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Abstract

Regardless of all efforts on community discovery algorithms, it is still an open and challeng-

ing subject in network science. Recognizing communities in a multilayer network, where

there are several layers (types) of connections, is even more complicated. Here, we concen-

trated on a specific type of communities called seed-centric local communities in the multi-

layer environment and developed a novel method based on the information cascade

concept, called PLCDM. Our simulations on three datasets (real and artificial) signify that

the suggested method outstrips two known earlier seed-centric local methods. Additionally,

we compared it with other global multilayer and single-layer methods. Eventually, we applied

our method on a biological two-layer network of Colon Adenocarcinoma (COAD), recon-

structed from transcriptomic and post-transcriptomic datasets, and assessed the output

modules. The functional enrichment consequences infer that the modules of interest hold

biomolecules involved in the pathways associated with the carcinogenesis.

Introduction

In the network analysis fields, such as social networks and network biology, community detec-

tion is an essential topic in discovering strongly interconnected objects with similar identity or

behavior [1, 2]. The problem of unfolding community structures is known to be computation-

ally difficult to solve, while its approximate solutions have to cope with accuracy and efficiency

issues that become more severe when the network gets larger [3]. It was proven that these com-

munities (modules) play vital roles in the performance of the whole system and their identifi-

cation yields remarkable empirical insights about complex systems [4–8]. For example, in a

metabolic network, communities correspond to the biological functions of the cell [9, 10]. In

the same way, in a web graph, communities exhibit topics of interest [11, 12]. Presently, there

are varieties of methods to explore communities in networks with dissimilar topological
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properties [13–16]. In this context, various graph community detection algorithms have been

published [2, 14, 17–19] which were primarily categorized in two classes of agglomerative and

divisive. Over time, different approaches, such as overlapping vs. non-overlapping [20–22],

local vs. global [23–26], sparse vs. dense [14, 27, 28], and single-layer vs. multilayer [25, 29–32]

community detection methods were defined that their difference is in their underlying

method, application or use case datasets.

The introduction and formulation of multilayer networks [33–35], in which every layer sig-

nifies a distinct variety of interaction between nodes, has attended more interest of graph min-

ing researchers [29–32, 36, 37]. There is a consensus among academics that identifying

communities in a single network is not sufficient to analyze the structure and the performance

of a real-world system [38–40]. However, the complex foundation of multilayer networks

makes it challenging to explore communities precisely. In the context of multilayer commu-

nity detection, layer-aggregation, ensemble clustering, and multilayer-extension are three

methodologies used by publications [41]. It has been shown that the multilayer-extended

approach (simultaneous analysis) overtakes the layer-aggregated or ensemble solutions [42,

43]. There are several recent multilayer-extended techniques [29, 44, 45], which are mainly

designed for the global community detection problem. Now, despite these prominent meth-

ods, it is an open and hot topic to optimize and improve those algorithms.

Multilayer community detection is a general term that may be Global or Local. In global

community detection, the goal is to explore all communities inside the whole network. How-

ever, local community identification is a distinct and beneficial category in which the objective

is to explore the community surrounding a predefined node, called seed [46]. This is helpful

when there exists a known seed and we are seeking for the other interrelated and analogous

nodes [23, 41, 46–49]. For example, when we are looking for all friendship communities in a

school dataset, we are performing global community detection. Whereas, when we look for the

friendship community of a special person, we explore his/her local community. It is notewor-

thy that, a local method could be used as global by seeding different nodes. However, choosing

the correct set of seeds will be effective in this process [46–48]. In this case, multiple seeds may

correspond to the same community. Some seed-based global approaches, first, specify seed

nodes (such as the hub or central nodes), then predict their surrounding communities. In the

school friendship example, this is equivalent to selecting several people, then finding their local

communities. Various publications on seed-based graph partitioning subject reveal its impor-

tance in real-world applications [20, 21, 23, 24, 47].

Recently, the application of the multilayer approach in diverse regions of natural science

has opened a new outlook to explore world facts. In biology, layers are reconstructed from

genomics, transcriptomics, proteomics, metabolomics, and signaling data, and analyzed com-

putationally to realize reasons for biological events such as disorders [50–56]. Herein, we

offered a new seed-centric community detection algorithm based on the network propagation

theory, named “Propagation-based Local Community Detection for Multilayer environment”

(PLCDM). In this method, the community is discriminated against based on the information

flow extent of its containing nodes. An information cascade from the seed node will target its

neighborhood, especially neighbors with tight connections. We utilized this idea to identify

the most affected zone around the seed node as its surrounding module. To mimic such a

propagation strategy, a biased random walk with a random restart process is employed. The

process of information cascade (implemented by random walk) from the seed object is

repeated several times and the module containing more portion of the information is selected

as the community structure for that seed. The proposed technique is tested on one real and

two simulated datasets and the obtained results demonstrate that modules specified in this way

are more accurate than former methods with a small false discovery rate. The source code of
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PLCDM implementation is available on our GitHub page (https://github.com/LBBSoft/

PLCDM).

In the roadmap of this study, as depicted in Fig 1, two stages of implementation were

defined: first, evaluation of the PLCDM, and second, a case study of the application of

PLCDM on the colon cancer data to identify related biomolecules involved in carcinogenesis.

Besides, in the first stage, to prepare gold-standard data for the verification of the suggested

methodology, we designed two additional algorithms: 1- modular graph generation, and 2-

multilayer network simulation from a single-layer graph, which are both reported in the Sup-

porting information.

Materials and methods

Community detection

Herein, we presented a multilayer seed-based local community detection approach based on a

biased random walk with a random restart process, simulating information diffusion from a

predefined seed node. From this viewpoint, in a multilayer graph G (Eq 1) with n = |V| nodes

and k = |L| layers, L = {l1, l2,. . .,lk}, indicating different types of interactions (undirected net-

works), a local community around the seed node s is defined as a set of nodes having a consid-

erable extent of information streamed from s and shared by layers.

G ¼< V; E1;E2; . . . ;Ek : Ex � V � V; 8 x � f1; . . . ; kg > ð1Þ

To achieve such a community, utilizing the information diffusion idea, we established a

graph random walker that moves randomly to neighbor nodes and scores them in each step.

Then the community is exploited based on the scores that each node gained. To implement

this kind of random walk, we have considered three criteria that are formulated in Eqs 2 to 5.

First, we predisposed the walker to move to neighbors that have a large number of neighbors

in common with the primary node. It originates from social relationships that the greater the

number of mutual friends between two individuals, the stronger friendship (higher diffusion

probability) between them. If we were to describe this phenomenon in a biological subject as

protein-protein interaction (PPI) network, the two receptors that bind to a large number of

common ligands are similar in 3-D structure and conformation and have analogous binding

sites. Therefore, they may have the same function and activity and are likely to be in the same

biological pathway (module). Second, the walker should not go in the direction of nodes of

other communities that have common neighbors with the host node. Without this constraint,

in a scale-free topology, the walker tends to move toward other hub nodes (which have more

common neighbors and their degree is high). In another biological simulation, this constraint

prevents housekeeping genes from being part of a particular pathway (community). Third,

selecting common connections is another critical point that leads to a correct calculation. For

example, if there are different relationships between two people (Facebook, Twitter, email,

etc.), there will be a high probability that they are both in the same community. Alternatively,

in a biological example, if there is a co-expressional pattern between the two genes and their

products form protein complexes, this increases the likelihood of their joint involvement in

biological processes. This tendency should be reflected in the behavior of random walker. To

this end, we let the walker move through edges that exist in most layers with higher probability.

Applying common-edges influence in the random walk probability will lead to the extraction

of a shared structure between the layers. We multiply this value to the normalized weight to

force the walker to move towards the common structure between layers.

Mathematically, we formulated these three concerns in Eq 2, where Pl(i,j) is the intra-layer

probability of moving from a node i to a node j in layer l. In this equation, each term considers
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one of the constraints mentioned above. It is worth mentioning that Γl(i) denotes the neighbor

set of node i in layer l (Eq 3), and ω(i,j) is the weight of edge (i,j) (defined in Eq 4) in the multi-

layer network; However, other edge weighting methods could be utilized (i.e. Entropy-based

weighting proposed by Hmimida et al. [41]). It is a value in the range [0, 1] and does not

depend on the layer; it is used to smooth probabilities. Also, Al stands for the adjacency matrix

of layer l.

Pl i; jð Þ ¼
jGlðiÞ \ GlðjÞj þ 1

jGlðiÞj þ 1
�

1

jGlðjÞj þ 1
� o i; jð Þ ð2Þ

GlðiÞ ¼ f8 j� V : ði; jÞ 2 Elg ð3Þ

o i; jð Þ ¼
P

lAlði; jÞ
k

; where Al i; jð Þ � 0; 1f g ð4Þ

Fig 1. The roadmap of the study. Stage A), Method evaluation. Here, to verify the performance of the proposed

algorithm, three datasets were used: 1- a multilayer network constructed from a generated artificial modular single-

network (created through a modular single-network generation algorithm, see S1 Appendix), 2- a multilayer network

simulated from a synthetic modular single-network provided by the Graph Challenge data repository, and 3- a real

social multilayer network published by Rossi et al. [57], based on five social interconnections (Facebook, lunch,

coauthor, leisure, and work). The multilayer simulation algorithm in cases 1 and 2 was described in S1 Appendix. In all

these three multilayer datasets, gold-standard communities were specified previously. For every dataset, the original

multilayer and the aggregated single-layer network is used by methods PLCDM and ML-LCD (multilayer-specific),

and Seed-Set-Expansion (single-layer-specific) to explore communities. Stage B), Application of the PLCDM on a

reconstructed two-layer network of the colon adenocarcinoma (COAD).

https://doi.org/10.1371/journal.pone.0255718.g001

PLOS ONE A novel multilayer local community detection for biological modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0255718 August 9, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0255718.g001
https://doi.org/10.1371/journal.pone.0255718


In addition, the random walker must be capable to change layers and score nodes according

to the topology of layers. Here in Eq 5, Ri(ls, lt) denotes the probability of moving from a typical

node i in layer ls, to its counterpart node i in layer lt. Ideally, as much as the two counterpart

nodes are similar in their neighbors, the probability of moving between them should be larger.

To capture this kind of similarity, we used the Jaccard similaritymeasure. Here also, it is possi-

ble that in a layer, a node to be isolated without any connection to other nodes. Therefore, to

prevent division by zero we added 1 to the numerator and denominator of the equation. A typ-

ical information diffusion process (simulated by a random walk with random restart from a

seed node) in the multilayer network is illustrated in Fig 2B.

Ri ls; ltð Þ ¼
jGlsðiÞ \ Glt ðiÞj þ 1

jGlsðiÞ [ Glt ðiÞj þ 1
ð5Þ

Starting from the seed node and proceeding random walks toward the most probable

neighbors, nodes in the vicinity of the seed node will have a score indicating their share of

information. After a few steps (which is specified randomly), the walker jumps to the seed

node to start a new propagation. This is equal to multiple parallel information cascade from

the host node s.
It is worth mentioning that PLCDM is applicable to single-layer graphs (e.g., aggregation of

multilayer networks). In this condition, the walker will always move on the existing layer with-

out changing layers.
Algorithm 1. PLCDM
1. Input: multilayer, seed, iteration_count, random_jump_prob,

layer_change_prob
2. Output: community
3. V = set of nodes in the multilayer
4. n = number of nodes
5. layers = set of layers in the multilayer
6. k = number of layers
7. scores = vector of nodes scores initialized to 0
8. R = inter-layer transition probability matrices initialized to 1/k
9. P = intra-layer transition probability matrices initialized to 1/n
10. for layer l in layers:
11. for nodes i, j in V:

Fig 2. Demo of community detection procedure. (A) Extraction of a community using the information share (z-

score) extent of vertices. (B) Random walk with random restart process from a seed node in a typical multilayer

network.

https://doi.org/10.1371/journal.pone.0255718.g002
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12. calculate Pl(i,j)
13. for node i in V:
14. for layers s, t in layers:
15. calculate Ri(ls,lt)
16. current_node = seed
17. scores[current_node] + = 1
18. current_layer = choose a layer randomly from layers
19. for 1 ! iteration_count:
20. neighbors = get neighbors of current_node
21. current_node = select a neighbor randomly from neighbors con-

sidering intra-layer probabilities P
22. scores[current_node] + = 1
23. jump = jump_or_stay(random_jump_prob)
24. if jump:
25. current_node = seed
26. scores[current_node] + = 1
27. change_layer = change_layer_or_stay(layer_change_prob)
28. If change_layer:
29. current_layer = select a layer randomly from layers consid-

ering inter-layer probabilities R
30. scores = normalize (scores)
31. community = select nodes with score > 0
32. return community

As the scores are calculated, they are transformed by the simple z-score method [58]. With

this transformation, not only scores fall in a smaller range, but also, scores larger than the aver-

age will be positive, and scores smaller than the average will be negative. Finally, the output

community is specified from nodes that their normalized score is positive (their scores are

larger than the average, see Fig 2A). At every step, probabilities of moving to the neighbors of

the current node are rescaled such that their summation is one. The whole procedure is

described in Algorithm 1.

The proposed method is also applicable to single-layer graphs. In this case, there is not any

layer change (the change_layer_or_stay function in the algorithm always will return false), and

the walker keeps moving based on intra-layer probabilities.

The algorithmic complexity of PLCDM is composed of the complexity of inter-layer and

intra-layer probabilities calculation, and the random walk iterations. By considering n as the

number of nodes in the multilayer network, and k as the number of layers such that n�k, the

total complexity is [O(kn2)+O(nk2)+O(t)]ffiO(kn2) where t is the number movements (a con-

stant value). Here, O(kn2) is the complexity of intra-layer probabilities calculations and O(nk2)

denotes the complexity of inter-layer probabilities calculations. It demonstrates that the time-

consuming part is the process of calculating intra-layer probabilities of layers, and then the

output community is extracted in a linear time. Moreover, the memory space complexity is [O
(kn2)+O(nk2)+O(n)]ffiO(kn2). For example, in a typical implementation of the algorithm for a

5-layer network and 104 nodes in each layer, it uses about 3.73 GB of memory and runs in 23

minutes to calculate the probability matrices. Then, the calculation of the output community

will terminate in a few seconds. However, the time consumed depends on the processing

power of the system.

Network preparation

For the two stages accomplished in this study, stages A and B in Fig 1, different datasets were

utilized. To confirm the performance of the presented method (stage A), we need gold-stan-

dard multilayer networks with prespecified communities. Here, three datasets with predefined

ground-truth communities were employed; one real multilayer network (based on five social
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interconnections: Facebook, lunch, coauthor, leisure, and work), labeled Multilayer1, pub-

lished by Rossi et al. [57], and two simulated multilayer networks (S1 Appendix) from two dis-

tinct single-layer graphs, prepared by (1) Graph Challenge data repository (https://

graphchallenge.mit.edu/data-sets), labeled Multilayer2, and (2) our modular network genera-

tion algorithm available in S1 Appendix, labeled Multilayer3. In the case of multilayer simula-

tion from a single-layer network (see S1 Appendix), since the generation is achieved using a

probabilistic model; it is obvious that the obtained network from the layer aggregation of the

simulated multilayer network, differs from the original single-layer network. In all these three

multilayer networks, edges are undirected and unweighted and nodes may be different in

every layer.

At stage B, we apply the PLCDM method on a reconstructed two-layer network of colon

cancer to test if it can uncover functional modules having a role in the carcinogenesis biologi-

cal pathways. In this multilayer, the first layer is a gene co-expression, and the second one is a

protein-protein interaction graph. In the co-expression layer, nodes are genes, and edges show

similar expressional patterns between genes. However, in the PPI layer, nodes are proteins,

and their interrelations are physical binding interactions. As proteins are gene products, and

to align layer nodes, we used the corresponding gene symbols as node labels in both layers.

This structure is used in multiple earlier works [36, 59, 60]. In the proposed structure, we only

considered intra-layer and coupling inter-layer edges, regardless of possible (non-coupling)

gene-protein binding interactions. Herein, two types of biological data were utilized to model

cancer states. For the co-expression layer, FPKM-UQ (Fragments Per Kilobase of transcript

per Million mapped reads upper quartile) normalized gene expression profile of COAD

patients were downloaded from the GDC data portal (https://portal.gdc.cancer.gov/). After

preprocessing the expression data, genes with the following conditions were excluded: (1)

genes with missing values in any sample [61], (2) genes with the expression count value of zero

in more than 80% of all samples [61–63], (3) genes that possessed the expression rates with

zero standard deviation across all samples, and (4) genes with average CPM (count per mil-

lion) lower than 1 [61]. Afterward, a gene co-expression network was reconstructed using the

WGCNA package [64] in R. For the co-expression layer, we defined a correlation threshold to

filter significant edges. Conversely, in the second layer, curated Protein-Protein interactions

(PPIs) for the same genes were pulled out from interactome data published by Menche et al.

[65]. Here there is an assumption: in the reconstruction of this multilayer network, if a gene

encodes several proteins or vice versa, to simplify the problem, only one-to-one mappings are

considered. However, implementing one-to-many mappings is possible by letting the walker

to select randomly from correspondents in layer change process.

Method evaluation

To assess the method truthfulness in finding correct modules, we compared PLCDM with two

other prominent local community detection methods, ML-LCD [25] and Seed-Set-Expansion

[21]. ML-LCD is a multilayer seed-centric local community detection and, on the other hand,

Seed-Set-Expansion is a single-layer local community detection method. First, we compared

PLCDM with ML-LCD, by applying both methods on every multilayer network of stage A,

declared in the Network Preparation section. Second, we are interested in investigating

PLCDM performance on the three multilayer networks, in comparison with the Seed-Set-

Expansion performance on the aggregated networks of those multilayers. Our objective from

performing this two-step evaluation is not only assessing PLCDM accuracy against other

methods, but also its advantages over layer aggregation. In every multilayer network (one real

and two synthetic networks), ground-truth communities were specified previously. Each node
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inside these predefined communities is used as a seed item, and the resulting community is

calculated using PLCDM, ML-LCD, and Seed-Set-Expansion algorithms. Afterward, these

three methods are compared to see the similarity of their result community to the ground-

truth community.

For example, suppose that for a multilayer network M, the set of predefined ground-truth

communities is C = {C1, C2, C3} in which every community contains some nodes (e.g. C1 = {v1,

v2, v3, v4, v5}). In the evaluation process, every node such as v1 is considered as the seed, and

using the three methods (PLCDM, ML-LCD and Seed-Set-Expansion), their output communi-

ties are predicted (e.g. OðPLCDM;v1Þ ¼ fv1; v2; v3; v6; v7g; OðML� LCD;v1Þ ¼ fv1; v3; v5; v7; v8g), and

then compared to the original ground-truth community C1. Based on these comparisons, val-

ues of contingency tables (TN, TP, FN, and FP) could be identified (e. g. TPPLCDM = 3 and

FPPLCDM = 2). Utilizing these contingency tables, methods are examined by measures: Specific-
ity, Precision, Recall, Accuracy, F1,MCC (Matthews Correlation Coefficient), FDR (False Discov-
ery Rate), and NMI (Normalized Mutual Information) explained in Table 1. This practice is

performed for entire nodes of ground-truth communities. Now, for every seed item of

ground-truth communities, we have a set of evaluation measures that could be used to com-

pare methods.

Results and discussion

Networks properties

In this subsection, we briefly describe the properties of networks employed in the two stages of

the workflow. Topological properties of datasets, were reported in Table 2. As mentioned

before, the real social multilayer was obtained and the two synthetic multilayers were simu-

lated from single-layer modular graphs. In the simulation of a multilayer network from its

Table 1. Applied evaluation measures.

Measure Description Calculation

Specificity Measures the proportion of actual negatives that are correctly identified (also called the true negative rate) Specificity ¼ TN
N ¼

TN
TNþFP

Precision Precision is basically a ratio of the total detection Precision ¼ TP
TPþFP

Recall Measures the proportion of actual positives that are correctly identified Recall ¼ TP
P ¼

TP
TPþFN

Accuracy Accuracy in the general statistical sense denotes the closeness of computations or estimates to the exact or true values. Accuracy ¼ TPþTN
PþN

F1 F1 score (also F-score or F-measure) is a measure of a test’s accuracy. It considers both the precision and the recall of the
test to compute the score

F1 ¼ 2TP
2TPþFPþFN

MCC It is used as a measure of the quality of binary (two-class) classifications MCC ¼ TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p

FDR It is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons FDR ¼ FP
FPþTP

NMI NMI is a measure of the mutual dependence between the two variables.More specifically, it quantifies the "amount of
information" obtained about one random variable through observing the other random variable

NMI Y;Cð Þ ¼
2�IðY;CÞ
½HðYÞþHðCÞ�

https://doi.org/10.1371/journal.pone.0255718.t001

Table 2. Topological properties of multilayer networks employed in the study.

Dataset Number of nodes Number of edges Number of modules Number of layers

Multilayer1 61 1240 8 5

Multilayer2 100 778 5 5

Multilayer3 100 1526 5 5

COAD 11044 120825 - 2

https://doi.org/10.1371/journal.pone.0255718.t002
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single-layer modular graph, to be fair in generation of layers (S1 Appendix) edge-selection-

probability parameter was set to 0.5. Manually, the layer count value was set to 5, but it was

possible to set any other value (generate any number of layers). It should be noted, all layers

are undirected and unweighted graphs.

At stage B, The obtained dataset from the TCGA includes total RNAseq expression data for

60483 coding/non-coding RNAs in 49 samples that consisted of samples collected from

patients with colon cancer. Then, we carried out gene filtering as described in the “Materials

and Methods” section. The cleaned data include the expression count value for 14515 genes in

49 samples. The co-expression layer type was set to ‘unsigned’ and it was excerpted for the

most correlated genes (correlation threshold was set to 0.8 to consider only 20% of high corre-

lations [66]). Nevertheless, in the physical binding layer, all protein interactions for the same

nodes of the first layer were selected. The generated co-expression layer comprises 5993 nodes

and 75121 edges. On the other side, the physical interaction layer was directly generated from

source datasets. The physical interaction layer (PPI) has 12751 nodes and 135712 edges.

PLCDM comparison

In order to verify the PLCDM, in an iterating process every node in the ground-truth commu-

nities of the three evaluation datasets, was considered as the seed node and the output commu-

nity of that seed were computed (predicted) through PLCDM, ML-LCD and Seed-Set-

Expansion methods. Then, the three predicted communities are compared with the original

ground-truth community based on different evaluation metrics.

In the PLCDM execution, the Jump probability was calculated using trial and error proce-

dure. We set this value to 0.5 so that the walker could reach to most nodes (in some cases,

some nodes are isolated and therefore unreachable) and score nodes around the seed with

higher probability.

The results of this evaluation is illustrated in Fig 3. On the Multilayer1, in all extents of eval-

uation measures except Recall, PLCDM outperforms the others (Table 3). Nevertheless, in the

second dataset (Multilayer2), ML-LCD’s performance is superior in five measures and

PLCDM gains excellence in terms of FDR, Specificity, and Precision (Table 4). For the Multi-

layer3, as revealed in Table 5, PLCDM performs much better than ML-LCD and Seed-Set-

Expansion methods.

Fig 3. PLCDM performance in comparison with other methods ML-LCD and seed-set-expansion. Using

Multilayer3 dataset (real data for social connections), in the predefined ground-truth communities, every node was

selected as the seed node, and using three local community detection methods (PLCDM, ML-LCD, and Seed-Set-

Expansion) result community was predicted for that selected seed. Then, the predicted community of each method was

compared to the original ground-truth community and evaluated using eight metrics. As demonstrated, except Recall,

in all measures PLCDM has better results. Notably, the false discovery rate of PLCDM is smaller than the other two

methods. Every boxplot demonstrates the values gained by a method in this iterative process. Therefore their inter-

quartile range and their average are comparable.

https://doi.org/10.1371/journal.pone.0255718.g003
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Local vs. global community detection

The PLCDM is a local community detection scheme and its objective is to the discover a single

local community that the predefined seed node belongs to it. However, the global community

detection methods are used to acquire any community structure in the network. Here, we

make a comparison between local and global methods, which is illustrated in Fig 4. For this

purpose, a typical synthetic multilayer network was employed that was created by the “modu-

lar graph generation” and “multilayer simulation from single-layer graph” algorithms, having

25 nodes and two modules of size five in three layers. The original single-layer modular graph

is illustrated in Fig 4A. First of all, communities of the aggregated single-layer graph, unfolded

by Louvain [28] algorithm, was displayed in Fig 4B. Secondly, the three methods PLCDM

(local, Fig 4C), generalized Louvain (gLouvain) [67] (global, Fig 4D), and multilayer Infomap

[44] (global, Fig 4E) were applied on the multilayer network. For the PLCDM, nodes 1 and 7

were randomly specified as initial seed nodes, in two separate executions. However, in the

other two methods, communities other than the two communities in question are also

extracted. It is noticeable that the PLCDM detects both communities in a precise way.

As pointed previously, we set the walker to move from edges present in most layers to focus

on strong edges. Here, in a separate step, to show the effect of the edges that are present in

most layers and to observe the difference between a biased random walk on the multilayer net-

work and its aggregated network, Table 6 is presented.

Application of PLCDM on COAD-specific multilayer network

Once the assessment process was achieved, as a case study, we applied the PLCDM on the

colon cancer network as we clarified formerly. We ran the method by manually seeding it with

HMMR as a known gene involved in cancerous signaling pathways. The PLCDM-explored

community around theHMMR comprises 97 genes that computationally are similar in

Table 3. Evaluating PLCDM the Multilayer1 data.

Specificity Precision Recall Accuracy F1 MCC FDR NMI

PLCDM 0.97 0.81 0.7 0.92 0.72 0.7 0.19 0.53

ML-LCD 0.91 0.64 0.78 0.88 0.67 0.63 0.36 0.51

Seed-set- expansion 0.89 0.64 0.89 0.89 0.71 0.68 0.36 0.48

https://doi.org/10.1371/journal.pone.0255718.t003

Table 4. Assessing PLCDM using the Multilayer2 data.

Specificity Precision Recall Accuracy F1 MCC FDR NMI

PLCDM 0.99 0.9 0.45 0.87 0.6 0.58 0.1 0.34

ML-LCD 0.93 0.78 0.78 0.9 0.78 0.72 0.22 0.67

Seed-set- expansion 0.96 0.75 0.43 0.85 0.54 0.49 0.25 0.22

https://doi.org/10.1371/journal.pone.0255718.t004

Table 5. Comparison of PLCDM with other methods based on the Multilayer3 data.

Specificity Precision Recall Accuracy F1 MCC FDR NMI

PLCDM 1 0.97 0.92 0.98 0.94 0.94 0.03 0.85

ML-LCD 0.97 0.86 0.91 0.96 0.88 0.86 0.14 0.84

Seed-set- expansion 0.88 0.58 0.92 0.89 0.71 0.67 0.42 0.42

https://doi.org/10.1371/journal.pone.0255718.t005

PLOS ONE A novel multilayer local community detection for biological modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0255718 August 9, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0255718.t003
https://doi.org/10.1371/journal.pone.0255718.t004
https://doi.org/10.1371/journal.pone.0255718.t005
https://doi.org/10.1371/journal.pone.0255718


function and action. To confirm this finding, we benefited ToppFun enrichment portal of

ToppGene [68] and FunRich [69] utilities and studied the role of discovered biomolecules in

tumor-associated pathways and biological processes. The pathway enrichment results of the

output module are shown in Fig 5. However, the detailed information of gene ontology (bio-

logical processes, molecular function, and cellular component), pathways, protein domain,

and expression site are accessible in S2 Appendix. The outcomes suggest that the objects

exploited in the yielded module are related to pathways involved in cell growth and prolifera-

tion, and carcinogenesis of the colon, such as Cell Cycle, DNA Replication, APC/C-mediated
degradation of cell cycle proteins, andMitotic M-M/G1 phases. As reported by the ToppFun,

this module is correlated with the Colorectal Neoplasms significantly (p-value = 3.433E-5).

Fig 4. Local community detection. Global vs. Here, a synthetic multilayer network of containing 25 nodes in three layers and two modules of size five ({0,1,2,3,4} and
{5,6,7,8,9}), as gold-standard modules, were used to compare global versus local community detection methods. A) The original single-layer modular graph and its

ground-truth communities. B) The aggregated network of multilayer in which communities were unfolded by the main Lovain algorithm. C) The PLCDM method

were applied on seed nodes {1, 7} in two separate executions. For every seed node, the detected module is matched with the ground-truth one. D) The global method,

generalized Louvain (gLouvain), applied to the network, and six modules of different sizes were extracted. E) The multilayer Infomap, applied to the network and global

communities were disclosed.

https://doi.org/10.1371/journal.pone.0255718.g004
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The APC produces a protein that acts in theWnt signaling pathway with a tumor-suppress-

ing function. It has roles in other biological processes, such as cell migration and adhesion,

transcriptional activation, and apoptosis. Defects in the APC lead to familial adenomatous pol-
yposis (FAP) that commonly moves toward malignancy. Mutations in this gene have been

shown to occur in most colorectal cancers [70]. Additionally, it is closely associated with cell
division, which is an important aspect of cancer cells.

The extracted module is involved in the FOXM1 transcription factor network. The FOXM1
gene encodes a transcriptional activator protein that is involved in cell proliferation. This pro-

tein is phosphorylated in theM phase and controls numerous genes in the cell cycle (e.g.,

cyclin B1 and cyclin D1). For the FOXM1, several transcript variants coding isoforms have

been found (https://www.genecards.org/).

Next, in another parallel execution, the method was applied with the seed ECT2 that is a

colorectal cancer-associated gene. This time, the extracted module comprises 101 genes. The

functional enrichment results demonstrate that the gene-set is associated with apoptosis, cell
proliferation, cell cycle, DNA repair, and DNA replication significantly (Fig 6). All the stated

pathways are essential for carcinogenesis and the rapid development of tumor cells. Cyclin D

plays role in controlling cell cycle development. The cyclin D synthesis is originated during G1

and excites the G1/S phase transition. Li et al. [71] previously mentioned on Prognostic Signifi-

cance of Cyclin D1 Expression in Colorectal Cancer. Here, the genes in the output module are

correlated with the Cyclin D-associated events in G1. For more information about these results,

see S3 Appendix.

Table 6. Biased random walk on a typical multilayer network versus its aggregated network.

Node Biased RW on ML Biased RW on aggregated of ML

0 0.29 0.37

1 1.00 1.00

2 0.46 0.45

3 0.10 0.15

4 0.36 0.20

5 0.02 0.01

6 0.00 0.00

7 0.01 0.00

8 0.00 0.00

9 0.00 0.00

10 0.00 0.00

11 0.01 0.00

12 0.00 0.00

13 0.00 0.00

14 0.00 0.00

15 0.02 0.01

16 0.00 0.00

17 0.01 0.00

18 0.00 0.00

19 0.00 0.00

20 0.03 0.00

21 0.00 0.00

22 0.00 0.00

https://doi.org/10.1371/journal.pone.0255718.t006
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Fig 5. Pathway enrichment result of explored module around the seed gene HMMR.

https://doi.org/10.1371/journal.pone.0255718.g005
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Fig 6. Pathway enrichment result of explored module around the seed gene ECT2.

https://doi.org/10.1371/journal.pone.0255718.g006
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Conclusion

Communities are the core and functional parts of networks that contain objects similar in

form or behavior. In this way, numerous community detection algorithms were proposed to

reveal modules in different network types, such as multilayer networks. In real-world applica-

tions, sometimes, finding communities in a network is not as important as extracting the supe-

rior community of a solitary preexposed node. As a biological case, in cancer applications,

when an oncogene is known experimentally, finding its related component is more important

than the discovery of every module in the whole system (that may be non-correlated to can-

cer). Herein, we propose a new seed-centric local community detection method for the multi-

layer environment that is based on information cascade theory. In this method, by

propagating information from the predefined seed, nodes in the neighborhood of the seed are

selected based on the information proportion that they obtained. To confirm the algorithm,

various multilayer datasets with predefined ground-truth communities were employed. The

results designate that PLCDM does well against earlier approaches with regard to evaluation

measures. Finally, we applied the method on reconstructed colon adenocarcinoma multilayer

networks and examined the outcome modules in terms of functional enrichment and GO

annotations. Our assessments disclose that the local modules are correlated with pathways and

biological processes involved in colon cancer.
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