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Abstract: Additive manufacturing, with its rapid advances in materials science, allows for researchers
and companies to have the ability to create novel formulations and final parts that would have been
difficult or near impossible to fabricate with traditional manufacturing methods. One such 3D
printing technology, direct ink writing, is especially advantageous in fields requiring customizable
parts with high amounts of functional fillers. Nuclear technology is a prime example of a field that
necessitates new material design with regard to unique parts that also provide radiation shielding.
Indeed, much effort has been focused on developing new rigid radiation shielding components,
but DIW remains a less explored technology with a lot of potential for nuclear applications. In this
study, DIW formulations that can behave as radiation shields were developed and were printed with
varying amounts of porosity to tune the thermomechanical performance.

Keywords: direct ink writing; radiation shielding; thermomechanical properties; 3D printability;
neutron radiography; siloxanes; inorganic fillers; ionizing radiation

1. Introduction

As the world advances in additive manufacturing and materials science, many forms
of 3D printing are being researched with regard to materials development and macro-
scopic part fabrication. Indeed, major progress in vat polymerization [1,2], selective laser
melting [3,4], and direct ink writing (DIW) [5–7] has demonstrated the variety of means
in which advanced composites can be used to construct geometries and structures that
traditional manufacturing techniques have difficulty fabricating. DIW 3D printing, a tech-
nology under the ISO/ASTM 52900:2015 category of material extrusion, includes ink jet
printing [8–10], micropen writing [11,12], fused filament fabrication (FFF) [13–15], hot-melt
extrusion [16,17], and robocasting [18,19] and is especially useful because of the wide array
of material selection available and the continued development which increases the capabil-
ities of these techniques. DIW, in particular, is especially suitable for advanced materials
capabilities due to its range of ink formulations and versatility in part extrusion and curing.
Customarily, DIW refers to the 3D printing technique where a shear-thinning fluid, ink,
or paste is extruded through a nozzle and possesses a high enough storage modulus to
build a part layer by layer. Additionally, these extrusion methods also allow for numerous
hardening regimes such as UV curing, elevated temperature curing, freeze drying, and
other means, which increases the possible range of new materials that can be 3D printed.
Examples include aerogels and foams developed from ceramics and carbonaceous materi-
als [20–23], synthetic bone and osteoinduction scaffolds [24–27], smart magnetoresponsive
devices [28–30], and more. Thus, DIW lends itself to immense materials development
exploration and can result in a variety of specialty parts for many applications.

One area that would benefit from the advances in manufacturing science that DIW
offers is that of radiation shielding. Since commercial nuclear power has become more
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widespread, ionizing radiation in the form of gamma rays and neutrons has been atten-
uated with large blocks of concrete, lead, or boron [31–33]. Additionally, some high-Z
elements such as gadolinium and tungsten were and are still used for gamma radiation
shielding [34,35]. Recently, more precise radiation shielding materials have been devel-
oped such as glasses and amorphous alloys for use in other nuclear technologies such
as radiation protection and medicine [36–38]. The advancement in this area of materials
development has also occurred with 3D printing technology, where filaments for FFF and
inks for DIW have been created in contemporary research [14,39–44]. Indeed, the merging
of the two fields of nuclear technology and advanced manufacturing proves especially
prolific and rewarding due to the unique part fabrication that 3D printing offers, where
commercial entities have begun selling radiation shielding material specifically for additive
manufacturing technologies. Although at the nascent stage where much materials research
and development needs to occur, this nevertheless represents a growing endeavor due to
the continued and increasing interest in nuclear energy, nuclear medicine, nuclear waste
storage, high-energy physics, and space exploration [35,45–48].

With regard to 3D printing, there are two large factors that imbue a final product with
its material properties. These are the basic characteristics of the constituent components
and the auxiliary characteristics of the macroscopic structure, which provide the essential
and specialty qualities of a material, respectively. The former factor is shared with tradi-
tional manufacturing techniques, but the latter is given by how the material is printed with
whichever 3D printing technology is used. Thus, besides the rapid prototyping and part de-
velopment that are manufacturing advantages, 3D printing technologies offer hierarchical
structural properties. Examples of these can be geometries that are impossible or near im-
possible to fabricate with traditional manufacturing techniques, where shape, hollowness,
and porosity combine to allow parts with precise customized material properties [49–54].
By controlling the shape, hollowness, and porosity of an additively manufactured product,
transport properties such as diffusion, thermal conductivity, and mechanical response can
be governed [55,56].

In this work, various ink formulations were developed for DIW 3D printing that
behave as radiation shields and possess tunable thermomechanical properties. Using a
base formulation with two siloxane copolymers and a platinum catalyst that enables a
curing reaction based on elevated temperatures, fillers such as fumed silica, tungsten,
tungsten (VI) oxide, gadolinium (III) oxide, and boron were incorporated into 3D printable
inks. Rheological properties of a representative sample of the inks were evaluated, and
an empirical relationship was developed that provides a model for the upper limit on the
spacing ratio, a lattice parameter, during 3D printing. Compressive strain and thermal
conductivity measurements of the printed structure demonstrated that there is a correlation
between porosity and thermomechanical properties. Additionally, thermal stability experi-
ments showed that the radiation shielding ink formulations can be used in environments
at much higher temperatures than a regular ink which controls for just rheology. Neutron
radiography experiments provided evidence that the printed formulations attenuate ion-
izing radiation. Finally, heterogeneous printed parts were produced using two different
ink formulations to demonstrate that the capabilities offered by this technology allow for
greater materials development precision than traditional manufacturing.

2. Experimental
2.1. Materials

The siloxanes that composed the polymer network included vinyl-terminated (4–6%
diphenylsiloxane)-dimethylsiloxane copolymer (PDV−541) and trimethylsiloxy-terminated
methylhydrosiloxane-dimethylsiloxane copolymer (HMS 301), both from Gelest (Gelest,
Inc., Morrisville, PA, USA). A cure inhibitor in the form of 1-ethynyl-1-cyclohexanol was
used (Sigma Aldrich, 99%) (Millipore Sigma, St. Louis, MO, USA), and crosslinking was
induced with a high-temperature platinum catalyst (platinum carbonyl cyclovinylmethyl-
siloxane complex; 1.85–2.1% Pt in cyclomethyl vinyl siloxanes) (Gelest, SIP6829.2). An OH-
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functionalized fumed silica (Evonik Aerosil 300) (Evonik Industries AG, Essen, Germany)
and PDMS-functionalized fumed silica (CAB-O-SIL TS-720) (Cabot Corporation, Boston,
MA, USA) were incorporated into the polymer matrix. Boron, tungsten, tungsten (VI)
oxide, and gadolinium (III) oxide powders, supplied by American Elements (American
Elements, Los Angeles, CA, USA), were used as fillers in the formulation. Isotopically
enriched B10 was supplied by 3M (3M Company, Saint Paul, MN, USA). Isopropanol (IPA)
was supplied by Thermo Fisher Scientific (Thermo Fisher Scientific, Waltham, MA, USA).
Ultra-high purity nitrogen was supplied by Airgas (Airgas, Padnor, PA, USA).

2.2. Formulation Development and 3D Printing

Stable and 3D-printable inks depend on the formulation exhibiting specific rheological
properties. In particular, the ink needs to exhibit shear thinning; it must flow when a force
is applied and remain stiff otherwise. This is especially the case once the ink is printed into
a part where it must support its own weight and not collapse. This specific non-Newtonian
rheological characteristic was imparted to the polymer matrix by incorporating fumed
silicas, whereby varying the amount of fumed silicas allowed the rheological properties
to be tuned. PDMS-functionalized fumed silica, referred to in this study as TS720, acted
as an inert filler which solely provided shear thinning characteristics. OH-functionalized
silica, referred to in this study as A300, behaved as a filler that could form hydrogen bonds,
thus providing both shear thinning characteristics and increasing the amount of physical
crosslinks in the network. The vinyl-terminated copolymer, referred to in this study as
PDV, was always added in a 9:1 w/w ratio with the trimethylsiloxy copolymer, referred
to in this study as HMS, which was found in previous work to attenuate radiolysis and
prevent crystallization [39,57]. Metal and ceramic fillers were sieved (Gilson Company,
Inc., Lewis Center, OH, USA) so the particle size distributions had an upper limit of 53 µm.

To begin producing formulations, an ink containing only silica as a filler was first
developed and studied. Increasing the weight percent of silica resulted in a more viscous
ink. Due to the nature of DIW 3D printing, a requirement of the formulation is that it
remains stiff and rigid while under the force of gravity, but when a sufficiently high force
is applied, it becomes liquid-like and flows. It was found that when the OH-functionalized
fumed silica (A300) content was under 10 wt%, the DIW formulation flowed even without
an applied force, thus making it unusable for printing. At 10 wt%, the ink was viscous
enough and could be printed successfully. Rheological experiments were performed on
this recipe to determine its equilibrium storage modulus, yield stress, and flow point. After
this formulation was characterized, other fillers were incorporated to develop new recipes.
Using amounts of 50 wt% non-SiO2 filler, the fumed silica content was modified to obtain
similar rheological properties to the 10 wt% silica recipe.

Although the PDMS-functionalized silica (TS720) increased the rheological properties
of the ink enough to where printing was possible, the printed layers of the final part had
an excessive amount of slumping and thickness deviations. Additionally, larger amounts of
TS720 were required to achieve adequate rheology for printing, which led to fewer amounts
of other fillers added and to the inks being too dry to adhere onto the glass plates where
printing occurred. This was remedied with IPA, where, by adding 10–20 wt%, the solvent
swelled the polymer matrix and allowed for high amounts of filler to be incorporated and
produce an adequate print. Unfortunately, during the high-temperature curing process
at 150 ◦C, cracks were formed in the final part, and it appeared that while varying the
amounts of all the components led to more or less defects, flaws were always present in
the end. This is inferred to be due to the IPA evaporating and leaving mesoscale pores of
non-uniform size and morphology within the struts, which was confirmed when viewed
under a confocal digital microscope. While this hierarchical porous architecture is an area
of further research, and continued pursuit could be beneficial towards other applications,
this study wanted to focus on denser printed pads for radiation shielding. As such, TS720,
with its lack of hydrogen bonding, was not used further in this study. Moving forward,
A300 was the silica of choice, which did not require the use of IPA.
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Once the resins were formulated and mixed for DIW printing, they were transferred
into a metal syringe (EMO-XT printer head, Hyrel 3D) (Hyrel 3D, Atlanta, GA, USA) and
then centrifuged at 2000 rpm for 1–2 min to remove any air bubbles. A MATLAB script was
created to generate a Gcode with varying amounts of spacing and geometries. Repetrel
software (Hyrel 3D) was used to control the printer and ran at a travel rate at 2250 mm/min,
with the material flow rate at 150 pulses/µL onto a glass substrate from the build stage.
The geometries of the 3D parts were disks possessing a diameter of 5 cm and consisted of
eight layers with each layer organized in a faced-centered tetragonal (FCT) structure. Four
different spacings between the printed struts (500 µm, 750 µm, 1000 µm, and 1500 µm)
were used for tuning the thermomechanical properties and were cured in an oven at 150 ◦C
for 2 h.

2.3. Material Characterization Techniques

Rheological experiments on a representative sample of ink formulations were con-
ducted on a TA Discovery Series Hybrid Rheometer DHR-3 (TA Instruments, New Castle,
DE, USA) using a 25 mm cross-hatched parallel plate fixture geometry. Strain sweeps were
performed from 0.001% to 10% strain at an angular frequency of 10 rad/s to determine the
extent of the linear viscoelastic region of the samples. The sample containing boron and
gadolinium (III) oxide (B/Gd2O3) was run from 0.00025% to 0.5% at an angular frequency
of 1 rad/s. Stress sweeps were performed from 10 to 10,000 Pa at an angular frequency
of 10 rad/s. The equilibrium storage moduli G′eq for the samples were determined from
the plateau of the stress sweeps in the linear viscoelastic region. The yield stress σy was
determined from the intersection of lines formed from the storage moduli of the linear
viscoelastic region and the beginning of the nonlinear viscoelastic region. The flow point
is the stress at which the storage and loss moduli cross or intersect. Based on calibration
testing from the manufacturer and comparative measurements, the error associated with
this instrument and the resulting values are less than 1%.

Uniaxial compression tests were performed using an INSTRON® 3343 Low-Force
Testing System (Instron, Norwood, MA, USA) with the BlueHill Universal software. Each
printed sample was compressed for 4 cycles at a rate of 0.05 mm/sec through the stress
range from 0 to 0.4 MPa. The cyclic stress–strain curve and the Young’s modulus were
reported from the fourth cycle to minimize the Mullins effects. Based on calibration testing
from the manufacturer and comparative measurements, the error associated with this
instrument and the resulting values are less than 1%.

Thermal conductivity was performed by a TA Fox 50 Heat Flow Meter (TA Instru-
ments, New Castle, DE, USA). Compressed air flowed to the instrument at 60 psi in order
to pneumatically compress the samples between two thermally responsive plates. The
protocol included nine temperature regimes where the upper and lower plates had a
temperature difference of 10 ◦C, starting with the plates equilibrating to 20 ◦C and 10 ◦C,
and ending with the plates equilibrating to 100 ◦C and 90 ◦C. Based on calibration testing
from the manufacturer and comparative measurements, the error associated with this
instrument and the resulting values are less than 3%.

Thermogravimetric analysis (TGA) was performed on a TA Q Discovery 2000 series
TGA instrument (TA Instruments, New Castle, DE, USA). The protocol included ramping
the surrounding temperature of a sample weighing approximately 5 mg from 25 to 750 ◦C
at a heating rate of 10 ◦C/min. Ultra-high purity nitrogen flowed across the sample at a
rate of 40 mL/min. The onset of thermal degradation Td5% was taken as the temperature
at which a sample lost 5% of its mass (or possessed 95% of its mass remaining). The
decomposition temperatures TdMax are those temperatures at which the derivative TGA
curves (DTGA) are at a local maximum. The final mass mf is the residual mass of the sample
after the temperature protocol has been executed. Based on calibration testing from the
manufacturer and comparative measurements, the error associated with this instrument
and the resulting values are less than 1%.
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The magnified and cross-section views of the sample images were taken from a
confocal digital microscope (Keyence VHX-6000) (Keyence Corporation, Osaka, Japan) and
micro X-ray fluorescence (MXRF) (Bruker M4 Tornado) (Bruker Corporation, Billerica, MA,
USA). Magnifications of 20×, 30×, and 100× were used to investigate the network of the
resulting 3D-printed pads. Measurements of the printed struts were obtained from the
Keyence analysis software. Elemental color maps were generated from MXRF images using
the instrument software. The acquisition parameters included an X-ray tube operating at
50 kV and 200 µA, a spectrometer operating at 40 keV and 130 kcps, a spot size of 20 µm, a
dwell time of 5 ms per pixel, and a step size of 10 (cross-section) by 20 µm (top down).

Advanced neutron radiography was performed at the Los Alamos Neutron Science
Center (LANSCE) via energy-resolved neutron imaging (ERNI). Neutrons in the energy
range from 0.001 to 100 eV (epi-thermal to thermal) pulsed at 20 Hz at printed samples,
which were in front of an ultra-fast MCP-Timpix neutron imaging detector. Details can
be found in our previous work [39]. In the resulting radiographs, lighter images corre-
spond to more neutrons hitting the detector, whereas darker images correspond to less
neutrons hitting the detector, providing a qualitative measure of the neutron attenuation
abilities of the printed radiation shields. It should be noted that the neutron background
at thermal energies was not well characterized during the ERNI experiments. Without
proper background characterization, quantitative comparisons are more difficult to per-
form. That stated, the qualitative assessment using this technique provides ample evidence
of successful neutron attenuation.

3. Results and Discussion
3.1. Rheology

When developing ink formulations with A300, incorporating a single metal or ceramic
filler that was denser than boron (tungsten, tungsten (VI) oxide, and gadolinium (III) oxide)
at 50 wt% was printable with 4.5 wt% fumed silica. To confirm that these formulations
matched the 10 wt% silica formulation, rheological experiments were performed on the
tungsten and tungsten (VI) oxide recipes. These strain and stress sweep experiments
validated that the amount of silica and other fillers demonstrated similar rheological
properties to the 10 wt% silica formulation. As boron is less dense than the other metals
and ceramics, a recipe containing 50 wt% boron will correspond to a greater volume percent
than the others. Thus, the silica content needed to be further reduced. It was found that
incorporating 1.5 wt% A300 with boron led to the desired rheological properties. Following
the success of developing and 3D printing the boron formulations, combinations of the
metals and ceramics were made into recipes. Specifically, B/Gd2O3 and B/Gd2O3/WO3
formulations were created with a combined 70 wt% non-SiO2 filler content. A similar
silica content was found to result in successful recipes, and rheological experiments were
performed on the 40/30 wt% B/Gd2O3 formulation. The equilibrium storage modulus
was found to be greater than the others; however, the linear viscoelastic region, yield stress,
and flow point were in similar ranges, and the ink could be successfully 3D printed. The
formulations developed for this study, along with their filler weight and volume percent,
and density, are presented in Table 1. The densities of the inks ρink were determined from
the weight fractions of the constituent components wi and their individual densities ρi
using Equation (1).

ρink =
1

∑i
wi
ρi

(1)
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Table 1. The formulations developed and their densities along with the weight and volume percent
of each filler component.

Weight Percent (w/w)/Volume Percent (v/v)

SiO2 W WO3 Gd2O3 B Density
(g/cm3)

Formulation

SiO2 10/4.3 0/0 0/0 0/0 0/0 1.064

W 4.5/3.6 50/5.2 0/0 0/0 0/0 2.004

WO3 4.5/3.3 0/0 50/12.9 0/0 0/0 1.842

Gd2O3 4.5/3.3 0/0 0/0 50/12.4 0/0 1.850

B 1.5/0.9 0/0 0/0 0/0 50/30 1.424

B/Gd2O3 1.5/1.2 0/0 0/0 30/8.1 40/33.7 1.998

B/Gd2O3/WO3 1.5/1.2 0/0 20/5.6 10/2.7 40/33.7 1.995

Strain and stress sweep rheological experiments were performed to determine when
the ink formulations cross from the linear viscoelastic region to the nonlinear viscoelastic
region. The storage moduli, taken during the stress sweep experiments, of the inks are
shown in Figure 1a,b, which present the storage and loss moduli of the W formulation
taken from the stress sweep experiment, where the flow point, which is the stress at which
the storage and loss moduli cross or intersect, can be observed. The equilibrium storage
modulus, yield stress, and flow point values for the ink formulations tested in rheology
experiments are presented in Table 2. The values demonstrate similar rheological properties
and an ability of the inks to be successfully 3D printed with the motor capabilities of the
DIW printer used.
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Table 2. Rheological properties of a representative sample of ink formulations.

Formulation
Equilibrium Storage
Modulus (G

′
eq) (Pa)

Yield Stress (σy) (Pa) Flow Point (Pa)

SiO2 55,470 3650 4610

W 42,600 3390 3900

WO3 57,400 2940 4480

B 78,720 400 2270

B/Gd2O3 2,277,190 5330 11,050
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3.2. 3D Printing

Using the ink formulations, cylinders in the form of disks were 3D printed with
increasing amounts of introduced porosity. Figure 2 shows 3D-printed cylinders of the
formulations detailed in this study. Printing with well-defined porosity was accomplished
by varying the spacing ratio η = L/d, which is the ratio of the center-to-center distance
between adjacent struts L to the diameter of the printed struts d. Cylinders were printed
with spacing ratios of 2, 3, 4, and 6. As the printing nozzle measured 250 µm in diameter,
which corresponds to the diameter of the struts, the spacing ratio corresponds to center-to-
center distances between adjacent struts of 500, 750, 1000, and 1500 µm.
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Figure 2. 3D-printed cylinders of the ink formulations detailed in this study.

Considering the theoretical model relating the porosity of a structure with an FCT ge-
ometry to the spacing ratio (presented in Supplemental Information), taking the limit yields
a theoretical porosity as a function of the spacing ratio, which is presented as Equation (2).
Using the calculated densities of the ink and measuring the densities of the 3D-printed
cylinders structured with FCT geometries ρstructure, the actual porosities of the cylinders
were calculated using Equation (3). A graph of the porosity of the printed parts plotted
against their spacing ratio is presented in Figure 3 along with the theoretical porosity.

ϕ∞
FCT = lim

n→∞
ϕFCT = 1− πd

4L
= 1− π

4η
(2)

ϕFCT = ϕstructure = 1− ρstructure

ρink
(3)

3.3. Rheology–Printability Relationship

It is worth pointing out that all the cylinders exhibit porosities less than the theoretical
porosity, thus demonstrating that Equation (2) is an upper limit. This can be observed more
distinctly when comparing the side views of some of the printed cylinders. An example is
Figure 4, which shows side views of printed SiO2 and WO3 samples. Notice in Figure 4a
that the SiO2 lattice structure is aligned such that there do not appear to be deviations,
while in Figure 4b, the WO3 lattice has some bending or deflections in the printed struts.
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Previous researchers have attempted to capture this phenomenon with a variety of
theoretical, phenomenological, and empirical models, where the properties of the ink
formulation relate to the printed lattice structure. Smay et al. correlated deflection in a strut
with the distance between struts across a variety of ink formulations at different pH values
and provided a criterion for the storage modulus [50]. The relevant values for the ink
formulations in this study were placed in this criterion, which was not found to accurately
predict the printing behavior. M’Barki et al. also developed a model that incorporated
other variables such as the yield stress, print height, and capillary forces; however, it did
not relate these to the spacing ratio of the lattice structure [58]. Chan et al. tested the
rheology of some inks against their printability and came to the same conclusion [49] for
the two models studied. To move the discussion forward, Chan et al. proposed an empirical
relation between the equilibrium storage modulus, recovery of the storage modulus after
shearing, and the yield stress. A constant derived from a linear discriminant function was
able to separate the ink formulations into those that slumped upon printing and those that
printed well; however, this model does not correlate the ink rheology with the printability
of a lattice structure based on the spacing ratio. Therefore, the ink formulations in this
study were used to inform another model that can relate rheology and printability.

To understand the deflection behavior observed in Figure 4b, an appropriate model
can be constructed by considering the simplified scenario of a beam with supports on
either end. This is a standard problem in civil engineering, where it can be assumed that a
beam is supported by the two orthogonally printed struts below it, and there are no layers
printed above. Thus, the length of the strut is the center-to-center distance between the



Polymers 2021, 13, 3284 9 of 18

struts below L = ηd, and the only acting force F is gravitational. The deflection δ that the
beam experiences is a function of the force, beam length, Young’s modulus of the ink E,
and the moment of inertia I of a cylinder rotated about its axial direction, which is shown
in Equation (4). Considering the deflection as a percentage of the beam diameter δ = αd
and rearranging all the numerical constants on one side and all the variables on the other
side result in Equation (5).

δ =
FL3

48EI
=

ρg π
4 d2L4

48E π
64 d4 (4)

3α =
ρgη4d

E
=

(
E−1ρg

)(
η4d

)
(5)

This model demonstrates which material properties are important towards under-
standing beam deflection with supports on either side. Building up this model to describe
an entire printed lattice can be conducted in a phenomenological way by utilizing simi-
lar variables to those in Equation (5); however, instead of evaluating the deflection of a
single beam, the relationship between the ink properties and overall lattice structure can
be investigated. As Young’s modulus is a measure of an elastic material and the ink is
viscoelastic, conceptually equivalent material properties that describe the system should
be used instead. Young’s modulus is the stiffness of a material in the linear viscoelastic
region, meaning a commensurate property to determine the stiffness of the inks would be
the equilibrium storage modulus. Indeed, others have shown that the storage modulus
and yield stress are correlated with the layer shape retention of deposited layers [44,51].
Conceptually, this makes sense, where the lattice structure and its deviations should be able
to be represented by the ink’s equilibrium storage modulus and yield stress, which describe
how an ink prints and whether it can support itself. Using these, a variable referred to as
the ink parameter was defined, Kink = G′eqσy

−2ρinkg. To incorporate the printed structure
itself, a variable called the lattice parameter was defined, Ψlattice = η4d. The product of
these two variables is a dimensionless quantity called the structure parameter in this study,
which is given as Equation (6). This product, being dimensionless and of similar form to
Equation (5), can provide an empirical determination on how the spacing ratio in a lattice
and general printing properties can be related to the ink formulation attributes.

KinkΨlattice =
(

G′eqσy
−2ρinkg

)(
η4d

)
(6)

Notice from Figure 3 that the SiO2-formulated cylinders are closest to the theoretical
limit. Thus, the height of the printed SiO2 cylinders was used as an ideal for comparison
purposes. Defining the thickness deviation of a printed cylinder t′ = 1−hink,η/hSiO2 ,η

in
terms of the SiO2 print with the same spacing ratio, all the inks that had their rheological
properties tested can be compared. Figure 5a presents a graph plotting the thickness
deviations against the logarithm of the structure parameters. The horizontal straight line
represents a thickness deviation at one standard deviation. Thus, all the points below the
horizontal line represent printed samples that have heights within one standard deviation
of the ideal height, which is represented by the SiO2 prints. Likewise, all the points above
the horizontal line represent printed samples that have heights less than one standard
deviation of the ideal height. Thickness deviations above this line mean that the print
failed and that the ink does not have the rheological properties to support the spacing
ratio. Linear extrapolations were conducted for each formulation to relate the thickness
deviation to the structure parameters. Finding each ink’s linear relationship led to the
determination of the maximum spacing ratio ηmax, which is the spacing ratio that produces
a print with the thickness deviation equal to one standard deviation. Each formulation
thus had a set of coordinates (ηmax, KinkΨlattice) that were plotted, and a logarithmic curve
was fitted to the data. The resulting empirical relationship is given as Equation (7), where
the structure parameters must be in the region between that of SiO2 and the fitted model.
Hence, this relationship demonstrates that based on the rheological properties of an ink, it
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can be determined how much spacing can be introduced during 3D printing for an FCT
structure. Figure 5b presents KinkΨlattice against the spacing ratio for the five formulations
in which rheology was performed.
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structure parameters.

From these data, a printability profile was developed which shows regions of poor
and good printability (Figure 6). Equation (7) defines the boundary of these regions, where
good printability means that for a 250 µm nozzle printing an FCT part with a certain
ink formulation, the resulting thickness will be within one standard deviation. A poor
printability in this context means that the ink formulation will slump and have thickness
deviations greater than one standard deviation. Using Equation (7), the ink parameter and
maximum spacing ratio are provided for the rheological-tested ink formulations in Table 3.

KinkΨlattice ≤ 2.7686e0.323η + 5.056 (7)
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Figure 6. Using a 250 µm nozzle and an FCT geometry, rheology-tested ink formulations were
assessed based on their material properties and thickness deviations to determine Equation (7),
which provides a regime for printability. Values below the upper limit in Equation (7) are in Region I
(Good Printability), which is defined as minimal slumping and within one standard deviation. Values
above the upper limit are in Region II (Poor Printability), which is defined as thickness deviations
above one standard deviation.
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Table 3. Ink parameters for the rheological-tested ink formulations and their maximum spacing
ratios according to Equation (7).

Formulation Kink (m−1) ηmax (From Equation (7))

SiO2 4.345 × 10 7.7

W 7.286 × 10 6.0

WO3 1.200 × 102 5.0

B 6.874 × 103 1.5

B/Gd2O3 1.571 × 103 2.2

3.4. Thermomechanical Properties

Each of the printed cylinders underwent compressive strain testing, where the protocol
utilized four compression and decompression cycles reaching a maximum load of 0.4 MPa.
Taking the last cycle for data analysis, maximum compressive strains were determined and
each sample’s Young’s modulus in the linear viscoelastic region was evaluated. Figure 7a,b
show these material characteristics plotted against the porosities of the measured samples,
respectively. From Figure 7a, it appears that the maximum compressive strains are bound
within a region and increase in proportion to the porosity. This phenomenon is intuitive,
where greater porosity in a viscoelastic material means that during compressions, more
void spaces are filled in with material. This phenomenon is similar to what can explain
Figure 7b, where Young’s modulus can describe how stiff or flexible a material is before it
deforms. When all the samples are plotted together, the graph appears sigmoidal, where
above a critical porosity, there is a dramatic decrease in the stiffness. This point seems to be
approximately ϕc = 0.55, where every formulation except for SiO2 had at least one sample
below this amount. Notice that samples with porosities less than the critical porosity
exhibited a Young modulus between 0.45 and 0.7 MPa, while those samples with porosities
greater than the critical porosity exhibited a Young modulus between near 0 and 0.25 MPa.
As the maximum load during the compression cycles was 0.4 MPa, this means that samples
with porosities above the critical porosity were maximally compressed.
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Thermal conductivity was explored in the formulations with 50 wt% metal or ceramic
fillers, which include 3D-printed cylinders of B, W, WO3, and Gd2O3. Figure 8a,b present
graphs of thermal conductivity against porosity and maximum compressive strain, respec-
tively. The first observation from these figures is that thermal conductivity increases with
porosity. As the maximum compressive strain and porosity are positively correlated, this
means that thermal conductivity and maximum compressive strain should be positively
correlated as well, which is demonstrated in Figure 8b. Additionally, the instrument that
measures thermal conductivity applies a pressure of 60 psi ≈ 0.4 MPa and thus maximally
compresses the samples with porosity greater than 55%. Therefore, greater contact is made
between the printed layers, and heat can flow with fewer obstructions due to air voids.
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Another interesting point to take note of is how the thermal conductivities in Figure 8 are
clustered together. Notice that B cylinders exhibit greater thermal conductivity than the
others. This is due to the volume percent of the B ink; although all the formulations possess
50 wt% metal or ceramic filler, boron is less dense than the other fillers, and thus its volume
fraction is much greater. This contributes towards a greater percolation of boron particles,
where at 30 volume%, the heat flow has a less obstructed path due to the siloxane matrix
and silica filler. On the other side, tungsten has a much greater density than tungsten (VI)
oxide or gadolinium (III) oxide; thus, the volume percent of the filler in the W formulation
(5.2%) is less than that of the WO3 (12.9%) and Gd2O3 (12.4%) formulations. This is over-
come by the fact that metals, in general, have much greater thermal conductivities than
ceramics, and this is indeed true when comparing tungsten (170 Wm−1K−1) to tungsten
(VI) oxide (4.5 Wm−1K−1) or gadolinium (III) oxide (27 Wm−1K−1). Thus, despite the
lower volume percent of the filler in W, the thermal conductivity is balanced out, and the
W, WO3, and Gd2O3 printed cylinders exhibit similar thermal conductivity values.
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One aspect of this work that must be pointed out is the blatant difference between
many types of porosities. Throughout the literature, it is well documented that as porosity
increases, many transport properties such as thermal and electrical conductivity decrease.
Thus, a distinction must be made for micropores, which are voids within the material
formulation itself, either by initial or process design, and structural voids, which are
voids not in the ink but in the overall lattice structure. Although both types of pores
would contribute towards increasing the compressive strain and thus increasing thermal
conductivity, 3D printing offers a way to directly tune the porosity due to structural voids
and therefore control the thermomechanical properties.

To understand the thermal limits of the printed parts, thermogravimetric analysis
(TGA) was performed. Both the TGA and derivative TGA (DTGA) curves are shown for
the printed parts in Figure 9. Data concerning the onset of thermal degradation, tempera-
ture of thermal decomposition, and residual mass for the printed parts are presented in
Table 4. The formulations that do not incorporate boron are presented in Figure 9a,b, where
two distinct degradation peaks occur. One interesting aspect is that the onset of thermal
degradation Td5% of the SiO2 formulation occurs at a lower temperature than the others.
Indeed, there is a 40 ◦C increase once the other fillers are added. Additionally, the residual
mass of the parts with 4.5 wt% silica increases by 10 wt% when compared to the SiO2
formulation. Thus, the fillers increase the thermal stability of the ink. The first DTGA peak
for all these printed formulations occurs around the same temperature, indicating the main
pathway for thermal decomposition is unaltered. The TGA and DTGA curves for the sam-
ples containing boron are presented in Figure 9c,d. The B printed formulation demonstrates
a 60 ◦C increase in Td5% compared to the SiO2 printed formulation, and this value increases
further when multiple fillers are added. The printed formulation that has the highest Td5%
is the B/Gd2O3/WO3 ink, which is 15 ◦C higher than the B/Gd2O3 ink and 130 ◦C higher
than the SiO2 ink. Interestingly, the boron-containing printed parts exhibit only one main
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thermal decomposition peak, and it is shifted by an increase of 170 ◦C. As this is only
observed in the ink formulations with boron, this indicates that boron affects the pathway
of thermal decomposition. Indeed, a similar phenomenon has been observed before, where
Rallini et al. reported that a polymeric matrix incorporating boron carbide resulted in a
substantial shift in thermal stability towards higher temperatures [59]. It was proposed that
this behavior resulted from the conversion to boron oxide and the subsequent inhibition of
oxidation of the polymer matrix. In addition to the shift in thermal stability, a decrease in
residual mass was observed when comparing the B and SiO2 formulations. The B printed
parts exhibit a decrease in the residual mass, thus indicating that char products differ
by way of B modifying the thermal decomposition chemistry. Overall, whenever fillers
other than SiO2 were used, an increase in thermal stability was observed. Additionally,
boron-containing inks, especially the ink that incorporates neutron and gamma shielding
components, demonstrate the highest thermal stability of all the formulations.
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Table 4. Thermal stability properties of the 3D-printed formulations.

Formulation Td5% (◦C) TdMax (◦C) mf (%)

SiO2 355 371 675 75

W 392 373 680 86

WO3 390 377 701 84

Gd2O3 392 369 675 87

B 413 548 66

B/Gd2O3 467 536 82

B/Gd2O3/WO3 483 537 84

3.5. Attenuation of Ionizing Radiation

Neutron radiography was performed on some printed samples to obtain a qualitative
assessment of their ability to behave as radiation shields. Five ink formulations were used
to print cylinders for this experiment: BN; Gd2O3; BN/Gd2O3; B10/Gd2O3; and SiO2. BN in
the formulations refers to natural abundance boron, which contains approximately 20% B10



Polymers 2021, 13, 3284 14 of 18

and 80% B11. B10 in the formulations refers to isotopically enriched boron, which is nearly
100% B10. Besides the SiO2, all the formulations had 50 wt% non-silica filler. The BN/Gd2O3
and B10/Gd2O3 formulations contained 40 wt% boron and 10 wt% gadolinium (III) oxide.
The qualitative results of the 2D radiography experiments are shown in Figure 10. The
amount of light corresponds to the amount of neutrons that passed through the detector,
which was being blocked by the printed cylinders. Thus, a lighter image corresponds to
more neutrons passing through, while a darker image corresponds to less neutrons passing
through. Therefore, the darker the image, the greater the printed cylinder behaved as a
radiation shield. As it can be observed in the figure, the SiO2 cylinder did not attenuate
much at all, while the other printed samples attenuated a significant amount of incoming
neutrons. As expected, due to B10 being the isotope that absorbs neutrons, the B10/Gd2O3
sample provided the greatest shielding.
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Figure 10. 2D radiographs, summed over all neutron energies from 0.001 to 100 eV, of printed
samples. For the formulations besides SiO2, the total filler content was 50 wt%. Lighter images
correspond to more neutrons passing into the detector, while darker images correspond to a greater
attenuation of incoming neutrons: (a) 50 wt% BN; (b) open beam (no sample); (c) 50 wt% Gd2O3;
(d) 40/10 wt% BN/Gd2O3; (e) 40/10 wt% B10/Gd2O3; and (f) 10 wt% SiO2. All neutron-exposed
pads were 3D printed using 500 um spacing.

After the neutron radiography experiments proved that the ink formulations per-
formed successfully as shields, more carefully designed printed structures were developed
to incorporate additional functionality. This was conducted by 3D printing multi-material
heterogeneous cylinders using Gd2O3 and WO3 inks. As a comparison, homogeneous
parts were also fabricated. For the homogeneous parts, Gd2O3 and WO3 were incorporated
into the same ink formulation as already described and printed. Using X-ray florescence
(XRF), a color map was generated, shown as Figure 11a, where the green coloration repre-
sents WO3, and the white coloration represents Gd2O3. Observe that both colorations are
superimposed, and thus the fillers exist in a homogeneous distribution within the printed
part. This is in contrast to Figure 11b, where separate formulations of Gd2O3 and WO3
were used to print a single part where they did not exist in the same space, thus exhibiting
a heterogeneous distribution. Although multi-material 3D-printed structures have been ex-
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plored [19], this further demonstrates that a single printed part for radiation shielding can
be constructed from a variety of ink formulations to possess multifunctional characteristics.
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4. Conclusions

Radiation shielding DIW 3D printing formulations were developed, optimized, char-
acterized, and used for 3D printing. Varying spacing ratios, which are the ratios of the
center-to-center distance between adjacent struts to the diameter of the printed struts, were
used when printing face-centered tetragonal (FCT) lattice structures. A height deviation
was observed in the final printed cylinders when compared to the theoretical design, which
was a result of the ink rheological properties. Previous models that correlate rheology and
printability were found to not accurately predict the observations in this study, and as such,
a new model was needed. Using beam deflection as a starting point for a model, an em-
pirical relationship was created that correlated the maximum printable spacing ratio with
the structure parameter, which is defined as the product of the ink and lattice parameters.
Thus, using this empirical model allows for the refinement of new ink formulations in
the future by way of relating the rheological properties of an ink to the quality of its final
printed structure.

By varying the spacing ratio of the printed cylinders, the thermomechanical properties
of printed parts were able to be altered and thus characterized. Increasing the spacing ratio
led to an increase in porosity, which results in an increase in the maximum compressive
strain, a decrease in Young’s modulus, and an increase in thermal conductivity while
compressed. Furthermore, the thermal stability of the samples was assessed, and it was
found that incorporating fillers in addition to silica increased the thermal stability of the
printed cylinders. When boron was used as a filler, the pathway of thermal decomposition
was altered as well, leading to formulations that possessed much greater thermal stability
than the other printed formulations.

Neutron radiography proved that the parts behaved successfully as radiation shields,
and thus further developments and refinements can be made to the ink formulations
for specific applications. Furthermore, heterogeneity in printing these radiation shields
was tested, where an ink formulation combining WO3 and Gd2O3 was used to print a
homogeneous cylinder, and two different ink formulations, one containing WO3 and
the other containing Gd2O3, were used to print a heterogeneous cylinder. Using X-ray
fluorescence (XRF), a color map of the elements was generated and demonstrated that the
printed cylinders were indeed homogeneous and heterogeneous. Thus, this works provides
a foundation for further research into developing greater tunable DIW inks that can be used
for multi-ink-specific heterogeneous 3D printing for a variety of specialty applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13193284/s1, Figure S1: Storage and loss moduli of the rheology-tested ink formulations
during the stress sweeps.
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