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Abstract: This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia
and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan,
allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea
nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase
(XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid,
urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase
(GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated,
the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia
in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine,
and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate.
However, exposure to fucoidan completely reversed those adenine-induced negative alternations in
mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious
that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1
was returned to normal, resulting in an increase of renal urate excretion and consequent healing of
adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted
in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from
Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the
treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and
promotion of renal excretion of urate.
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1. Introduction

Hyperuricemia is an imbalance between production and excretion of urate, which can cause many
disorders including gout, chronic nephritis, renal dysfunction, cardiovascular diseases, hypertension,
diabetes and metabolic syndromes [1–3]. It is therefore very important to decrease the serum uric acid
(SUA) level for preventing and treating these diseases.

Based on different mechanisms, two types of agent for the treatment of hyperuricemia have been
distinguished. Uricostatic drugs, such as allopurinol and febuxostat, are used to repress activities of
urate synthesizing enzymes to inhibit the production of uric acid. Another type of agent are uricosuric
drugs, including sulphinpyrazone, probenecid and benzbromarone, which can promote renal excretion
of uric acid through blocking renal tubular reabsorption of urate [4,5]. It is notable that increasing
evidence of the drugs’ side effects have been uncovered [5,6]. Hence, searching for new effective and
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nontoxic agents to replace the current chemicals is a critical task for the treatment of hyperuricemia.
Natural products and Chinese traditional medicines have been considered to be good options [7,8].

Fucoidan is a type of sulfated and heterogeneous polysaccharide, mainly found in the cell-wall
matrix of various brown seaweed species, that are rich in fucose and sulfate groups, as well as
one or more small proportions of xylose, mannose, galactose, rhamnose, arabinose, glucuronic
acid and acetyl groups in different kinds of brown seaweeds [9]. The backbone of fucoidan
from Laminaria japonica (FL) is primarily (1–3) linked α-L-fucopyranose residues and a few (1–4)
linked α-L-fucopyranose. The branch points are at C-4 of 3-linked α-L-fucopyranose residues by
β-D-galactopyranose units or at C-2 of 3-linked α-L-fucopyranose residues by non-reducing terminal
fucose units. Sulfate groups are linked at the position of C-4 or C-2, sometimes linked to fucose residues
at C-4, and to galactose residues at C-3 and/or C-4 [10,11]. A large number of studies have testified that
fucoidan possesses diverse functions, including antitumor, antivirus, antioxidation, antithrombotic,
anticoagulant, anti-inflammatory, immunomodulatory, as well as effects against various renal, hepatic
and uropathic disorders [12,13]. Several reports have testified the protection of fucoidan against
renal damage induced by albumin, oxalate and adenine [14–17]. Li et al. found that FL prevented
renal epithelial mesenchymal transition induced by TGF-β1 or FGF-2 [18] and acute kidney injury
induced by glycerol [19]. The kidney is an important organ responsible for the excretion of urate,
a decisive factor resulting in hyperuricemia and correlative disorders [1,2,20,21], therefore, it is implied
by the literature that fucoidan might be a potential therapeutic agent for treatment of hyperuricemia.
However, no direct evidence has indicated the urate-reducing effect of the sulfated polysaccharide yet.
This paper found that FL effectively decreased serum uric acid level through inhibiting production
and promoting renal excretion of urate in hyperuricemic mice induced by adenine.

2. Results

2.1. Blocking Adenine-Induced Increase of Serum Uric Acid in Mice

As shown in Table 1, adenine succeeded in elevating SUA to a significantly higher content in mice
compared to vehicle treatment, which indicated that a hyperuricemia mouse model was established
successfully. Meanwhile the similar serum urate levels of vehicle- and allopurinol-treated mice showed
that conversion of adenine to uric acid was blocked by allopurinol. Fortunately there was similar SUA
content to vehicle- and allopurinol-exposed mice, which was also observed in three groups of fucoidan
administered mice. Although no significant difference in SUA content was found among the groups of
three doses of fucoidan, vehicle and allopurinol, SUA content in the group of 150 mg/kg fucoidan was
slightly lower than that in the groups of other two doses of fucoidan. The data showed that fucoidan
efficiently repressed the increase of SUA content in adenine-administered mice, suggesting a potential
treatment of fucoidan for hyperuricemia.

Table 1. Fucoidan blocked adenine-induced changes of serum indicators of mice.

Uric Acid
(µmol/L)

Creatinine
(µmol/L)

Urea Nitrogen
(mmol/L) GOT (U/gprot) GPT (U/gprot)

vehicle 307.00 ± 56.61 * 74.83 ± 3.53 * 24.85 ± 1.17 * 67.81 ± 3.64 * 24.52 ± 2.3 *
adenine 737.22 ± 98.65 169.08 ± 6.61 42.11 ± 4.05 197.10 ± 16.56 78.87 ± 5.70

adenine/allopurinol 325.92 ± 43.46 * 79.99 ± 10.21 * 38.02 ± 3.21 65.68 ± 6.65 * 34.70 ± 3.31 *
adenine/FL100 373.66 ± 49.71 * 83.79 ± 8.68 * 26.96 ± 2.33 * 68.13 ± 8.50 * 29.53 ± 3.49 *
adenine/FL150 325.36 ± 67.46 * 76.76 ± 7.95 * 23.40 ± 2.40 * 67.75 ± 4.85 * 25.22 ± 2.05 *
adenine/FL200 368.41 ± 48.65 * 91.18 ± 8.74 * 25.73 ± 1.97 * 69.79 ± 10.48 * 30.53 ± 3.16 *

Notes: Mice were treated with normal saline (vehicle), adenine, adenine and allopurinol, adenine and FL (100,
150 or 200 mg/kg of fucoidan) for 28 consecutive days. Dosages of adenine and allopurinol were 75 and 45 mg/kg
body mass, respectively. Asterisk (*) expresses p < 0.05, vs. adenine treated group.
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2.2. Hepatoprotection of Fucoidan in Adenine Administered Mice

Hepatic function was assessed by liver relative weight (LRW), antioxidative indicators in liver
and enzyme activities in serum. The apparent effect was shown on alternation of body weight and
liver relative weight (Table 2). All mice exposed to adenine grew significantly poorer compared to
vehicle treated mice from week 1 to the end. However, no visible difference of body weight was
found among all adenine exposed mice, including adenine, adenine plus allopurinol, and adenine
plus fucoidan groups. At the end of the trial, LRW was determined. The results showed that though
adenine increased the LRW, allopurinol and fucoidan (150 and 200 mg/kg) kept LRW levels at a
normal state.

Table 2. Effects of fucoidan on body weight and LRW of liver/kidney of mice exposed to adenine.

Week 0 Week 1 Week 2 Week 3 Week 4

Body Weight (g) Relative Weight (mg/g)

Liver Kidney

vehicle 28.93 ± 2.69 36.75 ± 2.05 * 42.10 ± 1.73 * 43.10 ± 2.23 * 44.70 ± 2.95 * 5.38 ± 0.29 * 1.50 ± 0.18 *
adenine 28.57 ± 2.17 31.11 ± 1.91 29.56 ± 2.35 30.00 ± 3.42 30.28 ± 3.09 5.90 ± 0.39 2.16 ± 0.21

adenine/allopurinol 28.93 ± 1.31 31.44 ± 1.88 31.40 ± 4.14 34.16 ± 4.32 34.50 ± 3.13 4.99 ± 0.10 * 1.56 ± 0.21 *
adenine/FL100 28.96 ± 1.30 31.88 ± 1.40 33.07 ± 3.91 33.25 ± 3.15 31.95 ± 3.90 5.67 ± 0.22 1.77 ± 0.18 *
adenine/FL150 28.87 ± 1.35 32.18 ± 1.84 33.99 ± 2.76 34.67 ± 3.57 31.38 ± 3.25 5.08 ± 0.22 * 1.50 ± 0.10 *
adenine/FL200 28.63 ± 2.69 30.75 ± 2.05 33.81 ± 1.73 33.10 ± 2.23 32.70 ± 2.95 5.21 ± 0.20 * 1.52 ± 0.20 *

Notes: Mice were treated with normal saline (vehicle), adenine, adenine and allopurinol, adenine and FL (100, 150
or 200 mg/kg of fucoidan) for 28 consecutive days. Dosages of adenine and allopurinol were 75 and 45 mg/kg
body mass, respectively. Asterisk (*) expresses p < 0.05, vs. adenine treated group.

Table 1 presents the activities of both glutamic oxalacetic transaminase (GOT) and glutamic
pyruvic transaminase (GPT) in sera of adenine administered mice, which were pronouncedly higher
than that of vehicle treated mice. Although GOT activity was successfully reduced to the level of
control mice by allopurinol and fucoidan, GPT activity failed to be reduced in allopurinol treated mice,
but decreased by fucoidan.

The above-mentioned data suggested that allopurinol and fucoidan prevented mice from the
hepatic injury induced by adenine. The prevention effect was also demonstrated by the redox status
of liver. The data in Table 3 revealed significant decreases of both superoxide dismutase (SOD) and
catalase (CAT) activities, and an increase of malondialdehyde (MDA) content in liver of adenine treated
mice compared to control mice. Allopurinol failed to restore activities of both SOD and CAT to normal
status, but fucoidan succeeded.

Table 3. Fucoidan inhibited adenine mediated disruption of antioxidative capacity in liver or kidney
of mice.

SOD (U/gprot) CAT (U/gprot) MDA (nmol/100 mgprot)

Liver Kidney Liver Kidney Liver Kidney

vehicle 211.20 ± 11.25 * 143.75 ± 7.60 * 17.96 ± 1.40 * 20.41 ± 1.53 * 69.00 ± 8.33 * 32.06 ± 4.03 *
adenine 143.31 ± 14.90 115.91 ± 6.33 12.72 ± 1.55 16.62 ± 1.21 114.03 ± 26.22 77.11 ± 6.05

adenine/allopurinol 153.12 ± 10.30 146.11 ± 23.37 * 14.90 ± 1.35 22.49 ± 1.61 * 67.10 ± 14.19 * 49.36 ± 7.09 *
adenine/FL100 199.74 ± 12.65 * 144.41 ± 16.09 * 14.03 ± 1.24 20.54 ± 1.38 * 81.04 ± 15.41 * 35.19 ± 9.01 *
adenine/FL150 218.51 ± 25.10 * 154.07 ± 15.53 * 17.81 ± 0.95 * 21.04 ± 1.57 * 62.16 ± 21.20 * 29.22 ± 3.16 *
adenine/FL200 170.01 ± 11.35 136.83 ± 7.73 * 13.78 ± 1.12 18.45 ± 2.41 89.23 ± 11.12 35.21 ± 12.01 *

Notes: Mice were treated with normal saline (vehicle), adenine, adenine and allopurinol, adenine and FL (100,
150 or 200 mg/kg of fucoidan) for 28 consecutive days. Dosages of adenine and allopurinol were 75 and 45 mg/kg
body mass, respectively. Asterisk (*) expresses p < 0.05, vs. adenine treated group.

2.3. Attenuation of Adenine Mediated Renal Damage by Fucoidan

Renal function was evaluated by kidney relative weight (KRW), the level of antioxidative
indicators in kidneys and contents of creatinine and urea nitrogen in serum. Besides allopurinol,
fucoidan also reversed adenine mediated augment of KRW in mice (Table 2). Meanwhile, creatinine
and urea nitrogen content in sera of mice were augmented markedly by adenine. Although allopurinol,



Mar. Drugs 2018, 16, 472 4 of 10

as a therapeutic drug for hyperuricemia treatment, efficiently suppressed adenine induced elevation
of creatinine content, it was unable to affect the adenine-caused alteration of urea nitrogen content.
Fortunately, fucoidan declined both creatinine and urea nitrogen content (Table 1). Additionally,
the SOD and CAT activities were decreased significantly by adenine and were fully recovered by both
allopurinol and fucoidan. Moreover, MDA content in the kidneys of adenine treated mice, which was
significantly higher than that of control mice, was decreased to normal by fucoidan. Allopurinol clearly
reduced MDA content in the kidneys of adenine administered mice, but, as an inhibitor of uric acid
metabolism, it was incapable of declining MDA to the level of vehicle treated mice (Table 3).

Based on the above data, including SUA content, hepatic and renal function, the scheduled doses
of fucoidan (100, 150 and 200 mg/kg) effectively prevented adenine-induced hyperuricemia and
associated disorders. 150 mg/kg of fucoidan was used in the following work.

2.4. Inhibition Against Activities of Adenosine Deaminase and Xanthine Oxidase in Liver of Mice Exposed to
Adenine by Fucoidan

Adenosine deaminase (ADA) and xanthine oxidase (XOD), two critical enzymes in purine
nucleotide metabolism, convert purine to hypoxanthine and then to uric acid. Adenine administration
promoted pronouncedly the activities of hepatic ADA and XOD, but an identical and dramatic fall of
these activities occurred in both allopurinol and fucoidan exposed mice (Figure 1). The data suggested
that fucoidan blocked urate production via inhibiting hepatic ADA and XOD.
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Figure 1. Fucoidan inhibited adenine-mediated increase of hepatic ADA and XOD activities of mice.
Mice were treated with vehicle, adenine, adenine plus allopurinol, and adenine plus 150 mg/kg of
fucoidan for 28 consecutive days. Activities of hepatic XOD and ADA in mice were determined with
kits respectively according to manufacturer’s procedures. * p < 0.05.vs. adenine treated group.

2.5. Modification of Expression Profile of Renal Urate Transporter Gene in Adenine-Treated Mice

Urate transporter 1 (URAT1) is one of the most important urate transporters which affect critical
renal urate excretion. NF-κB is one of the important transcription factors involved. It was speculated
using western blotting whether fucoidan regulated URAT1 and NF-κB signaling pathways involved in
the regulatory mechanism. As Figure 2, the results showed that both adenine and allopurinol had no
effect on the expression profile of the renal urate transporter gene, urat1, and there was also no visible
difference in the expression profiles among vehicle, adenine and allopurinol treated mice. However,
URAT1 was downregulated dramatically in fucoidan exposed mice. Meanwhile, the expression and
activation of NF-κB p65 was promoted by exposure to adenine. Under administration of allopurinol or
fucoidan, NF-κB p65 expression and activation were kept at normal levels (Figure 3).
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Figure 2. Fucoidan downregulated URAT1 expression in kidney of adenine-treated mice. Mice were
treated with vehicle, adenine, adenine plus allopurinol, and adenine plus 150 mg/kg of fucoidan for
28 consecutive days. Content of URAT1 protein in kidney was assessed using assay of western blotting.
URAT1 was observed at the site of 60 kDa; β-actin was observed at the site of 43 kDa. * p < 0.05 vs.
adenine treated group.
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Figure 3. Fucoidan repressed adenine-induced expression and phosphorylation of NF-κB protein in
kidney of mice. Mice were treated with vehicle, adenine, adenine plus allopurinol, and adenine plus
150 mg/kg of fucoidan for 28 consecutive days. Expression and phosphorylation of NF-κB protein was
assessed using western blotting. NFκB p65, p-NFκB p65 (phospho-S536) and β-actin were observed at
the sites of 64 kDa, 70 kDa and 43 kDa, respectvely. * p < 0.05 vs. adenine treated group.
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3. Discussion

Hyperuricemia is a metabolic disease resulting from an imbalance between the endogenous
production and renal excretion of uric acid, and correlates closely with hypertension, cardiovascular
disease, insulin resistance, metabolic syndrome, diabetes mellitus, nonalcoholic fatty liver disease
and renal disorders [6,7]. Due to imperfections of current clinical agents, natural products and
Chinese traditional medicines are becoming important resources to screen for therapeutic drugs
without side-effects for the treatment of hyperuricemia [6–8]. Fucoidan is a kind of natural sulfated
polysaccharide from brown seaweed, and has been proven to have multiple bioactivities, including
hepatoprotection [22–24] and renal protection [14–19].

It can be speculated from the literatures that fucoidan might be useful for treatment of
hyperuricemia [14–17,22–24], however, that was first demonstrated by our current research. In our
current work, adenine induced hyperuricemia and mediated hepatorenal dual disorders, were in
fucoidan treated mice, prevented from causing adenine-mediated hepatic and renal damage.
The involved mechanisms of uric acid mediated renal dysfunction include tubular toxicity, oxidative
stress, inflammation, and so on [21,25]. Those might be critical factors for destroying the renal function
of adenine-treated mice, demonstrated by alternations of the relative organ mass, uric acid, urea
nitrogen, creatinine and antioxidative indicators. Fucoidan has been proven to have antioxidative
activity [26,27], preventing uric acid mediated oxidative stress in the kidneys of mice and result in the
recovery of renal function [15,16].

Similarly, high concentrations of uric acid also mediate hepatic toxicity. Reports showed that
activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were modified
in hyperuricemic rats that was hypoxanthine or potassium oxonate induced [28,29]. The hepatic
damage was also observed in adenine induced hyperuricemic mice of the current research, which was
attested by modifications to the relative organ mass, GOT and GPT activities and antioxidative
capacity. Fucoidan administration blocked these modifications, which must be correlative to the
antioxidative capacity of the marine sulfated polysaccharide. Hepatoprotection of fucoidan was
also found in ethanol intoxicated rats, the increases in the activity of hepatic AST and ALT were
inhibited by fucoidan, which caused the reduction of hepatic oxidative stress by the antioxidative
effects of fucoidan [23]. Due to urate mediated disruption of hepatic function, alternations of hepatic
ADA and XOD activities, two critical enzymes catalyzing the conversion of purine to uric acid [7],
were impossible to escape. Our work firstly demonstrated that the activities of hepatic ADA and
XOD in adenine mediated hyperuricemic mice were dramatically altered, and under the exposure of
fucoidan, the activities of the enzymes were kept at normal levels, identical to vehicle treated mice,
which was the reason of resulting in inhibition of uric acid production.

Apart from the inhibition of hepatic synthetic enzymes of uric acid, promotion of renal urate
excretion is another critical therapeutic strategy for hyperuricemia. Kidneys account for 70% of excreted
SUA, and approximately 90–95% of filtered uric acid is reabsorbed through proximal tubules [30,31].
Consequently SUA content depends on glomerular filtration and subsequent tubular reabsorption.
Imbalance of the two processes causes hyperuricemia, less excretion resulting in primary hyperuricemia
which accounts for about 90% of cases [32], has been considered as a marker for chronic kidney disease
or an independent risk factor for the development of chronic kidney disease [33,34]. Two thirds of
urate load is eliminated by kidneys on the basis of the synergistic effects of many urate transporters,
such as URAT1 [20]. URAT1 functions in the reabsorption of urate [20]. Although adenine brought
renal toxicity, it did not affect the expression of the transporter. Interestingly, the exposure to fucoidan
not only avoided adenine-induced renal impairment, but also promoted renal excretion of urate,
as demonstrated by the down-regulation of URAT1. These data indicated that fucoidan facilitated
renal urate excretion and prevented hyperuricemia associated kidney toxicity.

It has been testified that NF-κB, a critical transcription factor that can activate a large number of
pro-inflammatory genes, can be activated by uric acid [35], and that the activation can be inhibited
by fucoidan via inhibition of NF-κB p65 subunit phosphorylation [17,36–38]. These results were
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re-showed by this research. This work revealed that activation of NF-κB p65 in mice exposed to
allopurinol was inhibited, which may be caused by a uric acid decrease originating from the inhibition
of allopurinol on ADA and XOD. In the kidneys of mice treated with FL, inhibition of NF-κB p65
protein phosphorylation was also observed. SUA reduction resulted from the combined action of
FL on hepatic enzymes and renal URAT1 was a doubtless reason, while inhibition of NF-κB p65
protein activation by fucoidan should be another critical cause. Although there was no significant
difference between allopurinol- and FL-exposed mice, the lower ratio of p-NF-κB p65/NF-κB p65 in
allopurinol treated mice suggested that allopurinol exposure induced a stronger repression on the
activation of the NF-κB p65 subunit. Data showed that both FL and allopurinol inhibited NF-κB p65
activation, but urat1 gene expression was suppressed in FL exposed mice and unchanged in allopurinol
treated mice, suggesting that URAT1 may be not a downstream target molecule of the NF-κB p65
signaling pathway. Presently, no evidence indicates a direct relationship between allopurinol and
NF-κB p65 activation, or between NF-κB p65 signaling pathway and the urat1 gene. Therefore it is
impossible to deduce the involved regulatory mechanism, which is a critical issue that should be
explained urgently. Currently, the therapeutic strategy for the treatment of hyperuricemia often aims
to restrain acute episodes characterized by an inflammatory response of cells triggered by urate crystal
deposition [6]. Therefore, fucoidan had an anti-inflammatory effect on hyperuricemia caused acute
gout through suppressing activation of NF-κB signaling pathway. Meanwhile, fucoidan promotes
renal urate excretion via modifying the expression profile of urate transporter URAT1.

Summarily, this work firstly testified the efficient treatment of fucoidan on hyperuricemia through
two critical mechanisms, the promotion of renal urate excretion and the inhibition of hepatic urate
production. Fucoidan represses the activities of hepatic ADA and XOD, resulting in a decrease of urate
production, and downregulating URAT1 expression, leading to an increase in renal urate excretion.
Although the NF-κB signaling pathway was regulated in kidneys of mice exposed to FL or allopurinol,
it was impossible to determine whether the signaling cascade involved the regulatory mechanism of
urat1 gene expressional profile. Consequently, SUA content is reduced to normal levels. Moreover,
adenine induced hepatorenal impairment was recovered by fucoidan. As a traditional Chinese
medicine applied for more than one thousand years, Laminaria japonica is mainly grown in the coastal
areas of China, Japan and Korea. FL is estimated to be approximately 1.66 g/100 g in dried Laminaria
japonica and localized in an area between approximately 50–150 µm from the surface of Laminaria
japonica [39]. Therefore, it can be concluded that fucoidan could be a potential therapeutic drug for
treatment of hyperuricemia and acute gout because of its dual uricostatic and uricosuric effects.

4. Materials and Methods

4.1. Animals and Experimental Procedure

Male Kunming mice (20 ± 2 g) habituated in experimental conditions for 1 week were allocated
to 6 groups, vehicle treated group, adenine treated group, allopurinol treated group (adenine plus
allopurinol), and three fucoidan treated groups (adenine plus fucoidan), with 10 mice per group.
Fucoidan was administered by gavage at dosages of 100, 150 and 200 mg/kg body mass every day,
respectively, for 28 consecutive days. Dosages of adenine and allopurinol were 75 and 45 mg/kg
body mass, respectively. Drug-delivery and administration time were the same as fucoidan. Animals
were housed under standardized conditions in a room on a 12 h light/dark cycle with food and water
available ad libitum. The current study was approved by the Animal Ethics Committee of Guangdong
Ocean University, Zhanjiang, Guangdong, China.

4.2. Biochemistry Analysis

Blood was stored at 4 ◦C and allowed to coagulate to prepare serum. Liver and left kidneys were
prepared in to a homogenate in normal saline. Following centrifugation, supernatants were collected.
Biochemistry indicators of serum, liver and kidney were measured with detection kits according to
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the manufacturer’s protocol, including contents of uric acid, urea nitrogen, creatinine, MDA, and the
activities of GOT, GPT, SOD and CAT. The kits were purchased from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China).

4.3. Western Blot Assay

Supernatant of renal homogenates in radio immuno precipitation assay lysis buffer containing
phenylmethylsulfonyl fluoride (product of Beyotime institute of Biotechnology, Shanghai, China) were
added with a sample buffer and denatured in boiling water for 5 min. After sodium dodecyl sulfate
polyacrylamide gel electrophoresis, protein was transferred to a nitrocellulose membrane and then
probed with a matched monoclonal antibody (antibodies of NF-κB p65 (ab16502), phosph-NFκB-p65
(ab86299) and URAT1 (ab76385) from Abcam, Cambridge, MA, USA; β-actin antibody (AF0003)
from Beyotime Institute of Biotechnology, Shanghai, China) that could be captured by a horseradish
peroxidase conjugated secondary antibody (product of Beyotime Institite of Biotechnology, Shanghai,
China). A low background chemiluminesence detection system (W028-2, product of Beyotime institute
of Biotechnology, Shanghai, China) was used to visualize the membrane with the target protein. β-actin
was used as the internal reference.

4.4. The Relative Organ Mass of Liver and Kidney

The relative organ mass ratio was calculated as liver or kidney mass (mg)/mouse body mass (g).

4.5. Data Statistical Analysis

Data were expressed as mean ± standard deviation, and analyzed by one-way analysis of
variance using JPM software (7.0.2, SAS Institute Inc., Cary, NC, USA) and Tukey’s method. Statistical
significance was set at 0.05 which were marked with an asterisk.
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