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Cardiovascular diseases represent a worldwide relevant socioeconomical problem. Cardiovascular disease prevention relies also
on lifestyle changes, including dietary habits. The cardioprotective effects of several foods and dietary supplements in both
animal models and in humans have been explored. It was found that beneficial effects are mainly dependent on antioxidant
and anti-inflammatory properties, also involving modulation of mitochondrial function. Resveratrol is one of the most studied
phytochemical compounds and it is provided with several benefits in cardiovascular diseases as well as in other pathological
conditions (such as cancer). Other relevant compounds are Brassica oleracea, curcumin, and berberine, and they all exert beneficial
effects in several diseases. In the attempt to provide a comprehensive reference tool for both researchers and clinicians, we
summarized in the present paper the existing literature on both preclinical and clinical cardioprotective effects of each mentioned
phytochemical. We structured the discussion of each compound by analyzing, first, its cellular molecular targets of action,
subsequently focusing on results from applications in both ex vivo and in vivo models, finally discussing the relevance of the
compound in the context of human diseases.

1. Introduction

Cardiovascular diseases (CVDs) still remain the primary
cause of death worldwide according to the World Health
Organization and American Heart Association statistics [1].
Different approaches have been proposed to reduce the high
global incidence of CVDs and to improve human health.The
consumption of functional foods or dietary supplements for
lowering the risk of CVDs has gained attention over the last
few years from both scientific and clinical communities [2, 3].
Several antioxidant compounds can be found in vegetables
(e.g., vitamins and phenolic compounds). They are partly
responsible for the health benefits by scavenging reactive
oxygen radicals (ROS) and by inhibiting cellular damage
at different levels. Although the literature contains several
review articles describing either general health benefits of
phytochemical supplements or the cardioprotective effects of

a single phytochemical compound, no comprehensive review
article has been so far reported focusing on both preclinical
and clinical cardiovascular beneficial effects of the most
known compounds (resveratrol, Brassica oleracea, curcumin,
and berberine).

In the present paper we attempted to fill up this literature
gap. In order to reach our goal, we discussed each phytochem-
ical compound by analyzing its molecular targets of action,
discussing all existing in vitro, ex vivo, and in vivo data related
to its cardiovascular beneficial properties, finally highlighting
the evidence available in human CVDs.

2. Resveratrol

Resveratrol (3,5,4󸀠-trihydroxy-trans-stilbene) is a natural
polyphenolic compound that exists in Polygonum cuspi-
datum, grapes, peanuts, and berries, as well as in their
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Figure 1: Schematic representation of beneficial effects exerted in the cardiovascular system by resveratrol, Brassica oleracea, curcumin, and
berberine. The AMPK/SIRT-1/PPAR𝛼/𝛾molecular pathway, underlying most of the effects of all vegetable compounds, is illustrated. AMPK:
5󸀠-adenosine monophosphate-activated protein kinase; SIRT-1: silent mating type information regulation-1; PPAR: peroxisome proliferator-
activated receptor; ROS: reactive oxygen species; NF-𝜅B: nuclear factor-𝜅B; TNF-𝛼: tumor necrosis factor-𝛼; EC: endothelial cell; VSMC:
vascular smooth muscle cell; BBB: blood brain barrier.

manufactured products, especially red wine [4]. It exists in
both cis- and trans-configurations, of which trans-resveratrol
is the principal biologically active form [5]. Interestingly,
red wine (therefore resveratrol) was supposed to be one of
the factors responsible for the “French Paradox,” together
with several lifestyle and dietary factors. The term is used
to describe the low incidence of CVDs in French population
despite its high intake of saturated fats. However, the median
daily dose of resveratrol to be protective is estimated to
be 20mg/kg/day, whereas its concentration in red wine is
roughly 1.98–7.13mg/L [6]. Therefore, the assumption of a
high quantity of red wine per day would be needed for a
man to obtain a protective dose of resveratrol, causing serious
health problems [7, 8]. However, an inverse association
between moderate alcohol consumption (30–50 gr/day) and
CVDs has been assessed in several epidemiological studies.
The physiological mechanism of the protective effect of
alcohol seems to be at least in part related to its effect in
reducing platelet action.

2.1. Molecular Targets and Properties. Resveratrol inter-
acts with multiple targets in cardio- and cerebrovascular

diseases, age-related diseases, cancer, and so forth, [9, 10].The
main molecular mechanism mediating resveratrol biological
effects is the 5󸀠-adenosine monophosphate-activated protein
kinase (AMPK)/silent mating type information regulation-1
(SIRT-1) pathway (Figure 1) [11, 12]. The precise mechanism
through which resveratrol activates SIRT-1 is not completely
understood [13]. Other minor pathways mediate some of the
resveratrol effects and they will be briefly mentioned below.

The most important properties of resveratrol are con-
nected with oxidative stress, vascular inflammation, and
platelet aggregation. In fact, resveratrol upregulates the
endogenous antioxidant systems, such as superoxide dismu-
tase (SOD) enzymes, in endothelial cells (ECs) and in cardiac
myoblasts and it reduces ROS production [14, 15]. Moreover,
it reduces arachidonic acid and prostaglandin E2 synthesis.
It inhibits phospholipase A2 and ciclooxygenase-2 activity;
it antagonizes the function of the most important molecules
involved in inflammation, such as nuclear factor-𝜅B (NF-
𝜅B), tumor necrosis factor-𝛼 (TNF-𝛼), interleukin-6 (IL-6),
inducible nitric oxide synthase (iNOS) activity, and mono-
cyte chemotactic protein-1 (MCP-1) [16–19]. Resveratrol also
prevents platelet activation by modulating platelet adhesion,
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secretion and activation signaling, ROS production, and
apoptosis and by enhancing nitric oxide (NO) production
[20–22]. Furthermore, several studies demonstrated that
resveratrol inhibits protein kinase C (PKC) activation and
intracellular calcium release, thus blocking phosphoinositide
metabolism upstream platelet activation signaling [23].

2.2. Hypertension: Preclinical Studies. The “antihyperten-
sive” effect of resveratrol is thought to be mediated by
both endothelium-dependent and endothelium-independent
mechanisms [24, 25], by inhibition of vascular smoothmuscle
cell (VSMC) contractility, by reduction of vasoconstrictor
molecules expression (angiotensin (Ang) II and endothe-
lin (ET)-1), and by inhibition of strain-induced ET-1 gene
expression through the extracellular-signal regulated kinase
(ERK) 1/2 pathway [11, 26, 27]. Finally, its effect on the sym-
pathetic nervous system (SNS) can also contribute to blood
pressure (BP) lowering [28]. The antihypertensive effect
of resveratrol (administered at the dose of 10–320mg/kg
body weight/day) has been demonstrated, although with
some controversial results, in several hypertensive animal
models, including spontaneously hypertensive (SHR), two
kidney one-clip hypertensive, partially nephrectomized, and
deoxycorticosterone acetate- (DOCA-) salt hypertensive rat
models, and in the Ang II-infused mouse [11, 29–32]. Con-
troversies appear mainly related to the specific model under
study. In particular, resveratrol wasmore effective in lowering
BP in animals with either diabetes or metabolic syndrome
in which variable doses of resveratrol (20mg/kg/day) were
administered [33].

Along with the antihypertensive effect, an improve-
ment of endothelial function was described, being largely
attributable to endothelial NO synthase (eNOS) activation
[34, 35]. This effect can certainly contribute to protecting
vasculature from hypertensive damage [36].

2.2.1. Hypertension: Clinical Studies. Scarce information is
available regarding the antihypertensive effect of resveratrol
in humans. A recent meta-analysis has shown that treatment
with ≥150mg/day of resveratrol, considered as a very low
dose, decreases systolic BP (SBP) without affecting diastolic
BP (DBP) [37]. Interestingly, doses of 12,5–100 𝜇L of resvera-
trol were shown to enhance Acetylcholine-mediated vasore-
laxation in blood vessels from patients with hypertension
and dyslipidemia but not in vessels from healthy subjects
[38]. Although resveratrol supplementation did not exert any
effect on BP in healthy obese adults and in patients with
metabolic syndrome, it significantly improved flow-mediated
dilatation (FMD) in these subjects [37, 39]. Similar results
were obtained in patientswith previousmyocardial infarction
(MI) receiving 10mg of resveratrol daily for 3 months [40].
However, the duration of these clinical trials was too short
in order to assess the long-term consequences of the dietary
intervention.

No clinical trials are available yet exploring the BP
lowering effect of resveratrol in hypertensive patients.

2.3. Atherosclerosis and Dyslipidemia: Preclinical Studies.
Resveratrol acts at the very early stages of atherosclerosis

by increasing the hepatic uptake of low-density lipoprotein
(LDL) through an AMPK independent mechanism and by
reducing the expression of intercellular adhesion molecule-1
(ICAM-1) and of vascular cell adhesion molecule-1 (VCAM-
1) on endothelium [41, 42]. Additional in vitro studies
demonstrated that resveratrol, likely via the phosphatidyli-
nositol 3󸀠-kinase (PI3K)/protein kinase B (PKB or Akt) path-
way, bluntsMCP-1 and chemokine receptor type 2 expression
inmonocytes [43, 44]. Also, it reduces foam cell formation by
upregulating the expression of cholesterol transporters and by
downregulating the uptake of oxidized LDL (Ox-LDL) [45].
The anti-inflammatory and antioxidant properties of resver-
atrol may be responsible for inhibition of LDL oxidation, of
macrophagemigration and transformation into foam cells, as
well as of VSMCs migration and proliferation [46, 47].

Several in vivo studies have shown the hypocholestero-
lemic effect of a standard dose of resveratrol (20mg/kg/day)
[48, 49]. In the apolipoprotein (APO) E−/− mice, resvera-
trol downregulated the hepatic 3-hydroxy 3-methylglutaryl
coenzyme A (HMG-CoA) reductase enzyme, a key enzyme
involved in cholesterol biosynthesis, thus reducing total
and LDL cholesterol and increasing high-density lipoprotein
(HDL) cholesterol [50]. In the high fat fed mice, resvera-
trol increased liver expression of cholesterol 7𝛼-hydroxylase
(CYP7A1) which led to increased bile acid synthesis and
secretion, thus lowering the plasma level of total and LDL
cholesterol [51].

2.3.1. Atherosclerosis and Dyslipidemia: Clinical Studies. A
meta-analysis evaluating the benefits of resveratrol supple-
mentation on plasma lipids revealed no significant effect
on any of the lipid parameters (e.g., total LDL and HD-
cholesterol and triglycerides) independently of the dose,
duration of the study, and cardiovascular risk of the consid-
ered population [52]. However, few single studies included
in this meta-analysis reported that a relatively low dose of
resveratrol treatment (250mg per day for 3 months) led to a
significant decrease of total cholesterol, total and ox-LDL, and
ApoB levels in patients with type 2 diabetes mellitus (T2DM),
coronary artery disease (CAD), hyperlipidemia, and other
cardiovascular risk factors [53]. Similarly, total cholesterol
and triglyceride levels were reduced by a very low dose of
resveratrol (20mg/per day for 2 months) in patients with
stable angina [54].

2.4. Obesity and T2DM: Preclinical Studies. Resveratrol
reduced lipid accumulation both in vivo and in vitro by
inhibiting lipogenesis, increasing apoptosis, and promoting
lipolysis [55–57]. In Sprague-Dawley rats the body fat-
lowering effect of 30mg resveratrol/kg body weight/day was
mediated, at least, in part, by reduction in fatty acid uptake
from circulating triacylglycerols, as well as by a de novo
lipogenesis in adipose tissue [58]. In addition, it modulated
insulin signaling pathway and improved insulin sensitivity
in adipose and muscle tissue, as well as glucose uptake and
insulin secretion [59, 60]. In humanmuscle cells derived from
T2DM patients, resveratrol may improve glucose utilization
and resistance to hyperglycemia by inhibiting phosphoryla-
tion of Insulin Receptor Substrate-1 [61].
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In vivo, resveratrol restores vascular function through
antioxidant, anti-inflammatory, and antiapoptotic proper-
ties, as it was observed treating rats with very low doses
(0,75mg/kg/three times a day) [62]. At a standard dose of
20mg/kg/day, it improved cardiac function in both type 1 and
type 2 DM [63–65].

2.4.1. Obesity and T2DM: Clinical Studies. Resveratrol, at
the standard dosage of 500mg three times a day, improved
insulin sensitivity in both obese and metabolic syndrome
patients [66, 67]. However, other studies failed to confirm
these findings [68, 69]. Anti-inflammatory effects of resver-
atrol were reported in several clinical studies performed in
patientswith high cardiovascular risk profile [54, 70]. Admin-
istration of resveratrol using different chemical formulae at
several dosages was associatedwith decreased oxidative stress
in patients with metabolic syndrome [71].

2.5. Ischemic Heart Disease: Preclinical Studies. Resveratrol
protects against ischemic heart disease through multiple
mechanisms. The mechanisms underlying the precondi-
tioning effect of resveratrol (0,5mg/kg/day) appear to be
mainly mediated by NO and the antioxidant enzyme heme
oxygenase-1 (HO-1) [72].

In vitro studies showed that resveratrol upregulated
vascular endothelial growth factor (VEGF) expression in
cardiomyocytes and in ECs through an increased oxidative-
stress related proteins Thioredoxin-1 (Trx-1) and HO-1
expression [73]. It also protected cardiac tissue fromcell death
throughmultiple mechanisms including antiapoptotic effects
and autophagy [74, 75].

Pretreatment of rats with resveratrol resulted in cardio-
protection when the isolated heart was subjected to 30min
global ischemia followed by 2 hr reperfusion, or following
permanent left anterior descending coronary artery (LAD)
occlusion [76]. Resveratrol can potentiate regeneration of
infarctedmyocardium in a LAD occlusion rat model by stim-
ulating neovascularization and cardiac stem cells [76, 77].
Interestingly, pretreatment with resveratrol largely restored
the altered microRNAs expression in the ischemic heart [78].

The protective effects of resveratrol in the ischemic
myocardium were confirmed in vivo [72, 79]. An interesting
study conducted by Kanamori et al. suggested that only
high dose (50mg/kg/day) of resveratrol may be an effective
treatment for ischemic heart failure (HF) by preventing
necrotic area expansion and by improving cardiac func-
tion. Authors tested two doses of resveratrol (5mg/kg and
50mg/kg) demonstrating the dose-dependent effect of this
compound [80].

2.5.1. Ischemic Heart Disease: Clinical Studies. Few clinical
trials investigated the effects of both standard and low doses
of resveratrol in stable angina, acute coronary syndromes,
and previous MI with positive results [40, 54, 70]. Additional
studies suggested that resveratrol may be cardioprotective
through increase of adiponectin and reduction of thrombo-
genic plasminogen activator inhibitor type 1 (PAI-1) [81, 82].

2.6. Cardiac Hypertrophy and Heart Failure: Preclinical Stud-
ies. Resveratrol was shown to prevent cardiac hypertrophy
and dysfunction through reduction of oxidative stress, inhi-
bition of hypertrophic gene expression, and increase of Ca2+
handling [83]. The antihypertrophic effect of resveratrol may
be BP independent. For instance, low doses of resvera-
trol (2.5mg/kg/day) prevented cardiac hypertrophy without
reducing BP in SHR and Dahl-salt sensitive rats [84, 85].
The cardioprotective properties were demonstrated in several
animal models, including pressure-overload, volume over-
load, SHR, doxorubicin-induced cardiotoxicity, myocardi-
tis, MI, and ischemia-reperfusion (I/R) injury [15, 84, 86–
90]. Recently, Sung et al. demonstrated that high doses of
resveratrol (320mg/kg/day) promote beneficial remodeling
and improve both diastolic function and cardiac energy
metabolism in a mice model of pressure-overload HF, thus
increasing animal survival [91].

2.6.1. Cardiac Hypertrophy andHeart Failure: Clinical Studies.
In one study, performed in patients with HF of ischemic
origin, treatment with resveratrol significantly improved
diastolic function and induced a modest increase of systolic
performance, despite the low dose administered (10mg of
resveratrol capsule/day) [40].

2.7. Cerebrovascular Disease: Preclinical Studies. The previ-
ously described beneficial vascular properties of resveratrol
can also explain protection from ischemic stroke [92]. In
vitro resveratrol promoted angiogenesis in cerebral ECs and
prevented impairment of eNOS-dependent vasorelaxation of
cerebral arterioles in diabetes [93, 94]. It also reduced infarct
size in a rat model of focal cerebral ischemia and preserved
blood brain barrier function by interfering with occludin and
zonula occludens- (ZO-)1 tight junctions [92, 95, 96]. The
stroke protective effects of resveratrol were also attributed to
its specific neuroprotective properties [97, 98].

2.7.1. Cerebrovascular Disease: Clinical Studies. There are no
clinical studies investigating the protective effects of resvera-
trol in stroke patients. Interestingly, a single dose (250mg)
of trans-resveratrol increased cerebral blood flow during a
mental stress (cognitive tasks) in healthy adult subjects [99].

2.8. Other Cardiovascular Diseases: Preclinical Studies. Res-
veratrol protected from doxorubicin-induced cardiotoxicity
in a variety of animal models through the above discussed
mechanisms [100–102]. However, there is scarce informa-
tion on the cardioprotective effects of resveratrol in cancer
patients treated with either doxorubicin or other cardiotoxic
chemotherapeutic agents.

Few studies suggested an antiarrhythmic property. In
fact, resveratrol caused a significant antiarrhythmic effect
in three models of arrhythmia: aconitine-induced, ouabain-
induced, and coronary ligation-induced arrhythmias [103].
Furthermore, chronic oral low-dose resveratrol treatment
(5mg/kg/day for 4 weeks starting one week before MI)
significantly suppressed MI-induced ventricular tachycardia
and ventricular fibrillation [104]. Recently, Baczko et al.
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designed and characterized a multifunctional resveratrol-
derived small molecule, compound 1, targeting a number
of key pathways involved in atrial fibrillation (AF), able to
reduce the average and total AF duration in a model of
inducible AF in conscious dogs [105].

3. Brassica oleracea
Brassica oleracea (BO) is a commonly used phytochemical.
The species include broccoli, cauliflowers, Brussel sprouts,
and kale. BO is highly enriched with bioactive molecules,
whose effects on health have been partly explored [106–108].
It is known that the content of vitamin C varies significantly
between the different subspecies ofBrassica.These differences
mainly depend on genotype and also on industrial storing,
processing, and domestic cooking that reduce the final levels
of available antioxidant compounds [109].

BO, in particular broccoli sprouts, is rich in glucosi-
nolates: they are large molecules composed by a 𝛽-D-
thioglucose group, a sulphonated oxime group and an amino-
acidic side chain [110]. Sulforaphane is the active metabolite
of glucoraphanin and is produced after hydrolyzation by
myrosinase enzyme [111]. Cooking the vegetables partially
denatures myrosinase; however, when glucoraphanin reaches
the intestinal floramyrosinase-producing bacteria release the
active metabolite that is then absorbed [112]. After absorp-
tion, sulforaphane is partly conjugatedwith glutathione in the
liver, forming sulforaphane-glutathione. After reaching the
kidneys, where it becomes sulforaphane-N-acetylcysteine, it
is finally excreted in the urine [113]. Other active compounds
of Brassica plants are anthocyanins, carotenoids, vitamin
C, tocopherol, folic acid, and minerals. We will focus our
discussion on sulforaphane and anthocyanins, as the main
components of BO.

3.1. Molecular Targets and Properties. Molecular targets
of BO include NF-𝜅B, nuclear factor-2 (Nrf2), mitogen-
activated protein kinase (MAPK), c-Jun N-terminal kinase
(JNK), Akt/PKB, and AMPK/SIRT-1/peroxisome prolifera-
tor-activated receptor-𝛼 (PPAR𝛼)/uncoupling protein-2
(UCP2) [114–117]. By interacting with these molecular
signaling pathways, BOplays antioxidant, anti-inflammatory,
and antithrombotic effects.

3.2. Preclinical Studies. Broccoli sprouts exert several cardio-
vascular beneficial effects [106, 107].

With regard to glucosinolates, sulforaphane has been
proven to be the most beneficial. In vitro, it induced
expression of detoxification enzymes, the so called “ARE”
targets (Antioxidant Response Elements: nicotinamide ade-
nine dinucleotide (NADH) quinone reductase, HO-1, and
glutathione transferase), and several nuclear factors, such as
Nrf2, involved in ROS elimination and xenobiotic excretion
[114]. Sulforaphane suppressed the expression of MAPK p38
in ECs through activation of Nrf2, thus leading to reduction
of VCAM-1 synthesis [118]. By reducing ROS, sulforaphane
lowered ox-LDL level in blood [119]. In a study conducted
in rats fed for 14 weeks with 200mg/day of dried broccoli
sprouts, a significant increase in glutathione content was
observed along with increased glutathione reductase and

peroxidase (GPx) activities in both heart and kidneys [120].
Interestingly, administration of broccoli sprouts in pregnant
female stroke prone-SHR (SHRSP) decreased oxidative stress
and BP levels, compared to females fed with control diet. Fur-
thermore, offspring of females maintained on broccoli diet
during pregnancy had also lower BP and tissue inflammation
in adulthood, regardless of diet [121].

Anthocyanins are known to promote optimal platelet
function and antithrombotic effects [122]. These compounds
can act on different types of cells involved in atherosclerosis
development. In fact, they exert a protective effect toward
TNF-𝛼 induced MCP-1 secretion in primary human ECs
[123]. Anthocyanins prevented the expression of VEGF
stimulated by platelet derived growth factor (PDGF) AB in
VSMCs and byMAPK p38 and c-JNK inhibition [115]. More-
over, anthocyanins extract induced endothelium-dependent
relaxation in porcine coronary arteries [124]. Increased
cardiac glutathione concentrations in rats receiving long-
term administration of anthocyanins contributed to the
antioxidant effects [125]. The protective effect on heart also
depends on reduction of hypertrophy-associated increased
phosphorylation of PKC and on activation of Akt/PKB
[116]. Moreover, anthocyanins prevented CD40-activated
proinflammatory signaling in ECs by regulating cholesterol
distribution [126]. They also inhibit the activation of NF-
𝜅B and lipopolysaccharides induced NO biosynthesis in
macrophages [127].

Broccoli sprouts protect frommyocardial oxidative dam-
age and cell death in ischemia/reperfusion (I/R) rat models.
In particular, anthocyanins decreased the extent of cell death
in cultured cardiomyocytes and reduced infarct size by
inhibiting signal transducer and activator of transcription
1 (STAT1) stimulation [106, 128]. Notably, BO improved
diabetic nephropathy in rats [107] and prevented renal dam-
age in salt-loaded SHRSP, independently from SBP, through
AMPK/SIRT1/PPAR𝛼/UCP2 axis activation [117]. In fact,
selective inhibition of PPAR𝛼 antagonized the nephroprotec-
tive effects of BO sprouts, consistently with previous evidence
on the role of cyanidin as PPAR𝛼 agonist [129].

3.3. Clinical Studies. The beneficial effects in humans were
enhanced when broccoli supplements were combined with
fresh broccoli sprouts administration in healthy subjects who
consumed either 68 gr of broccoli sprouts or 6 Brocco-Max
pills (about 3 gr of freeze-dried broccoli sprouts in 6 pills)
for 7 days [130, 131]. In a small clinical trial conducted in
6 men and 6 women, all smokers, eating 100 gr of broccoli
sprouts daily for 7 days, a significant reduction of both total
and LDL cholesterol along with urinary 8-isoprostanes and
other markers of oxidative stress was observed [119]. The
administration of 150mL/day kale juice for 12 weeks in 32
men with hypercholesterolemia significantly reduced plasma
LDL cholesterol and increased both HDL cholesterol and
GPx activity, thus lowering CAD risk [108]. In addition,
broccoli sprouts supplement could play favorable effects on
lipid profiles and OX-LDL/LDL cholesterol ratio in T2DM
[132]. Recently, anthocyanins intake (8,4–23,6mg/day) was
shown to associate with lower arterial stiffness and central BP
in women [133].
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Results from human trials are controversial. In fact,
Curtis et al. showed no effect on markers of CVDs (includ-
ing inflammatory biomarkers, platelet reactivity, lipids, and
glucose), on liver and kidney function, as well as on anthro-
pometric parameters, BP, and heart rate, following 12-week
intervention with 500mg/day cyanidin in postmenopausal
women [134].

4. Curcumin

Curcumin (diferuloylmethane) is a naturally occurring phe-
nolic compound isolated as a yellow pigment from spice
turmeric (Curcuma Longa). This compound has received
attention due to its various biological and pharmacologi-
cal activities. Its therapeutic effects have been extensively
investigated, particularly in the treatment of cancer and
inflammatory diseases [135].

There is growing evidence that curcumin has a potential
role in protection from several CVDs [135, 136].

4.1. Molecular Targets and Properties. Curcumin interacts
with different molecular targets, such as Janus Kinase 2
(JAK2)/STAT3, AMPK/UCP2, Akt/Nrf2, ERK, MAPK p38,
JNK, ICAM-1, MCP-1, and IL-8 [137–141]. As a consequence,
it exerts anti-inflammatory, antiplatelet, and antioxidant
properties [141–144]. Concerning the latter, a single dose
of 15mg/kg of curcumin appears to decrease levels of
xanthine oxidase, superoxide anion, lipid peroxides, and
myeloperoxidase and to increase levels of SOD, catalase, GPx,
and glutathione-S-transferase (GST) [145]. Moreover, this
phytochemical reduces level of eNOS and iNOS through the
activation of NF-𝜅B and protein-1 (AP-1) [146]. Curcumin is
also a potent inducer of HO-1 in ECs through activation of
ARE in several cardiovascular cells exposed to curcumin 5–
15 𝜇M [147]. Moreover, curcumin appears to attenuate mito-
chondrial alterations and respiratory cellular dysfunction
[148].

4.2. Preclinical Studies. Curcumin plays a protective role on
endothelium by inducing HO-1 in bovine aortic ECs [147]. It
exerts antiproliferative and antiapoptotic effects on VSMCs,
exposed to 1–25 𝜇M of curcumin, thus attenuating carotid
artery neointima formation [149–151]. It plays a relevant role
on calcium homeostasis in both skeletal muscle and cardiac
sarcoplasmic reticulum [152].

The role of curcumin in CVDs has been investigated in
several animal models. For instance, 1,66mg curcumin/kg
showed a hypolipidemic effect and protection from aortic
fatty streak development [153, 154]. The cardioprotective role
of curcumin was shown in myocardial ischemia rat models
[145, 155]. In I/R models, curcumin reduced collagen syn-
thesis and fibrosis and significantly improved left ventricular
end-diastolic volume, stroke volume, and ejection fraction
[156]. In addition, it reduced MI size and depressed lactate
dehydrogenase release in the coronary blood flow through
activation of JAK2/STAT3 [137].These beneficial effects could
be related to a decrease of proinflammatory cytokines and of
cardiomyocyte apoptosis [157].

In two different HF models, 50mg curcumin/kg/day
ameliorated systolic function and prevented myocardial
hypertrophy by inhibiting p300-HAT (histone acetyltrans-
ferases) [158]. Additionally, a larger amount of curcumin
(200mg/kg/day) showed a protective role in adriamycin-
induced cardiac damage [159] and it also prevented car-
diovascular complications in diabetes [146]. In fact, it
reduced high glucose-induced overexpression of inflamma-
tory cytokines inmacrophages [144]. A beneficial role toward
myocardial injury was reported in renal I/R injury rat models
[160].

Finally, a standard dose of curcumin (25–50mg/kg/day)
protected against cerebral ischemic insult [161], as well as
aging-related cerebrovascular dysfunction via AMPK/UCP2
pathway. It protected neurons against ischemic injury
through Akt/Nrf2 pathway [138, 139]. In different stroke
models curcumin not only decreased oxidative stress but
also attenuated reperfusion injury by preventing neutrophil
adhesion to the cerebrovascular microcirculation [162, 163].

4.3. Clinical Studies. Controversial results exist with regard to
the effect of curcumin on plasma lipids in healthy subjects. In
fact, in healthy volunteers, a dosage of 500mg curcumin/day
decreased both serum lipid peroxides and total cholesterol
and increased HDL cholesterol [164]. Hypolipidemic effects
were also observed in patients affected by atherosclerosis,
acute coronary syndrome, and T2DM. Moreover, the effect
of curcumin administration on lipid profile was evaluated
in acute coronary syndrome (ACS) patients at escalating
doses (low dose, 3 times 15mg/day; moderate dose, 3 times
30mg/day; high dose, 3 times 60mg/day). Unexpectedly, this
study showed that the low dose of curcumin was associated
with higher reduction of total, HDL and LDL cholesterol
levels [165, 166]. On the other hand, a meta-analysis failed to
show protective effects of curcumin on both cholesterol and
triglycerides in a heterogeneous population [167]. Curcumin
administration and aerobic exercise training increased FMD
in postmenopausal women [168]. Interestingly, curcumin
may improve the blood compatibility of rapamycin-eluting
stents through its antiplatelet properties [169].

5. Berberine

Berberine (BBR), an alkaloid isolated from Hydrastis canad-
ensis, the Chinese herb Huanglian, and many other plants,
such as the Berberidaceae and Ranunculaceae families, has a
long history in traditional Chinese medicine. BBR is present
in roots, rhizomes, and stem bulk of the plants. Various phar-
macological actions, including antibiotic, immunostimulant,
antitumor, and antimotility properties have been described
for BBR [170, 171].

Recent studies have indicated that BBR may be also
effective in treating chronic,multifactorial diseases, including
diabetes, hyperlipidemia, heart diseases, cancer, neurological
disorders, and inflammatory diseases [172, 173].

5.1. Molecular Targets and Properties. Molecularmechanisms
mediating antioxidant effects appear to be mainly related
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to upregulation of both SOD and UCP2 and to down-
regulation of NADPH oxidase expression [174, 175] with
particular regard to NADPH oxidase 2/4 subunits [175]. BBR
administration activates Nrf2 pathway, which is crucial for
antioxidant and anti-inflammatory activities [176]. BBR could
suppress inflammation by blocking the MAPK pathways
in a AMPK-dependent manner, by inhibiting the NF-𝜅B
signaling pathway and the Rho GTPase pathway and by
attenuating transcription activity of AP-1, which is possibly
mediated by PPAR𝛼 activation [177–179].

5.2. Preclinical Evidences. In vitro studies demonstrated
the role of BBR in counteracting endothelial progenitor
cells (EPCs) dysfunction. In fact, BBR improved the pro-
liferative ability of EPCs impaired by TNF-𝛼 via activa-
tion of PI3K/Akt/eNOS signaling pathway [180]. More-
over, BBR induced endothelium-dependent vasorelaxation
and enhanced endothelium-independent VSMC dilatation
through a partial reduction of oxidative stress [181].

In VSMCs, isolated from thoracic aorta of Sprague-
Dawley rats, BBR inhibited Ang II- and heparin binding
epidermal growth factor- (HB-EGF-) induced VSMC prolif-
eration and migration. In vivo results showed a reduction of
neointima formation after balloon injury, thus lowering risk
of restenosis [182]. Zimetti et al. demonstrated a double pro-
tective effect of BBR on cholesterol homeostasis underlying
foam cells formation and on the inflammatory phenotype in
mouse and human macrophages [183].

BBR affected glucose metabolism by increasing insulin
secretion, stimulating glycolysis, suppressing adipogene-
sis, and increasing glucokinase activity and both glucose
transporter-4 (GLUT-4) and glucagon-like peptide (GLP-1)
levels in glucose-consuming tissues [184].

Furthermore, BBR was shown to have lipid-lowering
properties in animals as well as in hyperlipidemic patients
through mechanisms different from those of statins, involv-
ing activation of ERK pathway and increase of LDLR
expression on the hepatocytes surface [185]. Interestingly,
contrasting results were reported with regard to modulation
of the gene encoding proprotein convertase subtilisin kexin
9 (PCSK9), a natural inhibitor of LDLR. In HepG2 cells
20𝜇M BBR downregulated the transcription of the gene
[186], whereas 400mg BBR/kg/day significantly reduced
body weight and improved lipid profile by increasing the
PCSK9 expression levels through Sterol Regulatory Element-
Binding Proteins activation in the high fat diet (HFD) rat
model [187].

BBR, at the dosage of 100mg/kg/day, plays positive
inotropic, antiarrhythmic, and vasodilator properties related
to the cardiovascular system [188, 189]. The antiarrhythmic
effects are due, at least in part, to preferential blockade of
the components of the delayed rectifying potassium current,
I(Kr), and I(Ks) and to increased effective refractory period
of Purkinje fibers [190, 191].

The beneficial effects of BBR were demonstrated in sev-
eral animalmodels such as SHR,HFD rats, pressure-overload
HF, and myocardial ischemia [187, 192–194]. Notably, 50
Sprague-Dawley rats were treated with BBR (30 or 60mg/kg)
demonstrating that BBR had cardioprotective effects against

acute ischemic myocardial injury in a dose-dependent man-
ner [194]. BBR counteracted several pathological features of
hypertension, including suppression of endoplasmic reticu-
lum stress, inhibition of ROS accumulation, and attenuation
of endothelium-dependent contractions in SHR [195]. The
antihypertensive effect of BBR derivative 6-protoberberine
(PTB-6) was shown in conscious SHR and Wistar-Kyoto
(WKY) rats, and it was mediated by reduced SNS activity
through a negative inotropic and chronotropic effect [192].

A recent in vivo study reported that BBR can prevent
cardiac hypertrophy and attenuate cardiomyocyte apoptosis
in the transverse aortic contraction treated rat model [193].

In a rat model of MI, BBR administration significantly
enhanced autophagic activity, attenuated adverse left ven-
tricular remodelling, and preserved left ventricular systolic
function. Interestingly, low-dose BBR (10mg/kg per day)
was associated with greater improvement in cardiac function
compared with high-dose BBR (50mg/kg per day) [196].
In diabetic rat models, BBR protected the heart against I/R
injury, improved cardiac function, and reduced myocardial
apoptosis via activation of AMPK and PI3K/Akt and eNOS
signaling [197]. In addition, cardioprotective effects of BBR
in myocardial ischemia are due to its antioxidant and anti-
inflammatory properties [194].

Chronic administration of BBR significantly reduced
oxidative stress and vascular inflammation and suppressed
atherogenesis in ApoE−/− mice by AMPK-dependent UCP2
expression [174].

In a middle cerebral artery occlusion (MCAO) model,
BBR improved neurological outcome and reduced I/R-
induced cerebral infarction 48 hrs after MCAO. The protec-
tive effect of BBR was confirmed in vitro [198].

5.3. Clinical Evidences. BBR has shown good safety results
in human studies [199]. A randomized clinical trial tested
its effects in 156 patients with chronic congestive HF. The
BBR-treated group (1,2–2 gr/day) showed significantly greater
increases in left ventricular ejection fraction and exercise
capacity, significant improvements on the dyspnea-fatigue
index, and decreased rates of ventricular premature com-
plexes and long-term mortality [200].

Treatment of 100 arrhythmic patients with BBR resulted
in a >89% reduction in premature beating in the majority
of patients and >50% reduction in the remaining patients
[201]. These results were independently reproduced [202].
A recent meta-analysis, including 11 randomized controlled
studies (874 Chinese participants affected by hyperlipidemia,
T2DM, or both diseases), has shown a significant reduction
in total cholesterol, triglycerides, and LDL cholesterol levels
and a small but significant increase in HDL cholesterol [203].

In T2DM patients, high-dose BBR administration (100–
200mg/kg/day) was associated with a significant reduction
in glycated hemoglobin, fasting plasma insulin, postprandial
glucose, and fasting plasma glucose [204].

BBR beneficial effects were also observed in hypercholes-
terolemic European patients [205].

A recent meta-analysis emphasized the role of BBR in
the treatment of hypertension. In fact, BBR associated with
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lifestyle intervention tended to lower the level of BP more
than lifestyle intervention alone or than placebo [206].

6. Conclusions

Preclinical studies revealed several beneficial cardiovascu-
lar effects of resveratrol, Brassica oleracea, curcumin, and
berberine. The benefits appeared to be mainly dependent on
antioxidant, anti-inflammatory, and antithrombotic proper-
ties. In fact, the excellent results of both in vitro and in vivo
studies induced researchers and clinicians to test the effects
of phytochemicals in humans. However, evidences obtained
from the few available clinical trials on the protective effects
of these compounds in several CVDs are still controversial.
A main limitation of current clinical studies relies on their
heterogeneity and on small samples size. Furthermore, based
on the literature discussed in the present paper, some confu-
sion arises about the precise dose of each compound exerting
more pronounced beneficial effects. In particular, whereas the
use of a very high dose is associated with the most protective
effects for few phytochemicals, the lowest dose turns out to
be themost effective for other compounds.This phenomenon
appears to be related to different animal models as well as to
the specific disease under consideration. Therefore, there is a
need for additional larger and well controlled human studies.

Altogether, the lack of a clear beneficial role in humans,
the wide variety of in vitro, ex vivo, and in vivo experimental
evidences that are summarized in Tables 1 and 2, suggests that
resveratrol, Brassica oleracea, curcumin, and berberine may
reveal very useful preventive and/or therapeutic tools for the
treatment of CVDs, as a valid support to medical therapies.
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a nutraceutical combination (berberine, red yeast rice and poli-
cosanols) on lipid levels and endothelial function randomized,
double-blind, placebo-controlled study,” Nutrition, Metabolism
and Cardiovascular Diseases, vol. 20, no. 9, pp. 656–661, 2010.

[206] J. Lan, Y. Zhao, F. Dong et al., “Meta-analysis of the effect and
safety of berberine in the treatment of type 2 diabetes mellitus,
hyperlipemia andhypertension,” Journal of Ethnopharmacology,
vol. 161, pp. 69–81, 2015.


