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Abstract

Background: The Open Targets Platform integrates different data sources in order to facilitate identification of potential
therapeutic drug targets to treat human diseases. It currently provides evidence for nearly 2.6 million potential target-disease
pairs. G-protein coupled receptors are a drug target class of high interest because of the number of successful drugs being
developed against them over many years. Here we describe a systematic approach utilizing the Open Targets Platform data
to uncover and prioritize potential new disease indications for the G-protein coupled receptors and their ligands.

Results: Utilizing the data available in the Open Targets platform, potential G-protein coupled receptor and endogenous
ligand disease association pairs were systematically identified. Intriguing examples such as GPR35 for inflammatory bowel
disease and CXCR4 for viral infection are used as illustrations of how a systematic approach can aid in the prioritization of
interesting drug discovery hypotheses. Combining evidences for G-protein coupled receptors and their corresponding
endogenous peptidergic ligands increases confidence and provides supportive evidence for potential new target-disease
hypotheses. Comparing such hypotheses to the global pharma drug discovery pipeline to validate the approach showed
that more than 93% of G-protein coupled receptor-disease pairs with a high overall Open Targets score involved receptors
with an existing drug discovery program.

Conclusions: The Open Targets gene-disease score can be used to prioritize potential G-protein coupled receptors-
indication hypotheses. In addition, availability of multiple different evidence types markedly increases confidence as
does combining evidence from known receptor-ligand pairs. Comparing the top-ranked hypotheses to the current
global pharma pipeline serves validation of our approach and identifies and prioritizes new therapeutic opportunities.
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Background
There are currently 827 known human G-protein coupled
receptors (GPCRs) of which 406 are non-olfactory [1]. To-
gether, this amounts to approximately 2% of all known
protein-coding genes. They are, however, the largest ‘target’
class of the ‘druggable genome’ representing approximately
19% of the currently available drug targets [2, 3]. They have
long played a prominent role in drug discovery [4] – so
much so, that as of this writing, 475 FDA approved drugs
act on GPCRs [5]. Several reasons account for this
over-representation. GPCRs have ligand binding sites on the
outer cell surface membrane, and potent effects can be

achieved even from small ligand concentrations [2]. Some,
but not all GPCRs have endogenous peptidergic ligands,
small proteins produced by other cells that bind to the
GPCR and trigger the downstream signalling cascade.
Thus, endogenous peptides also provide a good starting
point for the design of potential new drug targets due to
their high tractability, specificity, safety, tolerability, and effi-
cacy, as well as lower production complexity than other
biopharmaceuticals [6]. These characteristics make GPCRs
and their endogenous peptidergic ligands an extremely
promising category of drug targets to investigate [7, 8].
To link potential drug targets, such as GPCRs, to disease

indications, several public databases integrating various
types of evidence are available including PHAROS [9], Dis-
GeNET [10], The Monarch Initiative [11], and DISEASES
[12] as well as the recently developed Open Targets
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platform [13]. This public-private platform integrates a
large number of different data sources to provide evidence
supporting the association between genes which could be
known or new potential drug targets and human diseases
[13]. As of October 2017, the Open Targets platform covers
more than 26,000 genes which include both protein-coding
as well non-coding gene identifiers and 9150 disease and
phenotypic terms. In total, it consolidates evidence for
nearly 2.6 million potential target-disease pairs. A scoring
scheme was developed capturing the overall confidence
and strength of a target-disease association given the avail-
able evidence such that the resulting association score ran-
ging from 0 (“no evidence”) to 1 (“strongest evidence”)
combines the observation frequency, the magnitude or
strength, and the confidence in the source of evidence for a
given target-disease association [13].
This is an exceedingly large number of hypotheses to

analyse which raises the question of how a drug discovery
scientist might prioritize amongst them. Potential ranking
strategies might include the overall Open Targets score, the
number of different types of evidence supporting the hy-
pothesis, or other measures computed over the Open Tar-
gets database, such as mutual information [14] or machine
learning approaches [15], that relate a given target-disease
pair to other, similar hypotheses. Criteria to consider that
are highly relevant to drug discovery but may currently res-
ide outside the scope of the Open Targets platform include,
for example, disease incidence and prevalence, unmet med-
ical need, the availability of disease models and biomarkers
[16], and druggability of the target [17].
Here we hypothesize that the evidence collected in the

Open Targets platform supporting gene-disease associa-
tions can be used effectively to identify and prioritize target
hypotheses for drug discovery. Focussing on a protein class
of particular interest to drug discovery as a use case, we
outline an innovative approach to identify and prioritize po-
tential new GPCR and endogenous peptidergic therapeutic
targets using the data behind the target-disease pairs from
the Open Targets platform. First, we describe the distribu-
tion of the target-disease pairs and corresponding scores in
the Open Targets platform database. Then we identify and
characterize sets of GPCRs as well as their endogenous
peptidergic ligands in the context of the Open Targets plat-
form. Lastly, we compare the top-ranked GPCR and pepti-
dergic targets to the current global pharma pipeline to
validate our approach and to identify potential new disease
indications and therapeutic opportunities.

Results
Distribution of the overall Open Targets score and
relationship to individual data types
At the time of this analysis the Open Targets Platform
integrates fifteen different data sources organized into
seven different data types: genetic association, somatic

mutations, RNA expression, known drug targets, af-
fected molecular pathways, animal models, and text
mining [13]. Each gene-disease pair receives a set of
scores, each ranging from 0 to 1, representing the seven
different data types as well as an overall cumulative
score. These scores are designed to incorporate mea-
sures of the frequency, effect size, and confidence of the
observed gene-disease evidence [13]. To examine the
distribution of the resulting scores we plotted the empir-
ical density and the cumulative distribution of the over-
all score, respectively (Fig. 1a). These plots suggest a
mixture of distributions with most gene-disease pairs re-
ceiving scores near zero (median overall score = 0.057), a
relatively broad peak around 0.15 and two other peaks
around 0.55 and 1, respectively. Interestingly, the 95th
percentile of the overall score is approximately 0.5 and
approximately 2.7% of the gene-disease pairs in Open
Targets have the maximum score of 1.
As has been observed elsewhere [18], the number of

gene-disease pairs with a positive score varies considerably
between the different data types. For example, 46% of the
pairs had a literature mining score greater than zero com-
pared to less than 5% of pairs with somatic mutation,
known drugs, or affected pathways scores greater than zero,
respectively (Fig. 1b). While the Open Targets Platform in-
tegrates many different data sources, most disease-gene as-
sociations (97%) are supported by only one or two different
data sources and only a fraction of pairs (0.44%) have evi-
dence from 4 or more different types of data sources. Com-
paring the overall score of a disease-gene association
against the number of data types where the individual data
type score is positive shows that the more independent data
sources supporting a given gene-disease association the
higher the overall score (Fig. 1c).

Characterizing GPCRs and endogenous ligands
We obtained a list of 403 human G-protein coupled re-
ceptors (GPCRs) from IUPHAR [19] of which 397
mapped to unique Entrez gene identifiers. In addition,
from the same source, we obtained a list of 529 human
endogenous ligands [19] which mapped to 412 unique
Entrez gene identifiers. It should be noted that some
genes encode multiple different peptides (e.g. the GCG
gene encodes glucagon, GLP-1, and GLP-2). 119 of the
GPCRs and 127 of the endogenous ligands are known to
interact according to IUPHAR [19] forming 681 unique
receptor-ligand pairs at the gene level. Of these pairs, 34
are 1:1 relationships meaning a GPCR binds exactly one
endogenous ligand and vice versa. The remaining
GPCR-endogenous ligand pairs are comprised of GPCRs
which have up to 17 ligands (Fig. 2a) and ligands that
interact with up to 8 different GPCRs (Fig. 2b).
Both GPCRs and endogenous ligands have a considerably

higher number of associated disease terms in Open Targets
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than other classes of genes. The average number of diseases
associated with GPCRs is 198 and 413 for endogenous li-
gands while the average number of associated diseases for
all other genes is 119 which is statistically significantly lower
(p= 1.8 × 10− 34 and p= 5.5 × 10− 117, respectively, Wilcoxon
rank sum test). Interestingly, the number of associated dis-
ease terms is actually lower than expected for endogenous
ligands when we use the relatively stringent 0.5 threshold
for the overall Open Targets score but remains higher than
expected for GPCRs (23 and 32, respectively, compared to
the average of 26) but these comparisons are not significant
at the 5% level when using the Wilcoxon rank sum test
(p = 8.3 × 10− 2 and p = 8.0 × 10− 1, respectively) (Fig. 2c).
The increased number of disease associations for
GPCRs and endogenous ligands is also reflected in the
overall distribution of the Open Targets association
score (Fig. 2d).

Combining GPCR and endogenous ligand disease
association evidences
Known GPCR-endogenous ligand pairs can be used to
accumulate additional evidence supporting a particular

disease hypothesis of interest. For example, the evidence
collected in the Open Targets platform suggests that
galanin, an endogenous ligand for the GPCR galanin re-
ceptor type 2 (GALR2), plays an important role in epi-
lepsy, one of the most common neurological disorders
(overall score = 1.0). Indeed, galanin has long been sug-
gested as a potential target to treat epilepsy [20]. In par-
ticular, there is evidence found through literature mining
(score = 0.004) indicating that galanin depletion from the
hippocampus may contribute to the maintenance of seiz-
ure activity [21], as well as genetic evidence (score = 1.0)
showing that a galanin loss-of-function mutation leads
to epilepsy in humans [22]. Interestingly, a recent paper
suggests GALR2 as a more suitable potential drug target
to treat epilepsy [23], but this literature mining result is
currently the only type of evidence supporting the
GALR2-epilepsy association in the Open Targets Plat-
form. As a result, the corresponding overall score is a
relatively low 0.018 which corresponds to the 20th per-
centile (Fig. 1a) and by itself does not stand out as a
compelling new therapeutic target hypothesis. However,
viewing the latter evidence together with the strong

Fig. 1 Distribution of the overall Open Targets score and relationship to individual data types. a Empirical density and cumulative distribution of
the Open Targets score. Density and distribution functions were estimated using the R functions density() and ecdf(), respectively, with default
parameters and using all pairs and 10,000 randomly selected pairs, respectively. b Number of gene-disease pairs with positive scores by type of
score (overall, genetic association, somatic mutation, known drugs, RNA expression, affected pathways, animal models, and literature mining). c
Comparison of the overall score of a disease-gene association and the number of data sources where the individual data type score is > 0. The
top panel shows the counts of target-disease pairs corresponding to the scores below
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genetic evidence for galanin leads to a much stronger
hypothesis. As this example illustrates, it may be advan-
tageous to consider ligand-receptor pairs in concert to
develop new hypotheses. Additional examples highlight-
ing GPCR-ligand pairs of interest are listed in Table 1.
To more systematically identify potential disease indications

associated with both an endogenous GPCR ligand and its
receptor, we assembled GPCRs and their corresponding en-
dogenous ligands that shared the same disease associations
in the Open Targets Platform.
Figure 3a and the corresponding Additional file 1:

Table S1 shows the overall Open Targets score for

Fig. 2 Characterizing GPCRs and endogenous ligands. a Number of endogenous ligands per GPCR and (b) number of GPCRs per endogenous
ligand. c Average number of gene-disease pairs by GPCR, endogenous ligand, and all other target types using all pairs (left) and pairs with overall
score > 0.5 (right). d Distribution of overall scores by target type (GPCR, endogenous ligand, and all other)

Table 1 Examples of known GPCR-endogenous ligand pairs with matching disease indications and corresponding Open Targets overall scores

Disease GPCR
Name

Score Endogenous ligand
Name

Score

Epilepsy GALR2 0.02 GAL 1.00

Obesity MC1R 0.04 POMC 1.00

Alzheimer’s disease FPR2 0.04 APP 1.00

Inflammatory bowel disease CCR3 0.05 CCL7 0.87

Hypertension AGTR2 0.15 AGT 1.00

Rheumatoid arthritis CCR6 0.99 CCL20 0.06

Macular degeneration CX3CR1 1.00 CX3CL1 0.05

Biliary dyskinesia SCTR 1.00 VIP 0.02

osteoporosis CALCR 1.00 ADM 0.04

vascular disease EDNRA 1.00 EDN2 0.04
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disease-GPCR pairs plotted against the score for corre-
sponding disease-endogenous ligand pairs. For this
analysis, pairs without any evidence were assigned a
score of 0. If there was a strong correlation between
disease-GPCR pairs and pairs of the same disease and
corresponding endogenous ligand, we would expect
most disease-gene pairs in this plot scatter around the
diagonal. However, the observed correlation is relatively
low (Pearson correlation = 0.21). Figure 3a indicates that
there is a large number of GPCR-endogenous ligand pairs
where the evidence is strong (e.g. overall score > 0.5) for
one but not the other partner, that is, evidence for disease
involvement is often asymmetrically reported for one or
other partner in these ligand-receptor pairs. It is possible
that the involvement in the disease is not mediated
through the partner interaction in such cases. However,
since the identities of both partners in these interactions
are well established, we should consider the evidence for
the GPCR and its known endogenous ligand together as a
pair to increase our confidence and supportive evidence
for potential new target hypotheses. For example, genetic
evidence for a disease association with an endogenous lig-
and may exist but the corresponding GPCR may turn out
to be the better drug target due to, for example, druggabil-
ity. To further quantify the added benefit of combining

supportive evidence from GPCRs and ligands we first de-
termined all disease-GPCR pairs and corresponding
disease-ligand pairs with positive overall scores. If a pair
had a positive score in only one category, we added the
corresponding pair in the other category with 0 score. We
then created joint disease-GPCR/ligand pairs and assigned
a new overall score as the maximum of the scores from
the disease-GPCR pairs and corresponding disease-ligand
pairs. Figure 3b shows the distribution of the increase in
overall score comparing the disease-GPCR pairs to the
corresponding disease-GPCR/ligand pairs and Fig. 3c
shows cumulative density function (CDF) for this change
in score. While 93% of scores increased by 0.2 or less,
many new high confidence pairs also emerged: 648
disease-GPCR/ligand pairs had a score of 0.5 or higher
but did not have any supportive evidence (i.e. score = 0)
for the corresponding disease-GPCR pair alone without
considering the ligand. Of those, 355 pairs had a new
score of 1.0 compared to the previous score of 0. Compar-
ing the number of disease-GPCR/ligand pairs to the num-
ber of corresponding disease-GPCR pairs alone, the
number of pairs without any evidence (i.e. score = 0) de-
creased by 62% and the number of high-confidence pairs
(score > 0.5) was more than 1100 higher, a 69% increase
(Fig. 3d).

Fig. 3 Comparing the overall Open Targets score for disease-GPCR pairs and the corresponding disease-endogenous ligand pairs showing a two
dimensional histogram (a), the distribution of the increase in overall score comparing the disease-GPCR pairs to the corresponding disease-GPCR/
ligand pairs (b), the cumulative density function (CDF) for this change in score (c), and % change of the number of pairs in the indicated brackets
when comparing disease-GPCR/ligand pairs to the corresponding disease-GPCR pair alone (d)
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GPCRs and endogenous peptidergic ligands and the
highest stage in global pharma pipelines
Based on the past success of GPCRs as drug targets [2],
GPCRs that have disease associations with a high score
in the Open Targets Platform but are not currently pur-
sued by the industry may potentially be high priority tar-
gets for the development of new therapies. Conversely,
GPCRs with existing drug discovery programs as well as
high scoring disease associations provide potential drug
repurposing opportunities for compounds modulating
these GPCRs if the top-ranked disease derived from
Open Targets is different from the current indication
pursued. To more closely examine this approach, we ob-
tained a database of current drug discovery programs
[24] and determined the highest stage in the drug dis-
covery pipeline for each GPCR and endogenous peptide.
Approximately half of the previously uniquely identified
GPCRs and endogenous peptides had at least one pro-
gram in the drug discovery pipeline (203 out of 397, and
209 out of 412, respectively; Fig. 4). We then stratified
GPCR-disease pairs and endogenous peptide-disease
pairs by the highest pipeline stage of the corresponding
GPCR and peptide, respectively. Approximately 73% of
GPCR-disease pairs with an overall Open Targets score

below 0.5 had at least one program in the drug discovery
pipeline for that target and this number increased to
93% for the GPCR-disease pairs with an overall Open
Targets score of 0.5 or higher which corresponds to the
95th percentile of the overall score distribution as de-
scribed above. In nearly 84% of such pairs, the GPCR
has been recorded in at least one post-clinical stage of
the drug discovery pipeline and only 6.5% of such pairs
involve GPCRs without any drug discovery program
(Fig. 4). Together, 56% of the GPCR-disease pairs involved
GPCRs that had reached a clinical stage and those pairs
had significantly higher overall scores (p = 3.8 × 10− 34,
Wilcoxon rank sum test). Similarly, 47% of the ligand-disease
pairs involved endogenous ligands that had reached a clinical
stage and those pairs also had significantly higher overall
scores (p= 1.3 × 10− 29, Wilcoxon rank sum test). However,
at least some of this relative over-representation of the
late-stage pipeline among pairs with overall Open Targets
score of 0.5 or higher may be driven by evidence resulting
from the very same drug discovery programs as individual
evidence types contribute differently to this enrichment. For
example, we observed that genetic association and animal
model evidence appears to be independent of pipeline status
while literature evidence does not. For endogenous peptides,

Fig. 4 GPCRs (a) and endogenous peptidergic ligands (b) and the highest stage in global pharma pipeline. In each panel, the leftmost chart
shows the distribution of highest stage (post-clinical, clinical trial, pre-clinical, none) by target type while the other two charts show such
distribution among the gene-disease pairs within the Open Targets platform stratified by corresponding overall score (< 0.5, middle; ≥0.5 right)
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the differences between lower Open Targets scores (< 0.5)
and high Open Targets scores (≥0.5) are less prominent. For
example, the endogenous peptide-disease pairs with an over-
all Open Targets score below 0.5 as well as the pairs with a
score of 0.5 or higher both included approximately 29% of
pairs where the ligand did not have any program in the drug
discovery pipeline.
To illustrate how the Open Targets platform might be

applied to prioritize a particular target-disease hypoth-
esis for drug discovery, consider one of the examples
listed in Table 2, GPR35 for inflammatory bowel diseases
(IBD). The incidence and prevalence of IBD such as
Crohn’s disease and ulcerative colitis are increasing over
time globally [25] and estimates suggest that ~ 1.4 mil-
lion people in the United States and 250,000 people in
the United Kingdom suffer from this disease [25, 26].
The aetiology is currently not well known, and it is hy-
pothesized that the genetically susceptible host suffers
from compromised intestinal immune system response
to commensal bacteria [25]. Currently, there is no
known cure for this chronic condition, and constant care
& symptomatic treatment is needed for patients suffer-
ing with this condition. Several genome-wide association
studies have identified the GPR35 locus as one of the
susceptibility loci for IBD [27, 28]. As the evidence listed
in the Open Targets platform shows, GPR35 is currently
investigated in clinical trials for pruritus and mastocyto-
sis and presents a promising new therapeutic target for a
number of disease indications including inflammatory
and cardiovascular disease [29–33]. Currently, no drug
targeting GPR35 is approved for IBD. Taken together,

the evidence compiled in Open Targets strongly suggests
that GPR35 could be investigated as a novel therapeutic
option for IBD. It should be noted that lodoxamide, a
GPR35 agonist, is an approved drug for conjunctivitis
which could potentially be repositioned for IBD.
Another such example includes C C-X-C motif chemo-

kine receptor 4 (CXCR4) as a potential new drug target
for infectious diseases. The Open Targets platform identi-
fies weak supporting evidence from RNA expression and
genetic associations (score = 0.01 in each case) but strong
pathway evidence. CXCR4 is part of the ‘Binding and
entry of HIV virion’ pathway, a manually curated pathway
from Reactome (score = 1.0), but is also listed in various
relevant gene ontology pathways such as GO:0001618
‘virus receptor activity’ which can easily be determined by
following the link-out to the Uniprot database within the
Open Target platform entry for CXCR4. The CXCR4 re-
ceptor is actually well known to play a critical role for the
entry of the human immunodeficiency virus (HIV) into
CD4+ T-cells but other viruses use this entry as well [34].
The literature text mining evidence shown in the Open
Targets platform receives a score of 0.21. However, the
platform identifies nearly 1200 publications further
strengthening the hypothesis. Table 2 lists additional spe-
cific examples of possible repurposing opportunities and
Additional file 1: Table S2 lists examples with overall score
of 0.5 or higher.

Discussion
Drug discovery and development programs focus on achiev-
ing therapeutic efficacy upon modulation of a specific drug

Table 2 Examples of potential disease indications for GPCRs and endogenous peptides and corresponding Open Targets overall
scores that represent new target hypotheses or potential repurposing opportunities

Gene Disease term Score

GPCRs Repurposing opportunity GPR35 Inflammatory bowel disease 1.00

CXCR4 Infectious disease 1.00

PTGER4 Inflammatory bowel disease 0.90

TSHR Graves disease 0.67

New target NPSR1 Asthma 1.00

LPAR6 Alopecia 1.00

CELSR2 Coronary heart disease 0.92

GPR65 Crohn’s disease 0.81

Endogenous peptide Repurposing opportunity TNFSF15 Inflammatory bowel disease 1.00

AGT Hypertension 1.00

IL17F Immune system disease 1.00

CALCA Cardiovascular disease 1.00

New target FBN1 Vascular disease 1.00

COL3A1 Cardiovascular disease 1.00

NPPA Cardiomyopathy 1.00

IL33 Respiratory system disease 0.77
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target with a molecule in a patient population. A number of
computational approaches to aid in target identification have
been considered, and along with various bioinformatics re-
sources they also point to the application of cheminfor-
matics based approaches for ligand discovery [35]. However,
the hypothesis that modulation of a specific target may po-
tentially result in therapeutic benefit is often based upon
years of scientific work which involves generating and/or ac-
cumulating experimental evidence in an iterative manner
and then meaningfully integrating that information to fur-
ther lend support to that hypothesis. The scientific evidence
to build that hypothesis comes from multiple sources; and
integration as well as evaluation of that data is critical for
drug discovery programs. Especially in a world of rapidly
growing data, the ability to integrate data from multiple
sources with platforms such as Open Targets, presents an
opportunity to systematically evaluate the available evidence
to quickly generate hypotheses to identify targets that may
further be followed up with additional experimentation [13].
It should be noted that the purpose of such efforts is not ne-
cessarily to identify novel target-disease associations per se
but rather to prioritize such associations in order to identify
the most promising opportunities for drug discovery.
In this study, we present the development and applica-

tion of a systematic target identification approach on
data from Open Targets platform. We first examine and
characterize the distribution of the Open Targets score
and its relationship with the individual evidence type
scores. We then focus on a very successful target class of
proteins in drug discovery, G-protein coupled receptors
(GPCRs), along with their endogenous ligands. Specific-
ally, we use a list of GPCRs and endogenous peptidergic
ligands from IUPHAR, map them to Entrez gene identi-
fiers, assemble data from various sources of evidence in
the Open Targets platform and associate the disease
terms with therapy areas for broader categorization. Al-
though we are focusing on GPCR-ligand pairs in our
analysis, our approach can be generalized to any hetero-
multimeric proteins or potentially to any pairs of pro-
teins known to directly interact. Finally, we compare the
Open Targets derived target-indication hypotheses
(based on gene-disease associations) to the global
pharmaceutical drug discovery landscape as a means to
evaluate some of these hypotheses.
We observed that both GPCRs and endogenous li-

gands have a higher than expected number of associated
disease terms in Open Targets. One explanation for this
seemingly higher disease-relevance could be that these
classes of proteins simply are better studied and under-
stood than the proteome as a whole due to the extraor-
dinary success of these protein classes as therapeutic
drug targets [36]. The relatively high number of
GPCR-disease pairs with an existing drug discovery pro-
gram seems to confirm this view and suggests that this

class of potential drug targets is well suited to evaluate
the Open Targets score. We found that an Open Targets
score of 0.5 corresponds to the 95th percentile of the
overall score distribution and that over 90% of GPCR-
disease pairs with a score of 0.5 or higher had a corre-
sponding drug discovery program for that GPCR. This
suggests that an overall Open Targets score of 0.5 could
be used as a high confidence threshold when evaluating
potential new target-indication hypotheses. We also
found that confidence in such hypotheses was increased
by more individual supporting evidence types.
Our current study highlights the benefit of combining

different, independent sources of evidence supporting a
target-disease hypothesis to increase confidence in its
validity. This relationship was intentionally reflected in
the design of the individual scores and, also in the over-
all score [13]. In particular, the overall score increases
with the number of positive individual scores for a given
target-disease hypothesis as shown in Fig. 2c. Another
way the Open Targets platform can be used to accumu-
late existing supporting evidence is by combining data
for closely related targets such as through a shared mo-
lecular pathway, heteromultimeric protein complexes, or
through receptor-ligand pairs such as the examples
highlighted in Table 1. It should be noted that the inter-
pretation of an observed association between genes or
proteins and diseases or medical conditions is not trivial.
Such relationship may or may not be causal and it may
be direct or indirect. Furthermore, it is often unclear if
the disease association is due to an increase or decrease
in activity or abundance of the functional protein. Some
of the evidence integrated in the Open Targets database
provides more clarity in this regard (e.g. availability of a
known drug, Mendelian trait, knock-out animal model).
In the context of GPCR-ligand relationships, it is also
important to consider whether a ligand acts in a patho-
logical or therapeutic role. For example, glucagon-like
peptide-1 (GLP-1) can decrease blood sugar levels which
has led to the development of GLP-1 receptor agonists
as new drugs to treat type 2 diabetes [37]. Conversely,
vasopressin plays a central role in the pathogenesis of
hyponatremia which has led to the development of vaso-
pressin receptor antagonists as a treatment [38]. As a re-
sult, each target-disease association of interest requires
further careful evaluation of the evidence and subse-
quent experimental validation.
As with any systematic or global computational solu-

tion to a biological or biomedical problem, simplifica-
tions and generalizations are required. Therefore, a
general approach applied to all disease terms and all po-
tential drug targets such as the Open Targets platform
may be more suitable in some situations than in others.
For example, the current evidence presented by the
Open Targets platform concentrates on data generated
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through methods that focus on the DNA or RNA level but
the action of a therapeutic drug is most often mediated at
the protein level, e.g. by disrupting protein-protein interac-
tions [39] or protein complexes comprised of multiple dif-
ferent genes [40]. In other cases, a protein might have
multiple splice forms, or both a membrane-bound and a
soluble form. In addition, in some cases the same gene en-
codes multiple different peptides such as the GCG gene en-
coding glucagon, GLP-1, and GLP-2, each of which may
have different receptors as well as different disease associa-
tions. Additional evidence that reflects such complexities
could enhance the utility of the platform.
It should also be noted that as with any computational

approach, false positive and false negative results are un-
avoidable and should be expected. Each target-disease pair
merely represents a hypothesis that serves as a starting
point for drug discovery scientists looking to begin a new
research program. These hypotheses still require careful
evaluation, prioritization, and experimental validation.
Two final examples illustrate this point. Neuropeptide S
receptor 1 (NPSR1) was identified as a potential new drug
target for asthma in the Open Targets platform. Strong
genetic evidence supports the hypothesis [41–43] and the
Open Targets platform identifies over 60 publications sug-
gesting a role of NPSR1 in asthma but the exact mechan-
ism of NPSR1 in the disease remains elusive. Although
increased NPSR1 protein levels in plasma were reported
in asthma [44] and increased NPSR1 mRNA expression
was observed in eosinophils from severe asthmatic pa-
tients [45], experiments in an experimental asthma mouse
model showed no impact of Npsr1 deletion on airway in-
flammation or hyper-responsiveness, and the authors sug-
gested that NPSR1 affects the disease through a central
nervous system-mediated pathway [46]. Similarly, G
protein-coupled receptor 65 (GPR65), a receptor for psy-
chosine and several related glycosphingolipids, received a
strong Open Targets score for Crohn’s disease mostly due
to its strong genetic association [28, 47, 48]. The protein’s
role in the disease is not entirely clear but it may play role
in proton sensing [49] or acid sensing [50, 51] and may
regulate cytokine production of T cells and macrophages
[52, 53]. These examples further illustrate the importance
of systematically mining the Open Targets data and then
prioritizing target-indication pairs for follow-up experi-
mental work to validate the hypotheses.

Conclusion
In summary, by utilizing the Open Targets platform, data,
and evidence model, and by interrogation of underlying
and additional data, we have been able to generate various
GPCR – indication pair combinations, which form the basis
for development hypotheses for potential drug discovery
programs and this approach can be generalized in a
straightforward fashion to include other drug target classes.

Methods
Open targets platform data
Open Targets gene-disease pairs and scores (September
9, 2017 version, Release 3.2; JSON format) were down-
loaded from the Open Targets website [13]. The data
download was parsed capturing disease term and Experi-
mental Factor Ontology (EFO) identifier, Ensembl gene
identifier and symbol, as well as 8 scores: overall, genetic
association, somatic mutation, known drug RNA expres-
sion, affected pathway, animal model, and literature min-
ing scores, respectively. Ensembl gene identifiers were
mapped to Entrez genes and official HUGO gene sym-
bols using relevant Bioconductor packages [54, 55].

Experimental factor ontology (EFO)
The EFO [56] was downloaded in OBO format (Septem-
ber 7, 2017 version). The ontology was parsed recursively
using the “is_a” relationships encoded in each entry in
order to determine one or more therapeutic areas for each
disease term. Specifically, an EFO term was considered a
therapeutic area if it was a directly associated with “dis-
ease” (EFO:0000408) through an “is_a” relationship. A
small number of such top-level terms were manually re-
mapped to a different therapeutic area (e.g. “heavy metal
poisoning”, “malignant epitheloid mesothelioma”, and
“sudden infant death syndrome”).

GPCRs and endogenous peptides
Three data tables were downloaded from IUPHAR
(http://www.guidetopharmacology.org) [19]: (a) a list of
GPCRs, (b) a list of endogenous peptides, and (c) the list
of all interaction data for endogenous ligands and their
GPCR targets. GPCRs were mapped to Entrez gene identi-
fiers by gene symbols, and endogenous peptides were
mapped to Entrez gene identifiers by Uniprot IDs using
relevant Bioconductor packages [54, 55] in both cases.

Comparison to Pharmapipeline
The Pharmapipeline database was retrieved from Informa
PLC [24]. It contains data on the current global pharma-
ceutical drug discovery pipeline and identifies drugs discov-
ery programs, their current status, molecular target, and
indication, among other data. Molecular target identifiers
were mapped to one or more Entrez gene IDs and drugs
without a matching gene identifier were removed from fur-
ther analyses. We summarized the drug discovery pipeline
stages as follows: none (“N/A”, global status 1), pre-clinical
(global status 2–5), clinical trial (global status 7–9), and
post-clinical (global status 10–13). For target-indication
pairs with multiple corresponding drug discovery programs,
we chose the highest stage as representative.
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