of the backbone relative to PepTSh.

A sequence alignment of DtpA with PepTSh and other bacterial POT family transporters is shown, revealing that the

structural difference cannot be predicted from the primary structure.
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Table 1. Crystal structures of all currently reported POT family peptide transporters

POT transporter Ligand Conformation PDB Literature

PepTSo2 (Shewanella oneidensis)

apo Inward-open 2XUT Newstead et al. [40]

apo Occluded state 4UVM Fowler et al. [41]

Alafosfalin Inward-open 4LEP Guettou et al. [56]

Ala-Tyr Inward-open 4TPH Guettou et al. [34]

Ala-Ala-Ala Inward-open 4TPJ

Ala-Tyr-Ala Inward-open 4TPG

apo Inward-open 6JI1 Nagamara et al. [57]

PepTSt (Streptococcus thermophilus)

apo Inward-open 4APS Solcan et al. [43]

apo Inward-open 4XNJ Huang et al. [58]

Ala-Phe Inward-open 4D2C Lyons et al. [47]

Ala-Ala-Ala Inward-open 4D2D

Ala-Phe Inward-open 5D58 Huang et al. [59]

apo Inward-open 5OXO Martinez-Molledo et al. [49]

apo — PO4 bound Occluded state 5OXP

Ala-Leu Inward-open 5OXL

Ala-Gln Inward-open 5OXK

Asp-Glu Inward-open 5OXM

Phe-Ala Inward-open 5OXN

Phe-Ala-Gln Inward-open 6GHJ Martinez-Molledo et al. [49]

HEPES Inward-open 6EIA

PepTSh (Staphylococcus hominis)

Cys-Gly-3M3SH Inward-open 6EXS Minhas et al. [50]

Valacyclovir Inward-open 6GZ9 Minhas and Newstead [30]

5-aminolevulinic acid Inward-open 6HZP

GkPOT (Geobacillus kaustophilus)

apo Inward-open 4IKV Doki et al. [48]

apo — E310Q Inward-open 4IKX

apo — E310Q SO4 bound Inward-open 4IKY

SO4 Inward-open 4IKW

Alafosfalin Inward-open 4IKZ

DtpA (Escherichia coli)

Valganciclovir Inward-open 6GS4 Ural-Blimke et al. [31]

MES Inward-open 6GS1

Glycine Inward-open 6GS7

YbgH (Escherichia coli)

apo Inward-open 4Q65 Zhao et al. [60]

PepT (Yersinia enterocolitica)

apo Inward-open 4W6V Boggavarapu et al. [61]

PepTXc (Xanthomonas campestris)

auto-inhibited Inward-open 6EI3 Parker et al. [42]

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).342

Biochemical Society Transactions (2020) 48 337–346
https://doi.org/10.1042/BST20180302

https://creativecommons.org/licenses/by/4.0/


Fortuitously all of the current crystal structures have been captured in essentially the same inward-facing con-
formation, with the binding site open to the cytoplasm and sealed on the outside of the cell. This enables us to
superimpose the structures and observe any similarities in how these different peptide transporters interact with
their ligands. Indeed, we observe several commonalities in the way these proteins recognise their peptide ligands
and the prodrug valacyclovir (Figure 4A,B). It appears the amino terminus of the peptides and valine moiety of
the prodrug interact with a conserved asparagine on TM10, Asn347. Interestingly, the carboxy termini of the pep-
tides also cluster in one region of the binding site, interacting with the two conserved tyrosines on TM1 and 2,
Tyr41 and 79, respectively. In the valacyclovir complex, it is these tyrosines that interact with the ester and ether
bonds of the prodrug (Figure 2B,D). Tyrosines are well known to play important roles in promiscuous binding
sites in proteins, and are often concentrated in the CDR3 loop of antibodies [54]. It is likely that they play a
similar role in increasing the repertoire of interactions available within the binding site of POT family transpor-
ters. Supporting this hypothesis, we observe the acyclovir drug group, which is a nucleoside analogue, accommo-
dated through a pi–pi stacking interacting with another tyrosine, Tyr163 on TM4. The last common interaction
point we observe is with the carbonyl group, which makes a conserved interaction with Asn167, also on TM4.
Taken together, we propose an initial binding model for how SLC15 family transporters interact with amino acid-

based prodrug molecules (Figure 4C,D). Based on the crystal structures of POT family transporters, we proposed
that peptides interact primarily through their amino and carboxy termini, which make salt bridge interactions to the
conserved glutamate on TM10 and arginine on TM1, respectively. Our valacyclovir structure reveals that the amino
terminus of the valine moiety of the prodrug does indeed interact with the conserved glutamate, however, we did
not observe an interaction with the arginine on TM1, possibly due to the absence of a carboxy group in the

Figure 4. Valacyclovir adopts a similar binding position to physiological peptide ligands.

(A) Structural overlay of the valacyclovir structure onto PepTSt (4D2B) and in complex with peptides Ala-Phe (PDB:4D2C),

Ala-Gln (5OXK), Asp-Glu (5OXM), and tri-alanine (PDB:4D2D). Common points of contact are highlighted. (B) View rotated 90°

relative to (A), showing the involvement of the PTR2_2 tyrosine.
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prodrug, or maybe steric restrictions resulting from accommodating the larger drug group in the binding site.
However, we did observe interactions conserved interactions with a tyrosine on TM1, which recognises the peptide
bond in peptides and the ester group in valacyclovir, and an asparagine on TM4, which recognises the carbonyl
group of the peptide bond in peptides and the equivalent carbonyl group in valacyclovir. In many ways, this model
supports earlier suggestions that addition of the amino acid to drug molecules enables the prodrug to dock into the
binding site, whereupon the promiscuous nature of the site, generated from the increased concentration of tyrosine
side chains, accommodates the remaining drug group [51]. This model also sits in good agreement with an earlier
binding model generated for the rabbit peptide transporter, PepT1, which also noted the importance of the interac-
tions to the amino group of the peptide to the overall affinity of the ligands for the transporter [4,55].
This model, however, is difficult to reconcile with the valganciclovir structure obtained for DtpA, which as

discussed above adopts a very different orientation in this transporter. However, we have seen in other POT
family transporters that part of the mechanism by which these proteins accommodate such a large repertoire of
ligands is through the use of multiple binding modes within the same site [47,49]. It may well be the case that
slight changes to the drug molecules enable a different binding orientation, or that changes in the structure of
the binding site, as observed in TM10 in DtpA, enable different sets of ligands to be accommodated. It should
be remembered that peptide transporters function to transport peptides en masse into the cell; they have
evolved as bulk carriers, not selective uptake systems. Specificity has been sacrificed for efficiency and promis-
cuity. The different binding orientations observed between valacyclovir and valganciclovir may be indicating
that multiple pharmacophore models exist for PepT1 and PepT2.

Future questions
The era of precision medicine is rapidly approaching, with advances in genomics and metabolomics enabling a
much greater understanding of how human beings metabolise and respond to different drug regimens.
Understanding the role and regulation of SLC transporters in the human body is a major plank of this worldwide
endeavour. The ability to co-opt intestinal and renal drug transporters to improve drug absorption and retention
has been a success to date with antivirals and antineoplastic agents, but is ultimately hampered by a lack of high-
resolution structural, biochemical and biophysical data on how these systems interact with drug molecules. The
structures presented here sound the starting gun towards a unified pharmacophore model to understand how best
to target PepT1 and PepT2 for improved drug delivery and reduced cytotoxicity in the human body.

Perspectives
• SLC proteins are responsible for transporting drugs into and throughout the human body;

they play a major role in drug pharmacokinetics.

• The SLC15 family of peptide transporters have been targeted to improve the oral bioavailabil-
ity and renal retention of antiviral prodrugs valacyclovir and valganciclovir.

• Recent crystal structures of bacterial SLC15 homologues in complex with antiviral prodrugs
have revealed how these two drug molecules are recognised, paving the way for more tar-
geted prodrug design.
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