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Abstract

Immunometabolism, which concerns the interplay between metabolism and the immune

system, is increasingly recognized as a potential source of novel drug targets and biomark-

ers. In this context, the use of metabolomics to identify metabolic characteristics associated

with specific functional immune response processes is of value. Currently, there is a lack of

tools to determine known associations between metabolites and immune processes. Con-

sequently, interpretation of metabolites in metabolomics studies in terms of their role in the

immune system, or selection of the most relevant metabolite classes to include in metabolo-

mics studies, is challenging. Here, we describe the Immunometabolic Atlas (IMA), a public

web application and library of R functions to infer immune processes associated with spe-

cific metabolites and vice versa. The IMA derives metabolite-immune process associations

utilizing a protein-metabolite network analysis algorithm that associates immune system-

associated annotated proteins in Gene Ontology to metabolites. We evaluated IMA inferred

metabolite-immune system associations using a text mining strategy, identifying substantial

overlap, but also demonstrating a significant chemical space of immune system-associated

metabolites that should be confirmed experimentally. Overall, the IMA facilitates the inter-

pretation and design of immunometabolomics studies by the association of metabolites to

specific immune processes.

Introduction

Immunometabolism, or the interplay of immunology and metabolism, has received increasing

interest because of its role in the function and regulation of immune system processes in health

and disease. Metabolites with e.g., pro- or anti-inflammatory functions may be of interest as

biomarkers or drug targets for inflammation and immune system-associated pathologies such

as infection, cancer, and various auto-immune diseases [1–3]. Significant knowledge gaps

related to the relationship between metabolism and immune function remain to be elucidated.

To this end, metabolomics technologies can facilitate the identification and quantification of

metabolites in relation to the immune system in experimental models and clinical studies.
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For biochemical and functional interpretation of metabolomics study results, different computa-

tional tools can be used: biochemical pathways analysis can be executed using tools such as Meta-

boAnalyst or KEGG, and for functional analysis, STITCH can be employed [4–6]. However,

inferring the relationship of metabolites with immune system processes remains challenging. In

contrast, for the analysis of genes, gene expression, and proteins, such biological interpretation is

straightforward through the use of high-quality annotated ontologies such as Gene Ontology [7, 8].

For hypothesis-driven metabolomics studies that require absolute quantification of mea-

sured metabolites, targeted metabolomics methods are preferred over untargeted metabolo-

mics methods. However, targeted mass spectrometry-based metabolomics studies measure by

design only a subset of metabolites and metabolite classes at once. Guidance in the selection of

the most relevant subset of metabolites for the immune process of interest is therefore of rele-

vance. However, tools to facilitate the design of targeted metabolomics studies by pre-selection

of metabolites of interest are lacking.

To address the current hurdles of hypothesis generation and biological interpretation of

metabolomics studies, we developed the Immunometabolic Atlas (IMA). The IMA enables

inference of immune system associated functions, and vice versa, to determine relevant metab-

olites with specific immune system processes. We infer metabolite-immune process associa-

tions utilizing a protein-metabolite network analysis algorithm that associates immune

system-associated annotated proteins (Fig 1), leveraging protein-metabolite interaction data-

bases [9, 10] and protein annotations of immune system processes in Gene Ontology (GO).

We then characterize the global metabolite-immune process coverage and perform validation

through text mining-derived immune system associations. The application of the IMA is dem-

onstrated in a case study and is made available as an R package and public web application.

Methods

Assembly of immune process-metabolite interaction network

We constructed a database that contains associations between specific immune process terms,

proteins, and metabolites through the integration of publicly available databases (Fig 2A).

Fig 1. A conceptual overview of the Immunometabolic Atlas (IMA). The IMA provides associations between metabolites and immune processes of interest through the

generation and evaluation of a protein-metabolite interaction network.

https://doi.org/10.1371/journal.pone.0268408.g001
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Through the integration of these resources, we constructed an interaction network to associate

metabolites with immune processes. In the following paragraphs, the development of the

immune process-metabolite interaction network is described.

Immune processes. Immune processes were retrieved as GO terms from Gene Ontology.

The associated gene names that were descendants of “Immune System Process” (GO:0002376)

were acquired using the EBI QuickGo application programming interface (API, version 2021-

05-24) [7, 8, 11].

Proteins and protein-immune process associations. Human proteins (Swiss-Prot) were

retrieved from the UniProt database [12]. The requested UniProt data included: entry (Uni-

Prot identifiers), protein name, cofactors, EC number, transporter protein (TCDB), Ensembl

transcript, and GO immune processes. The reference to GO immune processes in the UniProt

data was used to identify immune system-related proteins.

Metabolites. Metabolite names and associated metadata were obtained from the Human

Metabolome Database (HMDB, version 4.0). We only included metabolites that were known

to either have a biological role and/or were part of a naturally occurring process to exclude any

synthetic drugs. We also excluded any inorganic compounds. The retrieved HMDB data

included: name, class, superclass, accession (HMDB identifiers), ChEBI ID, UniProt ID, bios-

pecimen, cellular locations, and metabolic pathways.

Fig 2. Overview of (A) information and associations retrieved from available databases, and (B) the study flow to build protein-metabolite interaction

networks to associate metabolites and immune processes of interest. First, the proteins that are associated with the immune processes of interest are added to

the network. Then, protein-protein, protein-metabolite, and metabolite-metabolite interactions are added to the network to generate the final interaction

network for the immune processes of interest.

https://doi.org/10.1371/journal.pone.0268408.g002
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Protein-protein interactions. Protein-protein interactions were obtained from STRING’s

functional protein association networks version 11.0 [9]. Ensembl transcripts from the Uni-

Prot data were converted to Ensembl Protein IDs using the Ensembl API [13]. Subsequently,

STRING was parsed using these IDs to extract protein-protein interactions.

Metabolite-protein interactions. The UniProt identifiers in the HMDB data were used to

connect the metabolites to the proteins in the UniProt data, obtaining metabolite-protein

interactions. Proteins without immune system-related GO terms were excluded from further

analysis.

Metabolite-metabolite interactions. Metabolite-metabolite interactions for the obtained

metabolites from HMDB were retrieved using the Rhea-Annotated reactions database

(RheaDB, release 118) [10]. We cross-referenced HMDB with ChEBI to extract interactions

stored in Rhea. We applied an all-versus-all method, where each reactant-product combina-

tion results in an individual interaction.

Building the interaction network. To construct the interaction network for each immune

process extracted from GO, first, proteins involved in the immune processes were identified.

Then, protein-metabolite, protein-protein, and metabolite-metabolite interactions were added

to the network. To build an interaction network for metabolites of interest, proteins associated

with the metabolites of interest were identified. Related protein-metabolite, protein-protein,

and metabolite-metabolite interactions were then added to the network (Fig 2B). For metabo-

lites with only metabolite-metabolite interactions, no interaction network can be constructed,

because at least one protein-metabolite interaction is necessary to inherit immune processes.

Inheritance of immune processes by metabolites. To associate metabolites to immune

processes, an inheritance methodology was applied (Fig 3B). In the default, first-order inheri-

tance method, metabolites inherit the immune processes of the directly neighboring proteins

only. For second-order and third-order inheritance, metabolites inherit both the immune pro-

cesses of their direct neighboring proteins and the first neighbors of that protein, two or three

interaction steps away, respectively. The preferred inheritance order can be defined by the

user.

Evaluation of network-inferred metabolite and immune processes

Overrepresentation analysis. We test for the overrepresentation of metabolites and

immune processes in the interaction network using Fisher’s exact test with multiple testing

correction, using the IMA metabolites and immune processes as background. Based on this,

we rank by p-value to identify the most significant metabolites or immune processes associated

with either an immune process or metabolite set. The p-value for Fisher’s exact test was com-

puted as follows (Eq 1):

p � value Fisher0s exact test ¼
ðaþ bÞ!ðcþ dÞ!ða þ cÞ!ðbþ dÞ!

a!b!c!d!ða þ bþ cþ dÞ!
ð1Þ

Here, for metabolite-based overrepresentation analysis, a is the number of associations of a

specific metabolite to a specific immune process in the interaction network (via multiple pro-

teins), b is the number of associations of other immune processes to the specific metabolite in

the network, c is the total number of associations of the specific metabolite to the specific

immune process in the database minus the number of associations of the specific metabolite to

the specific immune process in the network, and d is the total number of immune process

associations to the specific metabolite in the database minus the number of associations of

other immune processes to the specific metabolite in the network. For immune process-based

overrepresentation analysis, a is the number of appearances of a specific immune process in
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the interaction network, b is the number of the immune process appearances in the IMA data-

base, c is the number of other immune processes in the network, and d is the number of other

immune processes appearances in the IMA database.

Metabolite centrality. We calculated metabolite centrality to determine the position of a

metabolite in the interaction network. A metabolite could be on the edge of a network with

minimal interactions, in the center of a network with a lot of interactions, or somewhere in

between. The centrality was calculated as harmonic closeness, which is a distance-based cen-

trality metric that is suitable for disconnected graphs, in contrast to classical closeness. A high

harmonic closeness value indicates a central position of the metabolite in the network. For

node i, the harmonic closeness is calculated by taking the sum of all reciprocals of distance d to

other node j (Eq 2). The centrality was determined for each metabolite in the network sepa-

rately.

Harmonic closeness ið Þ
X

j6¼i

1

di;j
ð2Þ

Metabolite precision. Metabolite precision was computed to quantify how specific a

metabolite is for a certain immune process. The precision score was computed for each metab-

olite-immune process association to allow discrimination between metabolites that are con-

tributing either to a single process or to multiple processes and between common and rare

metabolites that have comparable centrality scores. The precision of a metabolite for an

immune process of interest is determined by the ratio of the metabolite associations with the

process of interest, compared to all its associations remaining in the IMA database (Eq 3). A

high metabolite precision value indicates that most of the immune process associations the

metabolite could have, according to the IMA database, are present in the immune process net-

work.

Precision score i; jð Þ ¼
Ni;j

Ni � Vj
ð3Þ

Here, for metabolite i in process j, with N being the number of interacting nodes of metabo-

lite i and V the number of nodes in process j. The precision score is corrected by the number

of nodes in the process.

Evaluation of IMA metabolite-immune process association performance

through text mining

To evaluate the evidence available for metabolite-immune process associations identified by

the IMA, an external validation dataset was created using text mining. We selected papers

including one or more metabolites and immune processes that were also present in the IMA

database using the EuropePMC API on 6 March 2021 [14]. We included EuropePMC-listed

journal articles in which a metabolite and immune process term from the IMA database was

Fig 3. Overview of the IMA network-based interaction analysis. (A) Flowchart of the data analysis of an interaction network using a first-order inheritance strategy.

(B) The metabolite of interest can inherit immune processes directly (1st order, default) or indirectly (2nd or 3rd order) from neighboring proteins based on the order

of inheritance chosen by the user. (C) The centrality of a protein or metabolite in a graphical network is determined using the harmonic closeness score. This

topology-based score is the highest for metabolites with multiple connections in a central point in the network. (D) The precision of a metabolite for a process of

interest is determined by the ratio of its interactions within the process compared to all its interactions and represents the commitment of a metabolite to the process

of interest. (E) The overrepresentation of an immune process (GO term) in an interaction network is evaluated using a Fisher’s Exact Test with FDR multiple testing

correction. The resulting significance levels can be used to rank immune processes in a network.

https://doi.org/10.1371/journal.pone.0268408.g003
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detected in the abstract, methods, results, supplement, figures, and/or tables. Introduction and

discussion sections were excluded since comparisons to results of other studies are often made

in these sections, possibly leading to biased text mining results. Also, papers were only

included if they were related to humans.

The text mining resulted in a list of PubMed identifiers (PMIDs) which were used to find

associations between metabolites and immune processes. These associations were included in

the quantitative text mining validation dataset. Metabolite-immune process associations with

only one occurrence in the text mining dataset were removed to limit false positives. We

excluded the superclass lipids and lipid-like molecules as defined within HMDB from the vali-

dation because the complex nomenclature of these metabolites made text mining unfeasible.

We characterized the IMA database by cross-referencing metabolites and processes with

the text mining database. Metabolites were grouped according to their presence or absence in

the IMA database. Furthermore, we evaluated the quality of the IMA database by calculating

the specificity, sensitivity, precision, accuracy, and F1-score (Eqs 4–8). The F1-score focuses on

the positive predictions and leaves out the True Negatives. The F1-score represents the perfor-

mance of the IMA better than other evaluation measures because it evaluates how well associa-

tions are made instead of how well associations are excluded.

Specificity ¼
True Negatives

True Negativesþ False Positives
ð4Þ

Sensitivity ¼
True Positives

True Positivesþ False Negatives
ð5Þ

Precision ¼
True Positives

True Positivesþ False Positives
ð6Þ

Accuracy ¼
True Negativesþ True Positives

True Negativesþ True Positivesþ False Negativesþ False Positives
ð7Þ

F1 � score ¼
True Positives

True Positivesþ 1

2
False Positivesþ False Negativesð Þ

ð8Þ

R package and Shiny application

We implemented the IMA in the R package IMatlas, which facilitates users to create various

graph-based analyses. The package includes an interactive R shiny application that allows for a

user-friendly interpretation of our interaction database. The app adds extensions that are use-

ful for additional analyses, including metadata from HMDB and UniProt, and allows networks

to be built using either one or multiple immune processes, or by one or multiple metabolites.

If one or multiple immune processes are used as input, all connected metabolites that are in

the Immunometabolic Atlas database will be included in the graphical network. The app also

features two additional versions of interaction datasets, which allows users to determine the

strictness of the app. These datasets include proteins that are unrelated to the immune system

but do have an interaction with an immune system-related protein. The first dataset includes

neighbors of immune system-related proteins, whereas the second dataset includes the second

neighbors of an immune system-related protein. The package and all other scripts used for

analysis are available in our Github repository https://github.com/vanhasseltlab/IMatlas.
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Results

Development of the IMA database and metabolite-immune process

algorithm

The IMA database includes all child processes of the immune system process (GO:0002376)

and contains 97 525 metabolites, 3 101 proteins, 1 712 immune processes, 664 metabolite-

metabolite interactions, 172 291 protein-metabolite interactions, and 411 286 protein-protein

interactions (S1 Table).

We associated immune processes and metabolites in a stepwise process (Fig 3). Immune

processes were assigned to metabolites using a first, second, or third-order inheritance strategy

(Fig 3B). By default, first-order inheritance of immune processes is used, in which metabolites

only inherit immune processes from their directly interacting protein. To determine if a metab-

olite of interest plays a central role in the metabolite-immune process interaction network, a

centrality score was calculated (Fig 3C). Metabolites with a high centrality score are typically

located in a central point in the network and have multiple interactions with surrounding

metabolites and proteins, while metabolites with a low centrality score are less closely connected

to other metabolites or proteins in the network and are typically located towards the edges of a

network. To indicate how specific a metabolite is for a certain immune process, the precision

score was calculated (Fig 3D). The precision of a metabolite for an immune process of interest

is determined by the ratio of the metabolite associations with the process of interest, compared

with all its associations remaining in the database. Metabolites with a high precision score are

typically committed to a smaller number of immune processes. To rank metabolites and

immune processes in the interaction network, we calculated a p-value that signifies the overrep-

resentation of the metabolites and immune processes in the network in comparison to the ones

in the database using Fisher’s exact test (Fig 3E). This resulted in a performance table with sig-

nificance values for every metabolite and immune process within the network. The significance

value for overrepresentation of the immune process for a specific metabolite is indicative of the

strength of metabolite-immune process association. The network-based significance value that

indicates the overrepresentation of an immune process within the entire network indicates the

importance of the collection of metabolites for the immune process. In summary, the metabo-

lites and immune processes in the network are ranked based on their metabolite centrality, pre-

cision and p-value, and the immune process p-value (Fig 3A).

Overview of metabolism-immune response associations

To provide an overview of IMA-inferred metabolite-immune response process associations,

we categorized GO terms according to main high-level immune response processes as defined

in the standard textbook Janeway’s Immunobiology [15]. We determined for each of these

immune response processes the biochemical metabolite superclasses of identified metabolites

(Fig 4). We found significant differences in metabolite classes associated with unique immune

response processes (Fig 4A). The average number of immune processes per protein is in the

same order of magnitude for all superclasses except for benzenoids (S2 Table). Metabolites of

the superclass of lipids and lipid-like molecules, here referred to as ‘lipids’, were abundantly

present with 90 280 occurrences (92.6%) but interacted with a relatively small portion of pro-

teins (5.1%). Excluding lipids from the analysis shows a lower average number of metabolites

that were associated with a specific immune process. There were 18,995 unique metabolites

associated with the main immune processes when lipids were included and 342 when they

were excluded. A large variation of the number of metabolites associated with immune pro-

cesses was present (Fig 4B). Excluding lipids results in a shift from many metabolites to smaller
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numbers of metabolites that are associated with an immune process. The exclusion of the

superclass of lipids and lipid-like molecules from these results excludes several metabolite clas-

ses including fatty acyls, glycero(phospho)lipids, and prenol lipids.

Validation of the metabolite-immune process associations

The methodology was validated by comparing the results from an interaction analysis of all

metabolites and immune processes in the IMA database to metabolite-immune process associ-

ations found in literature for the same metabolites and immune processes. The immune sys-

tem process interaction network was built using 1st order immune process inheritance and

resulted in 432 metabolites associated with 767 immune processes.

Associations of metabolites and immune processes related to the immune system process in lit-

erature were collected using a text mining approach. We identified 1 046 metabolites that were

Fig 4. Overview of immune process and metabolite associations. (A) Distribution of the biochemical metabolite classes identified for common

immune processes in the IMA classified according to the standard textbook Janeway’s Immunobiology, either including (left) or excluding (right)

lipids. (B) Distribution of the number of metabolites associated with specific immune processes inferred from the IMA, using first-order

inheritance, either for excluding lipids (orange) or including all metabolites including lipids (blue).

https://doi.org/10.1371/journal.pone.0268408.g004
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associated with 565 immune system processes (S3 Table). The overlap between associations found

by the IMA and found in literature was 31.5% (290 metabolites in 398 processes, Fig 5).

Of all associations found in text mining and by the IMA, 58.7% of the metabolites involved

in metabolite-immune process associations were only found in literature and not by the IMA

(n = 614 metabolites). Of these, 398 metabolites were lacking any interaction according to the

IMA database and therefore remained undetected using the IMA methodology. The 216

remaining metabolites with known interactions could be classified as having either only

metabolite-metabolite interactions and/or protein-protein interactions. Metabolites that were

only interacting with other metabolites, and not with proteins, could not be detected because

immune processes are only inherited through proteins in the current IMA methodology.

Metabolites that were only interacting with proteins that were not in the immune system pro-

cess (according to GO), were also not included in the IMA database. Finally, 13.6% of the

metabolites that inherited an immune system process were only found using the IMA and not

in literature (n = 142). Of these, 55 metabolites were identified in literature but were lacking a

link to the immune system. The remaining 87 metabolites were not found in any immune-

related studies through text mining.

The metabolite-immune process associations found in literature were considered as the

gold standard for the evaluation of the performance of different orders of immune process

inheritance. By default, the inheritance of processes was done through direct protein interac-

tions (first-order), but inheritance through indirect protein interactions was also evaluated

(second and third-order). Therefore, specificity, sensitivity, precision, F1-score, and accuracy

were calculated (Table 1). All methods of inheritance yielded high specificity and accuracy

Fig 5. Comparison of metabolites in IMA database and text mining dataset for validation. (A) Text mining was used to identify co-occurrences of GO-terms and

metabolites present in the IMA database. Metabolites obtained from co-occurrences were compared with associations found using IMA. (B) Sankey diagram of

metabolites found in both IMA and text mining. 290 of 1 046 metabolites found are present in both IMA and text mining datasets. The portion of non-overlapping

metabolites can be explained based on exclusion criteria for the atlas. 614 metabolites were only found in literature, of which 398 have no known interaction to any

proteins or metabolites in the IMA. There were interactions found of the metabolites to other metabolites (n = 81), metabolites and proteins (42) or proteins (160), but

these did not have an association to an immune process in the IMA database. Of the 142 metabolites that were only found in the atlas, 87 could not be found in literature

and 55 were found in literature but missed any connection to an immune process.

https://doi.org/10.1371/journal.pone.0268408.g005

Table 1. Absolute performance measure results of first, second, and third-order inheritance.

Order of inheritance Specificity Sensitivity Precision Accuracy F1-score

First order 0.99 0.11 0.29 0.97 0.16

Second order 0.85 0.43 0.07 0.84 0.12

Third order 0.73 0.49 0.04 0.73 0.08

https://doi.org/10.1371/journal.pone.0268408.t001
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values, indicating that the IMA is strict in linking processes to metabolites. Relatively low val-

ues for precision and sensitivity were reported, indicating discrepancies between the associa-

tions found in literature and made by the IMA. Comparing direct- and indirect inheritance

showed a higher precision for direct inheritance, while indirect inheritance showed higher sen-

sitivity. Since the IMA gives high numbers of True Negatives, also the F1-score, which does not

take the number of true negatives into account, was calculated to quantify the difference

between the methods of inheritance. The F1-score favoured direct inheritance.

Identification of possible biomarkers using network-based interaction

analysis

To identify which metabolites could be of interest for a specific immune process, we reported

the position of a metabolite in the network (centrality) and the exclusivity of the metabolite for

a certain immune process (precision, Fig 6B and 6C). Metabolites with high centrality and pre-

cision scores might be of interest as biomarkers for the associated immune process. Therefore,

all metabolite-immune process associations made by the IMA were analyzed on centrality and

precision. Only statistically significant metabolite-immune process associations after FDR

Fig 6. Precision-centrality plot of the significant metabolite-immune process associations in the IMA excluding lipids. (A) For each metabolite in each

immune process, the centrality and precision were calculated and normalized to the network size. Metabolites with high centrality and precision scores might

be of interest as biomarkers for the associated immune process (B) The centrality represents the position of a metabolite in the network. (C) The precision

represents the exclusivity of the metabolite for a certain immune process.

https://doi.org/10.1371/journal.pone.0268408.g006
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multiple testing correction were included in the results (p< 0.05, Fig 6A, S4 Table). To iden-

tify specific metabolic biomarkers, we selected metabolite-immune process associations that

were above the set threshold of the mean plus two standard deviations for both centrality and

precision. After analysis of the associations in the current IMA association dataset, 48 metabo-

lites were found to be of interest as a potential biomarker in 47 immune processes. Several

metabolites were found to be involved in antigen processing via MHC class 1B, including

sphingosine, sphinganine, and dihydroceramide. Furthermore, we identified strong relation-

ships between several pyruvic acids and positive regulation of prostaglandin secretion.

Positive regulation of T cell-mediated immunity

As an example, the interplay between metabolites and proteins for the immune process of pos-

itive regulation of T cell-mediated immunity is demonstrated (GO:0002711, Fig 7). The inter-

action network that was built for this process shows one big cluster of proteins and

metabolites, and some unconnected proteins (not shown). Unconnected proteins may interact

with non-immune-related proteins which are not considered in the current IMA methodology

and indicate the current knowledge gap. Of the 8 metabolites in the network, 5 were found to

be significant for the immune process (p<0.05, Table 2). These molecules are highly related as

they interact with the same proteins. This results in the same centrality value for each mole-

cule; however, the precision varies as they can interact with proteins in other processes. The

exception here is 3-Dehydrospinganine, which only interacts with proteins involved in positive

regulation of T cell-mediated immunity, resulting in a precision of 1.00.

Several significant metabolites form a primary component for sphingolipids. Sphingolipids

are membrane lipids that function as ligands for sphingosine-1-phosphate receptors (S1PR)

and are especially associated with the determination of T cell phenotypes [16]. Previous studies

have shown that deficiency in S1PR can cause failure in mature T cells leaving the thymus

Fig 7. The interaction network of positive regulation of T cell-mediated immunity (GO:0002711) shows the interplay between metabolites (green) and

proteins (orange).

https://doi.org/10.1371/journal.pone.0268408.g007
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[17]. Finally, it has been shown to be an important factor for coordinating adaptive immune

responses through the S1P1-Akt-mTOR pathway [18].

IMatlas R package and R shiny application

We have implemented the IMA as an R package and R shiny module. The IMA supports sev-

eral search modes to facilitate the construction of networks, using either immune processes or

metabolites as input (Fig 8). An interaction network is built and evaluation metrics such as

metabolite centrality and p-value are calculated. The IMA supports bulk input of HMDB iden-

tifiers or GO terms to produce graphs that can be adjusted using several thresholds using the

settings panel. For example, confidence thresholds used by STRING for protein-protein inter-

actions can be increased to include only very well-curated interactions. Other features include

generating neighborhood graphs of a given set of metabolites and the ability to search using

(super)classes and/or biochemical pathways. In summary, the application contains useful fea-

tures to construct network graphs for non-programmatic applications.

Discussion

We describe the development of the Immunometabolic Atlas (IMA), which leverages protein-

metabolite interaction analysis to identify metabolites associated with immune processes, and

vice versa, and which can be used to interpret and design metabolomics studies.

The IMA is based on metabolites included on the Human Metabolome Database (HMDB),

which is a large, comprehensive, and well-annotated database of metabolites found in humans,

and is more complete than alternative human metabolite databases [19]. HMDB contains a

large number of lipid metabolites, which were found to be associated with many immune pro-

cesses. Lipids are highly biologically relevant in various biological functions as is also exten-

sively studied within the field of lipidomics [20, 21]. In this study, the superclass of lipids and

lipid-like molecules was excluded from the validation and the example shown because the

complex nomenclature of these metabolites made text mining unfeasible. However, inclusion

of the superclass lipids and lipid-like molecules is available for researchers using the IMA. Not

all lipids were removed by excluding this superclass. For example, sphingolipids were included

in the example in Fig 7. Depending on the method of classification that is used, some lipid

metabolites will be classified as such, and some will be classified further into other categories.

The method of classification of metabolites by HMDB could be debated but is considered to be

out of the scope of this study.

Association between metabolites and immune processes was based on the inferred protein-

metabolite network, where proteins were associated with GO-associated immune processes

Table 2. Metabolites associated with positive regulation of T cell-mediated immunity. Fisher’s exact test with FDR multiple testing correction was used to calculate p-

values, while centrality and precision values are indicators of the importance of the metabolites in this process. The metabolite number in the table corresponds to the num-

ber in the interaction network in Fig 7.

Metabolite Metabolite superclass Centrality Precision P-value Metabolite number in network

3-Dehydrosphinganine Organic oxygen compounds 0.30 0.63 < 0.001 6

Phytosphingosine Organic nitrogen compounds 0.30 0.56 < 0.001 7

Sphinganine Organic nitrogen compounds 0.30 0.45 < 0.001 2

Sphingosine Organic nitrogen compounds 0.30 0.39 < 0.001 1

Dihydroceramide Organic acids and derivatives 0.30 0.31 < 0.001 8

S-Adenosylmethionine Nucleosides, nucleotides, and analogues 0.22 0.07 1.00 4

ADP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 5

ATP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 3

https://doi.org/10.1371/journal.pone.0268408.t002
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either through direct or higher-order inheritance based on protein-protein interactions pres-

ent. The rationale for this strategy is based on the assumption that metabolites and proteins

commonly interact: e.g., as enzyme-substrate or co-factor [22]. Of course, the majority of pro-

teins are not limited to a single biological process. Evaluation of association strength of metab-

olite-immune processes through classical over-representation analysis is important to identify

those metabolites or immune processes of primary interest [23]. Of note, the absolute p-value

obtained from the over-representation analysis should be interpreted with caution because in

the IMA not the whole metabolome for all human biological processes are used as a back-

ground, but only the metabolites and immune system processes in the IMA database.

To further interpret metabolites for their value as specific and selective biomarkers or drug

targets we have included computation of precision and centrality network-structure inferred

metrics. Centrality concerns the position of a metabolite in a network and has been proposed

before [24]. The precision score assesses how specific the metabolite is for the associated pro-

cess within the network. These metrics may help to identify metabolites of increased interest

Fig 8. IMA R shiny application concept. (A) The application allows users to enter processes, metabolites, proteins, or identifiers from a list to produce networks and

calculate statistics. This flexibility of input possibilities enables to obtain metabolites from immune processes and vice versa. (B) Several visualizations have been included

to visualize associations between metabolites and processes. Here, we zoomed in on the connected part of the interaction network of T cell-mediated immunity. (C, D)

Example outputs for metabolites associated with positive regulation of T cell-mediated immunity including centrality, precision, and p-values.

https://doi.org/10.1371/journal.pone.0268408.g008
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as a biomarker for the specific immune process, e.g. because they are more likely to have a spe-

cific function, as inferred from the underlying network structure.

We evaluated immune response-metabolite associations through a comparison of literature

text mining derived metabolite-immune process associations. We found that a substantial part

(67%) of the IMA associations overlapped with the associations found in literature. Overall,

the text mining approach identified a two times higher number of associations than the IMA.

We expect that this is related to the nature of methodology used to identify associations,

because of its intrinsic high likelihood of identifying false-positive associations, which we

attempted to reduce through applying several filtering steps. Ultimately we found that the

IMA yields a specificity of 73–99% and sensitivity of 11–49% depending on the inheritance

method used, which indicates our method shows sufficient performance to be used as a tool

for hypothesis generation or to guide metabolomics study design.

A similar tool for the functional interpretation of metabolomics study results is STITCH

[6], which is a database incorporating known and predicted interactions between metabolites

and proteins. STITCH assigns processes to metabolites based on direct interactions and a clus-

tering-based algorithm. STITCH does not include topological measurements, whereas in the

IMA this is applied for easier interpretation of larger networks. In contrast to the IMA, associa-

tions between GO biological processes and metabolites can only be made in the direction of

metabolites to processes, but not from (immune) processes to metabolites.

Limitations of the current IMA include the lack of directionality of associations in the pro-

tein-metabolite network, which could help in identifying biochemical interactions that are

most relevant and plausible. In addition, incorporation of data on cell-type-specific as well as

(sub-) cellular locations of metabolites or metabolite-protein associations may help in refining

metabolite-immune system associations inferred, in particular, because of the complex and

multi-cellular nature of the immune response.

We conclude that the developed IMA can be a relevant tool to guide researchers in the field of

immunometabolomics in the interpretation of immune-metabolomics data from experiments or

clinical studies and to guide the design of prospective metabolomics studies in the field of immunol-

ogy, which we facilitate by making our tool available both as R package and user-friendly web-appli-

cation. Finally, we expect that the conceptual approach and developed algorithms for inferring

metabolite-immune process associations through protein-metabolite interaction networks can be

expanded towards complete biological ontologies, and is not just limited to immune processes.
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