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Abstract

Motivation: The rapid growth in of electronic medical records provide immense potential to researchers, but are
often silo-ed at separate hospitals. As a result, federated networks have arisen, which allow simultaneously querying
medical databases at a group of connected institutions. The most basic such query is the aggregate count—e.g.
How many patients have diabetes? However, depending on the protocol used to estimate that total, there is always
a tradeoff in the accuracy of the estimate against the risk of leaking confidential data. Prior work has shown that it is
possible to empirically control that tradeoff by using the HyperLogLog (HLL) probabilistic sketch.

Results: In this article, we prove complementary theoretical bounds on the k-anonymity privacy risk of using HLL
sketches, as well as exhibit code to efficiently compute those bounds.

Availability and implementation: https://github.com/tzyRachel/K-anonymity-Expectation.

Contact: ywyu@math.toronto.edu

1 Introduction

Clinical data containing patients’ personal medical records are im-
portant resources for biomedical research. Fully centralizing that
data may permit the widest array of potential analyses, this is often
not feasible due to privacy and confidentiality requirements (Benitez
and Malin, 2010; Emam et al., 2009; Heatherly et al., 2013).
During times of pressing need, such as during a global pandemic,
these privacy requirements may be justifiably relaxed (Haendel
et al., 2020)—such as using trusted third party vendors such as
Datavant (Kho and Goel, 2019)—but even then, it is important to
keep in mind the various privacy-utility tradeoffs (Bengio et al.,
2021, 2020). A more privacy-friendly alternative is to use a feder-
ated network instead, which give hospitals control over their local
databases; then, a distributed query tool enables researchers to send
queries to the network, such as ‘how many patients across the net-
work have diabetes’ (Brat et al., 2020; Weber, 2015). A number of
these hospital networks have emerged, including the Shared Health
Research Information Network for Harvard affiliated hospitals
(Weber et al., 2009), the Federated Aggregate Cohort Estimator
developed through a collaboration of five universities and institu-
tions (Wyatt et al., 2014), the open-source PopMedNet (Davies
et al., 2016) and the Patient Centered Outcomes Research Institute
launched PCORnet as a network of networks (Fleurence et al.,
2014).

However, patients often receive medical care from multiple hos-
pitals, so medical records at different hospitals may be duplicated or
incomplete. Depending on the aggregation method used to combine
results from the network, this can produce errors. For example, con-
sider using a simple summation of aggregate counts: if a patient

with hypertension receives medical care from both Hospital A and
Hospital B, then it is possible that the sum will double count that pa-
tient, which results in the overestimation of the number of patients
with hypertension (Weber, 2013).

Of course, this problem can be mostly alleviated by sending a
hashed identifier of patients matching each hospital’s queries to a
trusted third party, but that again raises privacy concerns (Oechslin,
2003). There is some natural tradeoff between the privacy guaran-
teed to individual patients and the accuracy of the aggregate query,
and hashed identifiers and simple summation fall at opposite ends of
the spectrum. Several of the authors of this article recently proposed
using the HyperLogLog (HLL) ‘probabilistic sketch’ (Durand and
Flajolet, 2003; Flajolet and Martin, 1985; Flajolet et al., 2007) to
access intermediate tradeoffs of privacy versus accuracy (Yu and
Weber, 2020). Probabilistic counting was introduced to the com-
puter literature decades ago, and has found use in analyzing large
streaming data in a variety of settings, ranging from internet routers
(Cai et al., 2005) to text corpora comparisons (Broder, 1997) to gen-
omic sequences (Baker and Langmead, 2019; Ondov et al., 2016;
Solomon and Kingsford, 2018). Instead of sharing a single aggregate
count, or sharing the full list of matching patient IDs (Weber, 2013),
each hospital instead shares a smaller ‘summary sketch’ built from
taking the logarithm of a coordinated random sample of m matching
patient hashed IDs (Yu and Weber, 2020). Because only m patient
IDs are used, and those are obfuscated through taking a logarithm,
these HLL sketches are significantly more private than sending a full
list of matching IDs. Due to the way the estimators work, HLL
sketches have an error of about 1:04=

ffiffiffiffi
m
p

, which can be much less
than expected from simple summation.
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But when any data are shared by a hospital to a third party, there
is risk of accidental leakage. Advances in homomorphic encryption
and secure multi-party computation (Lindell, 2005) may eventually
solve this problem by not allowing the third party any unencrypted
data, but these are currently still impractical for deployment due to
both computational and communication complexity. For example,
consider the case where a hospital finds that there is only one patient
satisfying the criterion for a query. If this hospital returns the aggre-
gate count as one, then this unique patient’s personal information is
linked and can potentially be re-identified through a linkage attack
(Emam and Dankar, 2008; Yu and Weber, 2020). To properly com-
pare the privacy of various methods of data aggregation, we turn to
the concept of k-anonymity. The basic idea behind k-anonymity is
that if a method or dataset is k-anonymous, then each patient is
similar to at least k�1 other patients with respect to potentially
identifying variables, so that it is hard to determine the identity of a
single patient in the dataset (Emam and Dankar, 2008; Sweeney,
2002). Although other mathematical formalisms like differential
privacy (Dwork, 2008) are much stronger, they are harder to work
with, as they require injecting deliberate noise, and are not currently
widely in use by clinical databases. Furthermore, it is provably im-
possible for composable cardinality estimators (such as HLL) to be
differentially private, because the ability to deduplicate runs counter
to the base assumptions of differential privacy (Desfontaines et al.,
2019).

In this article, we will assume that hospitals in a federated net-
work implement the HLL algorithm for queries. We will then prove
bounds on the expected k-anonymity of the shared sketches, as well
as provide fast algorithms for computing that expected k-anonym-
ity. This study is an extension of previous work (Yu and Weber,
2020), which operated under the same setting and assumptions, but
only provided empirical results and no proofs on the levels of priv-
acy achieved. Here, we provide rigorous theoretical justification for
those empirical claims.

2 Materials and methods

2.1 Setting and summary
In this article, we adopt the HLL sketch federated clinical network
setting given in prior work (Yu and Weber, 2020). For complete-
ness, we duplicate the salient points below.

Assume that every patient has a single invariant ID that is used
across hospitals. Prototypically, one might consider using social se-
curity numbers in the USA for that purpose. Even without a single
unique identifier, it is possible to generate an ID based off a combin-
ation of other possibly non-unique IDs, such as first and last name,
zip code, address, birthdate, etc. Unfortunately, there may be errors
in these records due to character recognition errors (e.g. S and 8),
phonetic errors (e.g. ph and f) and typographic errors including in-
sertion, transposition and substitutions. Luckily, there is a lot of
existing literature on this problem, and methods such as BIN-DET
and BIN-PROB (Durham et al., 2010) have been proposed to deal
with the issue. Thus, in this article, we will treat this problem as out-
of-scope and assume for simplicity that every patient has a unique
stable ID known to all institutions.

Further assume that there is a federated network of hospitals (or
other institutions) responding to clinical queries, along with a cen-
tral party that manages and relays messages. When hospitals receive
a query, they generate a list of the IDs of patients who match the
query. Each hospital will use a publicly known hash function to first
pseudorandomly partition the patients into m buckets and then as-
sign a uniform pseudorandom number between 0 and 1 to each pa-
tient. We also assume that the hash function is known by the
attacker, because the attacker may have compromised one of the
other hospitals or the central party. The hospital then stores the
order of magnitude of the smallest number within each bucket, and
sends these m smallest bucket values to the central party. By apply-
ing the HLL estimator, the central party is then able to compute the
aggregate count for the query with a relative error of around 1:04ffiffiffi

m
p

(Flajolet et al., 2007).

Here, we focus on an individual hospital and want to determine
the expected exposure to accidentally disclosing private information
if the central party is compromised. As the HLL sketch aggregates
information within each of the m buckets, our goal is to compute
the expected number of buckets which are not k-anonymized. In line
with common practice, we set k¼10 for most of our results, though
the algorithms and proofs hold for other k. Below, we provide two
approximation formulas for the expected value and in the Section 4
construct a table for the user to determine which approximation
should be chosen based on the number of distinct patients and other
relevant parameters.

2.2 k-Anonymity and HLL
2.2.1 High-level overview

The HLL (Flajolet et al., 2007) probabilistic sketching algorithm is
widely used to estimate the cardinality (number of different ele-
ments) of a set. Assume we have a database of electronic medical
records; we can estimate the number of distinct patients by applying
the HLL algorithm. The basic idea behind HLL is that the minimum
value of a collection of random numbers between 0 and 1 is inverse-
ly proportional to the size of the collection. Therefore, we can esti-
mate the cardinality of a set by first applying a hash function which
maps all the elements uniformly onto ½0; 1� and considering the min-
imum value. For the purposes of this article, we will operate in the
random oracle model, where we assume that the hash function actu-
ally maps to a random number; in practice, a standard hash function
like SHA-256 would probably be employed. In order to increase the
accuracy of estimation, we randomly divide the set into m partitions
and then estimate the cardinality of the original set by the harmonic
mean from m partitions. Furthermore, the HLL algorithm only
needs to store the position of the first 1 bit in the 64-bit hash value,
rather than the full patient ID hash, providing partial privacy protec-
tion. As the expected error in the final estimate is around 1:04=

ffiffiffiffi
m
p

,
increasing m can reduce the error of HLL query but increases the
risk of privacy leaks.

In our setting, when a hospital is sent a query, there are two rele-
vant sets to consider: (i) the background population (often, the set of
all patients at the hospital) and (ii) the set of patients matching the
query. The reason for considering the background population is that
they can ‘hide’ patients who match the query by providing plausible
deniability. The hospital will return a HLL sketch, which contains
m values—the maximum position of the first 1 bit within each
bucket. We define a HLL bucket with value x to be ‘k-anonymous’
if at least k�1 patients in the background population have hash
value x; we will call these corresponding hash values in the back-
ground population hash collisions (Yu and Weber, 2020). This
means that if an attacker gets access to the sketch and can narrow
down the set of potential patients to the background population,
they cannot determine with certainty which of the k patients with

Fig. 1. Illustration of HyperLogLog k-anonymity. A hospital has an identified set B

contained within the background population A. Binary hashes are taken of all pa-

tient identifiers. Those hashes are first used to partition the patients into four buck-

ets. Within each bucket of B, the smallest value is chosen as the representative. Then

the k-anonymity of that bucket is the number of hashes in the corresponding bucket

of the background population that share the same position of the leading 1 bit
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that hash value was in the set of patients matching the query. Our
goal is to determine the expected number of buckets that are not at
least 10-anonymous (Fig. 1).

We wish to note that in this article, we deliberately use the much
weaker notion of privacy provided by k-anonymity (Emam and
Dankar, 2008), rather than stronger alternatives like differential
privacy (Dwork, 2008), which have provable protection against in-
ference attacks. Unfortunately, differential privacy (and similar
alternatives) are provably incompatible with any composable car-
dinality estimation (Desfontaines et al., 2019). In practice, hospital
IRBs admit the use of 10-anonymity for query set patients as a useful
metric, despite known issues with vulnerability of k-anonymity to
inference attacks. Our article thus focuses on analyzing probabilistic
sketches as a more private alternative to the standard practice of
sending full hashed IDs.

2.2.2 Formal description

Let us recast the textual description above a bit more rigorously as
the following mathematical problem:

Let A be a set and B � A is a non-empty subset of A. A repre-
sents the background population and B represents patients satisfying

the query. We define r ¼ jBjjAj as the ratio of number of patients satis-

fying the query to background population (also sometimes known
as concept prevalence).

Let r : A! ð0; 1� be a one-way hash function. In theory, we as-
sume that we have a shared oracle available to both parties. In prac-
tice, a cryptographic hash function such as SHA-1, SHA-224 or
SHA-256 (Johnson, 2020) is generally used. r uniformly maps each
element in A to a random real number in the interval ð0;1�.

Let r� : A! Z�0 be defined by r�ðxÞ ¼ b� log 2rðxÞc. This func-
tion returns the number of 0 bits before the first 1 bit in x 2 ð0;1�
under a base 2 expansion.

Let p : A! f1; ::;mg be a map that randomly partitions patients
into m buckets. In practice, this map can also be derived from a
cryptographic hash function. From the partition function p, we de-
fine Ai ¼ fx 2 AjpðxÞ ¼ ig and Bi ¼ B \ Ai, which, respectively,
represent the ith bucket in whole database and sample.

Let hiðBÞ ¼ maxfr�ðxÞjx 2 Big be the maximum number of zeros
before the first one among all hash values represented in base 2 in
the ith bucket of B which is Bi.

Let ei ¼ fx 2 Aijr�ðxÞ ¼ hiðBÞg be the set of elements in the ith
bucket of A which collide with the elements in Bi.

We want to compute the Eðjfeiji ¼ 1; . . . ;m and
0 < jeij � k� 1gjÞ, the expected number of non-k-anonymous
buckets.

2.3 Probability of <k-anonymity without partition

function
As described above, we need to consider the collisions against all m
buckets. Here, however, we first show a simple analysis with no par-
tition function (i.e. the case where m¼1) and compute the probabil-
ity of each possible number of collisions so that in the later sections
we can use this result to compute the desired expected value of ‘non-
k-anonymous’ buckets.

Since there is only one bucket, there are only two sets A and B
which represent the set of all patients and the set of patients match-

ing the query, respectively. We denote hðBÞ ¼ maxfr�ðxÞjx 2 Bg, the
maximum number of zeros before the first one among all hash val-

ues in base 2 in B, and e ¼ fx 2 Ajr�ðxÞ ¼ hðBÞg, the set of colli-
sions. We want to compute the probability that the number of
collisions is less or equal to k, which is Pðjej � kjA;BÞ.

Each element in rðAÞ can be thought of as an i.i.d. random vari-

able with distribution Unif (0, 1). Therefore, r�ðxÞ ¼ n if and only if
1

2nþ1 � rðxÞ � 1
2n. Then we get Pðr�ðxÞ ¼ nÞ ¼ 1

2nþ1. Thus,

PðhðBÞ ¼ nÞ ¼ 1� 1
2nþ1

� �jBj
� 1� 1

2n

� �jBj
.

Lemma 2.1.Given sets B � A, the probability of exactly n 2 Zþ colli-

sions is:

Pðjej ¼ njA;BÞ ¼
X1
i¼1

XminðjBj;nÞ

k¼1

f ði; k; jAj; jBjÞgði;n� k; jAj; jBjÞ;

where f ði; k; jAj; jBjÞ ¼ jBj
k

� �
1

2iþ1

� �k
1� 1

2i

� �jBj�k
and gði; k; jAj; jBjÞ ¼

jAj � jBj
k

� �
1

2iþ1

� �k
1� 1

2iþ1

� �jAj�jBj�k
.

Proof. Since the sets A and B are fixed, we use Pðjej ¼ nÞ to represent

Pðjej ¼ njA;BÞ for notational simplicity here.

By the law of total probability, we know that Pðjej ¼ nÞ ¼
P1
i¼1

PminðjBj;nÞ

k¼1

Pðje \ Bj ¼ k and hðBÞ ¼ iÞPðje \ ðA� BÞj ¼ n� k and hðBÞ ¼ iÞ.

First we consider the case where we have k collisions in e \ B:

f ði; k; jAj; jBjÞ ¼ Pðje \ Bj ¼ k and hðBÞ ¼ iÞ

¼ jBj
k

� �
Pðr�ðx1Þ ¼ � � � ¼ r

�ðxkÞ ¼ i > r
�ðxkþ1Þ;

� � � ;r�ðxjBjÞÞ

¼ jBj
k

� �
1

2iþ1

� �k
1� 1

2i

� �jBj�k
:

Next we consider the case where we have k collisions in e \ ðA� BÞ:

gði;k; jAj; jBjÞ ¼ Pðje \ ðA� BÞj ¼ k and hðBÞ ¼ iÞ

¼ jAj � jBj
k

� �
Pðr�ðx1Þ ¼ � � � ¼ r�ðxkÞ ¼ i and

r�ðxkþ1Þ; . . . ; r�ðxjAj�jBjÞ 6¼ iÞ

¼ jAj � jBj
k

� �
1

2iþ1

� �k
ð1� 1

2iþ1 Þ
jAj�jBj�k

:

Thus,

Pðjej ¼ njA;BÞ ¼
X1
i¼1

XminðjBj;nÞ

k¼1

f ði;k; jAj; jBjÞgði;n� k; jAj; jBjÞ (1)

and Pð0 < jej � nÞ ¼
Pn

m¼1

Pðjej ¼ mÞ h

2.4 Expected number of buckets with less than k

collisions
Recall that A is the background population and B the set of patients
satisfying the query criteria. We denote the buckets of A and B
under our partition function by A1; . . . ;Am and B1; . . . ;Bm where
Bi ¼ B \ Ai for i ¼ 1; ::;m and ei is the sets of collisions in the ith
bucket. Thus, the expected value of the number of buckets with no
more than k collision is Eðjfeijjeij � k; i ¼ 1; . . . ;mgjÞ.

Note that ðjA1j; . . . ; jAmjÞ 	MultinomialðjAj; p1; . . . ;pmÞ with

p1 ¼ � � � ¼ pm ¼ 1
m. Therefore, we know for a single bucket, say A1,

its cardinality follows a binomial distribution that is

jA1j 	 Binomial jAj; 1
m

� �
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With a given Ai, jBij 	 HypergeometricðjAj; jAij; jBjÞ. Thus,

PðjBij ¼ bijjAij ¼ aiÞ ¼

ai

bi

� �
jAj � ai

jBj � bi

� �
jAj
jBj

� � ;

where bi 2 f0; 1; . . . ;minðai; jBjÞg and EðjBijjjAijÞ ¼ jBjjAj jAij ¼
rjAij ¼ lb and VarðjBijjjAijÞ ¼ rjAij jAj�jAi j

jAj
jAj�jBj
jAj�1 ¼ r2

b.

Theorem 2.2.The expected number of buckets which have at least 1 col-

lision but no more than k collisions is:

EðkÞ ¼ m
XjAj
a¼1

Pa

Xminða;jBjÞ

b¼1

Pk;a;bPa;b;

where Pa ¼ PðjA1j ¼ aÞ; Pa;b ¼ PðjB1j ¼ bjjA1j ¼ aÞ and

Pk;a;b ¼ Pð0 < je1j � kjjA1j ¼ a; jB1j ¼ bÞ.

Proof.

EðkÞ :¼ Eðjfeij0 < jeij � kgjÞ

¼
X

jA1 j;...;jAm j
½Eðjfeij0 < jeij � kgjjjA1j; . . . ; jAmjÞ


PðjA1j; . . . ; jAmjÞ�

ðby the law of total expectationÞ

¼
X

jA1 j;...;jAm j
½PðjA1j; . . . ; jAmjÞ



Xm
i¼1

Pð0 < jeij � kjjA1j; . . . ; jAmjÞ�

¼ m
X

jA1 j;...;jAm j
PðjA1j; . . . ; jAmjÞPð0 < jeij � kjjAijÞ

ðby the independence of jeij and jAjj for all j 6¼ iÞ

¼ m
X
jA1 j

Pk;jA1 j
X

jA2 j;...;jAm j
PðjA1j; . . . ; jAmjÞ

ðby separating the summationÞ

¼ m
X
jA1 j

Pk;jA1 jPðjA1jÞ ðby law of total probabilityÞ

where Pk;jA1 j ¼ Pð0 < je1j � kjjA1jÞ.

In order to compute Pð0 < je1j � kjjA1jÞ, we have to consider the range

of jB1j which is f0; 1; . . . ;minðjBj; jA1jÞg.

Pð0 < je1j � kjjA1jÞ ¼
X
jB1 j

Pð0 < je1j � kjjA1j; jB1jÞPðjB1jjjA1jÞ:

In contrast to the simple case in Section 2.3, here B1 is not necessarily a

proper subset of A1 because A1 can be the empty set and thus B1 is also

an empty set in this case. The collision number is zero if and only if A1 is

an empty sets. Therefore, we will expand the formula in Lemma 2.1 to

compute Pð0 < je1j � kjjA1j; jB1jÞ. Furthermore, if we want rule out

the case of zero collisions—because when the bucket is empty, there is

not a patient ID for which we need to guarantee k-anonymity—we

should set the range of jA1j and jB1j as f1; 2; . . . ; jAjg and

f1; 2; . . . ;minða; jBjÞg, respectively.

Pðje1j ¼ kjjA1j; jB1jÞ ¼
equation ð1Þ if k 6¼ 0
1 if k ¼ 0 and jB1j ¼ 0
0 if k ¼ 0 and jB1j 6¼ 0:

8<
:

Therefore, we will get:

EðkÞ :¼ m
XjAj
a¼1

Pa

Xminða;jBjÞ

b¼1

Pk;a;bPa;b;

where Pa ¼ PðjA1j ¼ aÞ ¼ A
a

� �
1
m

� �a
1� 1

m

� �jAj�a
; Pa;b ¼ PðjB1j ¼

bjjA1j ¼ aÞ ¼

a
b

� �
jAj � a
jBj � b

� �
jAj
jBj

� � and Pk;a;b ¼ Pðje1j � kjjA1j ¼ a;

jB1j ¼ bÞ. h

3 Algorithms

3.1 Time complexity of evaluating expectation
Again, recall that A is the background population, B is the set of
patients satisfying the query criteria and e is the set of collisions. In
Section 2.4, we gave an explicit formula for computing
Pðjej � kjjAj; jBjÞ. However, the time complexity of carrying out
that computation is troublesome

Pð0 < jej � kjjAj; jBjÞ ¼
Xk

n¼1

Pðjej ¼ njjAj; jBjÞ

¼
Xk

n¼1

X1
i¼1

XminðjBj;nÞ

m¼1

f ði;mÞgði; n�mÞ;

where f ði;mÞ ¼ jBj
m

� �
1

2iþ1

� �m
ð1� 1

2iÞjBj�m and gði;mÞ ¼

jAj � jBj
m

� �
1

2iþ1

� �m
ð1� 1

2iþ1ÞjAj�jBj�m.

Usually, k is smaller than jBj and the infinity in the second sum
will be replaced by 64 (or some other constant <100) because it rep-
resents the maximum number of zeros before the first one among all
hash values in base 2. As there are only 7 billion people on Earth, 64
bits is sufficient for the original hash function to have low probabil-

ity of collisions. Therefore, the time complexity is Oðk2Þ for at most
k collisions.

We consider the time complexity of computing the desired ex-
pectation. Theoretically, the range of jA1j is f1; 2; . . . ; jAjg and the
range of jB1j is f1; 2; . . . ;minðjBj; jA1jÞg. Therefore, the computa-
tion time is:

XjAj
jA1 j¼1

minðjA1j; jBjÞ ¼ jBjðjAj � jBjÞ þ
XjBj
jA1 j¼1

jA1j

¼ jBjðjAj � jBjÞ þ jBjðjBj þ 1Þ
2

¼ r� 1

2
r2

� �
jAj2 þ r

2
jAj where r ¼ jBjjAj ;

and the time complexity is Oðk2jAj2Þ, which is quadratic in the size
of population for at most k collisions. In practice, for large set sizes,
it is computationally infeasible to use this theoretical formula to
compute the desired expectation; thus, in the remainder of this art-
icle we analyze fast approximations.

3.2 Approximation A1: concentration inequalities
When jAj is large, it is impossible to sum over whole range of jA1j.
Therefore, we will use concentration inequalities to restrict jA1j and
jB1j to a smaller range. Because there is only an exponentially small
probability that A1 and B1 will fall outside these restricted windows,
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this will have minimal effect on the final answer while reducing the
computation time from quadratic to linear in the size of A.

Recall that jA1j 	 Binomial jAj; 1
m

� �
and EðjA1jÞ ¼

jAj
m ¼ la; VarðjA1jÞ ¼ jAjm ¼ 1� 1

m

� �
¼ r2

a . In order to reduce the time

complexity, we will restrict jA1j in our computations to the interval
ðLa;UaÞ :¼ ðla � 5ra;la þ 5raÞ.

Recall that jB1j 	 HypergeometricðjAj; jA1j; jBjÞ for a given jA1j
and EðjB1jjjA1jÞ ¼ rjA1j ¼ lb; VarðjB1jjjA1jÞ ¼ rjA1j jAj�jA1 j

jAj
jAj�jBj
jAj�1 ¼ r2

b.

However, we define r02b ¼ rjA1j jAj�jBjjAj which is greater than r2
b and

restrict jB1j in the interval ðLb;UbÞ ¼ ðlb � 5r0b;lb þ 5r0bÞ in order

to compute the error bound more easily below in Section 3.2.1.

After concentration, we can make sure that PðjjA1j � laj �
5raÞ�9:6
 10�4 and PðjjB1j � lbj � 5r0bÞ�9:6
 10�4 which is

shown below in detail in Section 3.2.1. As an aside, while these two
intervals of jA1j and jB1j have been chosen for analyzing the error
bound and time complexity analytically, in the computing code we
can directly use built-in functions to compute the relevant confi-
dence intervals for jA1j and jB1j.

By the concentration inequalities on jA1j and jB1j, the desired ex-
pectation will be approximated by:

E1ðkÞ :¼ m
XUa

jA1 j¼La

PjA1 j
XminðUb ;jA1 jÞ

jB1 j¼Lb

Pk;jA1 j;jB1 jPjA1 j;jB1 j;

where PjA1 j;jB1 j ¼ PðjB1jjjA1jÞ;PjA1 j ¼ PðjA1jÞ and Pk;jA1 j;jB1 j ¼ Pð0 <

je1j � kjjA1j; jB1jÞ.

The computation time after concentration is:

XUa

jA1 j¼La

ðUb � LbÞ

¼
XUa

jA1 j¼La

10r0b

¼
XUa

jA1 j¼La

10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞjA1j

p
� 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ

p
ra

ffiffiffiffiffiffi
Ua

p

¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� rÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj
m

1� 1

m

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj
m
þ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj
m

1� 1

m

� �svuut
:

So, the time complexity after concentration is O k2 jAj
m

� �
which is

linear in jAjm . After concentration, the expected value E1ðkÞ is smaller

than the actual EðkÞ, but we can bound the error.

3.2.1 Error bounds

Recall that jA1j 	 BinomialðjAj; 1
m Þ and la :¼ EðjA1jÞ ¼ jAjm ;

r2
a :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj 1

m 1� 1
m

� �r
. We concentrate jA1j in the interval

ðLa;UaÞ :¼ ðla � 5ra;la þ 5raÞ. We define FaðxÞ :¼ PðjA1j � xÞ
the cumulative density function of jA1j.

Table 1. Choice table for approximation method

r¼ 0.1 r¼ 0.08 r¼ 0.05 r¼ 0.01 r¼ 0.005 r¼ 0.001

jAj=m jAj m A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

100 104 100 � � � � � �
50 104 200 � � � � � �
20 104 500 � � � � � �
1000 105 100 � � � � � �
500 105 200 � � � � � �
200 105 500 � � � � � �
100 105 1000 � � � � � �
50 105 2000 � � � � � �
20 105 5000 � � � � � �
10 000 106 100 � � � � � �
2000 106 500 � � � � � �
1500 106 666 � � � � � �
1000 106 1000 � � � � � �
500 106 2000 � � � � � �
200 106 5000 � � � � � �
100 106 10 000 � � � � � �
50 106 20 000 � � � � � �
20 106 50 000 � � � � � �
100 000 107 100 � � � � � �
20 000 107 500 � � � � � �
10 000 107 1000 � � � � � �
5000 107 2000 � � � � � �
3333 107 3000 � � � � � �
2000 107 5000 � � � � � �
1500 107 6666 � � � � � �
1000 107 10 000 � � � � � �
500 107 20 000 � � � � � �
200 107 50 000 � � � � � �

Note: A is the total size of the hospital background population, m is the number of buckets used in the HyperLogLog sketch and r is the fraction of the back-

ground population that matches the query criteria. ‘A1’ and ‘A2’, respectively, denote approximations 1 and 2. For every one of the parameter regimes, we used

simulations to determine which of the approximation methods is more suitable for the practitioner.
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First, we consider the concentration on jA1j. We will apply the
higher moments inequality on jA1j � la (Blum et al., 2020):

PðjjA1j � laj � aÞ � EðjjA1j � lajrÞ
ar

for any positive even integer r:

If we choose r¼6 then, we will get:

PðjjA1j � laj � 5raÞ

� EðjjA1j � lajrÞ
ð5raÞ6

¼ 1

56

1� 30dþ 120d2 þ 25jAjd� 130jAjd2 þ 15jAj2d2

jAj2d2

 !

� 15

56
¼ 9:6
 10�4;

where d ¼ m�1
m2 .

Then we consider the jB1j for a given jA1j. For a given jA1j, we
know jB1j 	 Hypergeometric ðjAj; jA1j; jBjÞ and lb :¼
EðjB1jjjA1jÞ ¼ rjA1j; r2

b :¼ VarðjB1jjjA1jÞ ¼ rjA1j jAj�jA1 j
jAj

jAj�jBj
jAj�1 . We

concentrate jB1j in the interval ðLb;UbÞ :¼ ðlb � 5r0b; lb þ 5r0bÞ
where r02b ¼ rjA1j jAj�jBjjAj . We define FbðxÞ :¼ PðjB1j � xjjA1jÞ the cu-

mulative density function of jB1j for a given jA1j.
Note that for X 	 BinomialðjA1j; rÞ, we can get EðXÞ ¼ rjA1j

and VarðXÞ ¼ rð1� rÞjA1j. The expected value is equal to

EðjB1jjjA1jÞ and the variance is equal to r02b which is bigger than the

variance of jB1j for this given jA1j. This explains that the hypergeo-
metric distribution is more concentrated about the mean than the bi-
nomial distribution (Kalbfleisch, 1985). Therefore, we will use this
binomial distribution to bound the tail of our hypergeometric
distribution:

PðLb � jB1jorjB1j � UbÞ � PðLb � X or X � UbÞ

¼ P
�
jX� EðXÞj � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ

p �
�9:6
 10�4;

EðkÞ � E1ðkÞ

¼ m½
P
jA1j < La

jA1j > Ua

PjA1 j
P
jB1 j Pk;jA1 j;jB1 jPjA1 j;jB1 j

þ
XUa

jA1 j¼La

PjA1 j
X

jB1j < Lb

jB1j > Ub

Pk;jA1 j;jB1 jPjA1 j;jB1 j�

� m½
P
jA1j < La

jA1j > Ua

PjA1 j þ
XUa

jA1 j¼La

PðjA1jÞ
X

jB1j < Lb

jB1j > Ub

PjA1 j;jB1 j�

� m1:92
 10�3;

where PjA1 j;jB1 j ¼ PðjB1jjjA1jÞ;PjA1 j ¼ PðjA1jÞ and Pk;jA1 j;jB1 j ¼
Pðje1j � kjjA1j; jB1jÞ.

But the in the computing code, we can use the built-in function
to find the interval (La, Ua) and (Lb, Ub) such that PðLa � jA1j �
UaÞ � 1� a and PðLb � jB1j � UbÞ � 1� a. This will not affect
the time complexity and can ensure that the absolute error between
the estimated expected value and the actual expected value is <1 by
choosing a proper a. It is obvious the smaller a is, the smaller the
error will be, but the intervals (La, Ua) and (Lb, Ub) will be bigger
which means a longer computing time. Therefore, there is a tradeoff
between accuracy and speed (see Table 2 for real computing time).

Fortunately, in all cases we explore, the La and Ua given above can

ensure that a < 5
 10�5.

EðkÞ � E1ðkÞ

¼ m½
P
jA1j < La

jA1j > Ua

PjA1 jPðje1j � kjjA1jÞ

þ
XUa

jA1 j¼La

PjA1 j
X

jB1j < Lb

jB1j > Ub

Pk;jA1 j;jB1 jPjA1 j;jB1 j�

� m½
P
jA1j < La

jA1j > Ua

PjA1 j þ
XUa

jA1 j¼La

PjA1 j
X

jB1j < Lb

jB1j > Ub

PjA1 j;jB1 j�

� 2ma;

where PjA1 j;jB1 j ¼ PðjB1jjjA1jÞ;PjA1 j ¼ PðjA1jÞ and Pk;jA1 j;jB1 j ¼ Pð0 <
je1j � kjjA1j; jB1jÞ.

3.2.2 Approximation A2: mean-field approximation

Although the time complexity after concentration is linear in jAjm , for

large jAj and m small, this speedup is often still not enough. We can
further approximate Pðje1j � kjjA1j; jB1jÞ by Pðje1j �
kjjA1j; jB1j ¼ rjA1jÞ and get the following approximation of the
expectation:

E2ðkÞ :¼ m
XUa

jA1 j¼La

PðjA1jÞ
XUb

jB1 j¼Lb

½Pðje1j � kjjA1j; rjA1jÞ


PðjB1jjjA1jÞ�

¼ m
XUa

jA1 j¼La

PðjA1jÞPðje1j � kjjA1j; rjA1jÞ:

This is a ‘mean-field’ approximation based on Approximation
A1. The basic idea behind this approximation is to use the probabil-
ity at the mean value which is Pð0 < je1j < kjjA1j; rjA1jÞ to repre-
sent all the probabilities Pð0 < je1j < kjjA1j; jB1jÞ when
jB1j 2 ðLb;UbÞ because Pð0 < je1j < kjjA1j; jB1jÞ is monotonic
increasing in jB1j and the interval (Lb, Ub) is small enough compared
with the theoretical range ð0;minðjA1j; jBjÞÞ.

The range of jA1j is still ðLa;UaÞ ¼ ðla � 5ra;la þ 5raÞ.
Therefore, the computation time of E2 is:

ðUa � LaÞ ¼ 10ra ¼ 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj
m

1� 1

m

� �s
;

and the time complexity is O k2
ffiffiffiffiffi
jAj
m

q� �
. The real computing time

will be discussed in the Section 4. Unfortunately, we do not have a
strong provable guarantee with this approximation, but it seems em-
pirically to work well in practice.

4 Results

In order to assess the accuracy–speed tradeoffs of our two approxi-
mations, we ran simulations measuring the ground truth empirical
k-anonymity of patients in several different regimes using HLL
sketches. Those simulations serve as the ground truth since they
have the same distribution as hashing real patient identifiers with a
random seed, without needing to use real patient data for this art-
icle. Then, we compared those empirical values against the approxi-
mations described in this article. In the large cardinality regimes, it
is computationally infeasible to run full simulations, so we only
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compare the run-times of the two approximation methods. In
Table 2, we provide full tables of these results. In Table 1, we pro-
vide a high-level summary giving a practitioner guidance on which
method is appropriate under those particular parameter choices. All
computations were run in single-thread mode on an AMD Ryzen
Threadripper 3970X 32-core CPU machine running Ubuntu 18.04.5
LTS (bionic) with 256 GiB of RAM. It is worth mentioning that
steps in computations are trivially parallelizable, but for benchmark-
ing purposes all our results are of single-threaded performance.
Additionally, instead of using actual hash functions (e.g. SHA-256),
we generate uniform random numbers as the hashed values, which
has the same probability distribution. Code is available on Github
and relies on using the numpy, scipy.stat and decimal packages
for simulation of patient hashes and explicit computation of
probability distributions: https://github.com/tzyRachel/K-anonym
ity-Expectation

Recall that A represents the number of all patients, B represents
the number of patients who meet some query criteria and m is the

number of buckets in the HLL process. We introduce r ¼ jBjjAj to rep-

resent the ratio of jAj and jBj, because as we will see, this ratio con-
trols to a large extent the number of collisions. Intuitively, r
represents the number of background population persons who
could be used to provide plausible deniability to each patient in the
query set.

Our simulations sweep over the different combinations of the
parameters A, r and m to construct a table to fit Approximations A1

and A2. In all simulations, we restrict jAj in the interval ½104; 107�
and m in the interval ½100;50 000�. In this article, the total number
of different patients in a hospital is assumed to be over 104; not only

are approximation methods unnecessary for jAj < 104 because
exact computations are feasible, but there is not a sufficiently large
background population to hide the query set when jAj is small, and
the privacy characteristics then become equivalent to sending hashed
IDs (Yu and Weber, 2020). Since the simulations are run under the

condition of ‘10-anonymity’, we make sure that jAjm > 20 which is

the mean value of the single bucket size. Also, r is restricted in the
interval ½0:001;0:1� and we choose six different values of r which
are 0:1;0:08; 0:05; 0:01;0:005; 0:001 to run the simulations and
compare the simulation results with computing results.

As we discussed in the Section 2, we can estimate the desired
expected value by both Approximations A1 and A2. The final choice
of Approximation A1 or Approximation A2 seems to be dependent

primarily on jAjm . In most cases, when jAjm � 1500, Approximation A2

is good enough and the computing time is no longer than 3 min.

When jAjm < 1500, Approximation A2 will be not accurate enough

and we have to choose Approximation A1. The computing time of

Approximation A1 is proportional to
ffiffi
r
p jAj

m , which is sometimes a

concern. When jAjm � 1500, the computing time is usually no longer

than 8 min. But there are several special cases, such as when r¼0.1

and r¼0.08, that the computing time at A ¼ 107;m ¼ 6666 is
	10 min which might be acceptable but is really not ideal.
Furthermore, in extreme cases, the approximate expected k-ano-
nymity return by Approximations 1 and 2 differ by 	10 (Table 2).

To make things easier for the end-practitioner, we provide a
summary ‘choice’ table (Table 1) guiding them on which approxi-
mation is suggested, based on different numbers of patients, num-
bers of buckets and ratios of number of patients matching query to
all patients. Choosing between approximations A1 and A2 is an ac-
curacy/running time tradeoff. A1 is usually both more accurate and
expensive than A2. For the purpose of the choice table, to give a
concrete recommendation, we aim to have single-threaded running

Fig. 2. Errors between Approximation (based on choice table) and simulation of

100 random trials with number of buckets ¼ 100 (top) and 1000 (bottom)

Fig. 3. Expected number of non-10-anonymous buckets under different combina-

tions of number of buckets (m) and prevalence rate (r) when total number of

patients is 107. (Top) Number of non-10-anonymous buckets under different combi-

nations of m (number of buckets) and r (prevalence rate) when total number of

patients is 107. (Left bottom) However, the fraction of non-10-anonymous buckets

remains constant as the number of buckets increase when the other variables are

held fixed. (Right bottom) It is the relationship to prevalence rate that is more com-

plicated and nonlinear, as shown by focusing on the behavior for 100 and 500

buckets
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times below 10 min; many modern multi-core machines can run
over a dozen threads at once, and given that the approximation
algorithms are trivially parallelizable, this amounts implicitly to a
goal of real wall-clock time of less than a minute. The choice table is
filled out by selecting the approximation method with the least error
given that time constraint. In most cases, we choose A1 if the run-
ning time is below 10 min. Sometimes, computation results from A1
and A2 are almost the same, so the faster method can be chosen.
Based on this rule, we compare gold-standard simulation results

against the approximations in Table 2 to construct the ‘choice’ table.
Note that our choice of 10 min single-threaded run-time was arbi-
trary; given extra computational resources, the ideal switch-off
point between approximations will vary.

Figure 2 shows the errors between the approximation results
(based on the choice Table 1) and simulation results (Table 2) when
number of distinct patients is 107 and number of buckets are 100
and 1000, respectively. The absolute values of all the errors are no
more than 4.

Table 2 Expected number of non-10-anonymous buckets from Approximations A1 and A2 compared against ground truth simulations

jAj/m jAj m r Simulation

average

Simulation

replicates

A1 A1 time (s) A2 A2 time (s)

100 10 000 100 0.1 70.60 100 70.28 14.75 72.76 2.00

50 10 000 200 0.1 141.14 100 141.12 6.61 149.85 1.00

20 10 000 500 0.1 354.38 100 353.74 2.60 414.61 0.20

300 30 000 100 0.1 70.68 100 70.60 62.26 71.60 3.00

150 30 000 200 0.1 141.79 100 141.59 26.66 144.55 2.00

60 30 000 500 0.1 354.90 100 354.65 9.88 372.67 1.00

30 30 000 1000 0.1 712.22 100 709.73 4.12 783.81 0.40

500 50 000 100 0.1 71.87 100 70.71 84.74 71.44 4.00

250 50 000 200 0.1 142.94 100 141.76 47.65 143.68 3.00

100 50 000 500 0.1 352.96 100 353.20 19.70 363.80 2.00

50 50 000 1000 0.1 707.75 100 706.99 8.19 749.25 0.70

800 80 000 100 0.1 70.57 100 70.40 136.09 70.98 4.00

400 80 000 200 0.1 142.29 100 140.90 77.41 142.45 3.00

160 80 000 500 0.1 354.54 100 353.85 34.99 360.40 2.00

80 80 000 1000 0.1 704.88 100 707.91 16.47 734.01 1.00

1000 100 000 100 0.1 71.13 100 70.69 252.00 71.24 4.60

500 100 000 200 0.1 142.77 100 141.76 134.00 142.87 3.18

200 100 000 500 0.1 354.27 100 353.37 40.57 358.63 2.00

100 100 000 1000 0.1 705.02 100 706.95 22.16 727.60 1.30

50 100 000 2000 0.1 1416.61 100 1414.37 9.95 1498.50 0.70

20 100 000 5000 0.1 3536.27 100 3539.54 3.37 4146.33 0.20

3000 300 000 100 0.1 70.47 100 70.76 8.00

300 300 000 1000 0.1 709.57 100 709.02 90.00 715.96 2.40

5000 500 000 100 0.1 71.13 100 70.91 10.00

500 500 000 1000 0.1 708.77 100 710.08 155.00 714.36 3.00

8000 800 000 100 0.1 71.92 100 71.06 14.00

800 800 000 1000 0.1 708.00 100 707.00 25.00 709.76 4.00

10 000 1 000 000 100 0.1 70.58 100 70.89 16.00

2000 1 000 000 500 0.1 356.33 100 354.85 607.00 355.69 7.00

1000 1 000 000 1000 0.1 707.66 100 710.06 316.00 712.36 5.00

500 1 000 000 2000 0.1 1419.32 60 1420.47 150.00 1428.72 3.00

200 1 000 000 5000 0.1 3534.64 50 3536.36 65.00 3586.25 2.00

100 1 000 000 10 000 0.1 7068.96 50 7073.09 30.00 7275.97 1.30

50 1 000 000 20 000 0.1 14 146.62 12.00 14 985.00 0.70

20 1 000 000 50 000 0.1 35 396.39 4.00 41 463.50 0.20

30 000 3 000 000 100 0.1 71.01 100 70.98 30.00

3000 3 000 000 1000 0.1 703.79 100 707.55 8.00

50 000 5 000 000 100 0.1 71.54 100 70.71 40.00

5000 5 000 000 1000 0.1 708.32 100 709.07 12.00

80 000 8 000 000 100 0.1 71.01 100 70.87 50.00

8000 8000 000 1000 0.1 707.81 70 710.63 15.00

1 00 000 10 000 000 100 0.1 70.48 100 70.71 55.00

20 000 10 000 000 500 0.1 354.08 100 354.39 30.00

10 000 10 000 000 1000 0.1 711.81 70 708.87 16.00

5000 10 000 000 2000 0.1 1418.13 11.00

2000 10 000 000 5000 0.1 3551.59 726.00 3556.85 7.00

1500.15 10 000 000 6666 0.1 4711.94 547.00 4720.90 5.70

1000 10 000 000 10 000 0.1 7103.56 366.86 7123.63 4.60

666.7 10 000 000 15 000 0.1 10 614.93 250.00 10 659.18 3.70

500 10 000 000 20 000 0.1 14 207.49 192.00 14 287.16 3.00

200 10 000 000 50 000 0.1 35 366.18 79.00 35 862.54 2.00

Note: Some entries are empty because the computation time was infeasibly long. We have highlighted (in yellow or green) the more accurate approximation

finished within 10 min. Full simulation and computation results for r 2 f0:1; 0:08; 0:05; 0:01; 0:005; 0:001g are available on Github in machine-readable format.

i158 Z. Tao et al.



5 Discussion

We first note that all of the approximations we have provided finish
on the order of minutes. As they are analytical approximations,
there is also no need to run them multiple times. Although we have
not shown explicit simulation run-times in the tables above, the
larger simulations take upwards of hours; furthermore, we did not
perform simulations for the largest parameter ranges because we
expected those to take significantly longer. Our approximations
speed up determining the expected privacy loss from distributing
HLL sketches.

We are also able to form some general conclusions about the
expected privacy of HLL sketches. As mentioned above the preva-
lence ratio r ¼ jBjjAj, where A and B are, respectively, the background
population and query population can be interpreted as the ratio of
patients matching a query (e.g. ‘How many patients have been diag-
nosed with diabetes?’). Based on HLL, m is the number of buckets
and Ai and Bi are the ith bucket in A and B. Figure 3 plots the num-
ber of buckets and prevalence rate against the estimated expected
number of non-‘k-anonymized’ buckets and the number of buckets
versus the percentage of the non-‘k-anonymous’ buckets. The two
top plots are simply the number of non-k-anonymous buckets
against the number of buckets and varying the other parameters, but
this turns out to not be the right set of variables to control.

Instead, as evidenced by the lower-left plot (Fig. 3), a roughly
constant fraction of the buckets are not k-anonymized when r is con-
stant. This is unsurprising because as mentioned earlier, r is intui-
tively the number of background population members that could be
used to hide each patient. Of course, random chance also plays a

large role. More precisely, this constant is close to 100Pð0 < jej <
10j jAjm ; r jAjm Þ where Pð0 < jej < 10j jAjm ; r jAjm Þ is the probability of

that the number of collisions is >0 and <10 when the bucket size is

at the mean value jAjm . It is not quite equal for two reasons. The first

reason is the obvious one, that we are using the approximations
that form the subject of this article. The second reason is that the

single bucket size jA1j follows a Binomial distribution with mean jAjm

and p ¼ 1
m. When jAj and jAj

m are big enough, we can get Pð0 <

je1j � 10jjA1j; jB1jÞ � Pð0 < je1j � 10j jAjm ; r jAjm Þ by concentrating

jA1j; jB1j in an interval centered at the means, which is similar to

what we did in Approximation A2, but simpler. However, when jAjm

is not that big, for example, jAj ¼ 100;m ¼ 5, then Pð0 < je1j �
10j jAjm ; r jAjm Þ and Pð0 < je1j � 10jjA1j; rjB1jÞ will differ a lot for dif-

ferent value of jA1j and jB1j.
Now that it is clear that r is the value of primary importance, we

see in the lower-right plot of Figure 3 that as prevalence rate (r)
increases, more buckets are non-‘k-anonymized’. This is because
bigger r means more overlap between sets A and B and also each
pair of buckets Ai and Bi. Thus, the maximum number of zeros be-
fore the first one among all hash values in Bi is more likely equal to
that in Ai. Thus, a hospital IRB or clinical query system seeking to
understand the 10-anonymity of a particular query can use a first-
order approximation based only on r, without even needing to run
our code. Indeed, they need only consult our lower-right plot in
Figure 3 and scale to the size of their background population to de-
termine that first-order approximation. This can be done without
any code. When a more precise result is needed, however, our two
Approximations can provide that answer in only a few minutes. Of
course, if even that is insufficient, the practitioner may choose to dir-
ectly measure the k-anonymity of a particular HLL sketch; this is
not in the scope of this article, but was empirically done in prior
work (Yu and Weber, 2020).

6 Conclusion

In this article, we have developed a method to quickly compute the
expected number of non-‘k-anonymous’ buckets in the HLL sketch.
Because of the number of patients (denoted as jAj in our model) is
too big to compute the precise expected value, we introduced two

approximations based on concentration inequalities. In general,
Approximation A1 is suitable for the case when the expected value

of single bucket size which is jAjm is ‘small’, for example, total number

of patients (jAj) is 105 and number of buckets (m) is 100 or total
number of patients (jAj) is 107 and number of buckets (m) is 105.

Approximation A2 is suitable for the case when jAjm is ‘big’, for ex-

ample, total number of patients (jAj) is 107 and number of buckets
(m) is 100 (see choice table in Section 4).

By an appropriate choice of approximation method, we can con-
trol the computing time to under 300 s in almost all the cases. In
other words, when an individual hospital is asked a query to return
the aggregate counts based on sharing HLL sketches, we can com-
pute the expected number of buckets which match fewer than 10
patients in the background population. If this number is too high,
that is a signal to the clinical query system that the particular query
is unsafe to release using HLL sketches. It is then up to the clinical
query system to decide whether to fall back on another aggregation
method, or if they should simply not respond to the query.

Our results further give some guidance into the parameter ranges
in which HLL sketches are likely to be safe to release. HLL sketches
are especially useful for rare diseases, where the prevalence ratio in
the population is low. Note that this is in marked contrast to send-
ing raw counts, where rare diseases are precisely the least k-anonym-
ous. Thus, HLL sketches fill a complementary role. Indeed, at the
heart of the problem is the tradeoff between the utility/accuracy of
HLL sketches and privacy, which increase or decrease, respectively,
with the number of buckets. The average k-anonymity of a bucket is
roughly inversely proportional to the square of the estimation error;
our work computes instead the number of buckets that are not at
least 10-anonymous. For more guidance on this tradeoff, we refer
the reader to prior work, where we graphed this tradeoff empirically
(Yu and Weber, 2020).

Ultimately, our work is primarily useful in contexts where feder-
ated clinical query systems are used in biomedical research. The past
year has seen increasing amounts of data centralization to combat
the Covid-19 pandemic. The cost to privacy has been accepted be-
cause of the urgent clear and present need. However, in the future
post-pandemic era as the pendulum swings the other direction, priv-
acy may again take center stage. We hope that our work will be use-
ful in analyzing the privacy consequences of distributed query
systems and help inform policy-makers and institutional IRBs about
the privacy-utility tradeoffs at hand.

Data Availability

All of the data and code used to generate benchmarks is available on
the Github: https://github.com/tzyRachel/K-anonymity-Expectation
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