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Abstract

Extreme fetal growth is associated with increased susceptibility to a range of adult diseases 

through an unknown mechanism of cellular memory. We tested whether heritable epigenetic 

processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for 

re-programming associated with the extremes of fetal growth. Here we show that both fetal growth 

restriction and over-growth are associated with global shifts towards DNA hypermethylation, 

targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem 

cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is 

associated with substantially greater epigenetic dysregulation in males, whereas large for 

gestational age (LGA) growth predominantly affects females. The findings are consistent with 

extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and 

metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that 

could identify infants at higher risk for chronic disease later in life.

INTRODUCTION

Environmental factors have the potential for significant impact on normal development and 

health throughout the life span. Suboptimal intrauterine conditions represent a specific type 

of environmental exposure that is associated with increased risk for cardiovascular disease1,2 

and premature death in adulthood3. A substantial amount of evidence has also demonstrated 

the relationship between poor maternal nutrition or low birth weight with a range of 
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metabolic disorders and obesity in humans4,5 with animal studies further corroborating these 

findings6. At the opposite end of the spectrum of extreme fetal growth, excess nutrition 

leading to large for gestational age (LGA) birth weights is associated with similar adult 

phenotypes, with increased risk for premature mortality3 and a range of other age-related 

diseases7. Fetal growth restriction and over-growth show a decline in resistance to chronic 

disease in adulthood and involvement of multiple organ systems, which is typical of normal 

aging and may represent a precocious aging phenotype associated with both extremes of the 

fetal growth spectrum8.

Adverse exposures appear to be particularly consequential in early life, possibly due to the 

rapid expansion of cell populations necessary for growth, and the dynamism of cellular 

differentiation and lineage commitment that occurs during this period of development. 

Inherent to the differentiation process is the modification of transcriptional regulatory 

patterns. These include epigenetic regulators that are capable of transmitting newly 

established regulatory marks through cell replication9. Environmentally induced 

perturbations of the cell’s normal epigenetic regulatory controls may be maintained in long-

lived, self-renewing cells, maintained through proliferation and resulting in functional 

consequences later in life. While alterations in DNA methylation has been associated with 

the cumulative exposures inherent to aging10, environmental exposures early in life may 

induce addition dysregulation of the epigenome conferring increased susceptibility for age-

related disease at a younger age.

We11,12 and others13–15 have explored the possibility that non-random epigenetic changes 

are associated with IUGR. In studies of disease or phenotype-associated epigenetic changes, 

the choice of cell type generally represents a compromise between accessibility, purity, 

quantity and mechanistic relevance. Unpurified peripheral blood leukocytes have previously 

been studied in individuals whose mothers were exposed prenatally to famine. Altered DNA 

methylation of multiple sites within the differentially methylated region (DMR) of the 

imprinted Insulin-like growth factor 2 (IGF2) gene was found in subjects decades later13. 

Cord blood leukocytes have also been used to demonstrate associations of DNA methylation 

with in utero conditions and birth weight15,16. Another commonly studied tissue type is the 

placenta, which functions at the maternal-fetal interface and may be a potential mediator of 

intrauterine environmental conditions17–19. However, testing the placenta does not address 

the latent risk in adulthood of chronic disease, which has to be mediated by somatic cells of 

the offspring. Furthermore, the use of samples of mixed populations of cells in DNA 

methylation studies, such as those sampled from highly heterogeneous placental tissue, is 

now recognized as a major source of experimental artifact that limits interpretability of 

results20,21.

We focus on hematopoietic stem/progenitor cells (HSPCs), purified using the CD34 surface 

marker to reduce cell subtype effects20. HSPCs include a subset of long-term, self-renewing 

stem cells that persist through the life of the individual22, allowing the cellular propagation 

or the ‘memory’ of exposure to temporally remote suboptimal conditions. The role of 

CD34+ HSPCs in the maintenance of vascular integrity23,24 is mechanistically relevant for 

the adult phenotype associated with increased risk for cardiovascular disease4,25. We studied 

infants born with the two extremes of fetal growth, IUGR and LGA, compared with control 
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infants with appropriate weight for gestational age. Due to the thorough characterization of 

CD34+ HSPCs by the Roadmap Epigenomics Program, we were able to exploit the mapping 

of chromatin constituents to define empirically the cis-regulatory elements, such as 

promotors and enhancers, specific to this cell type26 allowing us to interpret changes in 

DNA methylation at otherwise unannotated loci in the genome.

RESULTS

Genome-wide DNA methylation profiling

We perform genome-wide DNA methylation profiling on purified CD34+ HSPCs from 60 

subjects, 20 in each of three groups defined by appropriate or excessively large or small 

birth weight and ponderal index for gestational age and sex (Table 1). The HELP-tagging 

assay is used as a survey technique testing ~1.8 million loci quantitatively at nucleotide 

resolution and including relatively CG dinucleotide depleted loci27. This assay generates a 

methylation score that is inversely correlated to DNA methylation level, with a methylation 

score of 0 indicating full methylation and 100 indicating complete lack of methylation, 

based on a normalized ratio between tag counts generated by the methylation-sensitive 

enzyme HpaII and its methylation-insensitive isoschizomer MspI28. Based on quality 

control measures (Methods and Supplementary Fig. 1), 993,514 loci are selected for further 

analyses. Of these, 10,043 loci are defined as candidate differentially-methylated loci using 

batch-adjusted significance and degree of methylation difference thresholds in comparisons 

of IUGR and LGA infants with the normal birth weight controls. We observe a global 

relative shift towards DNA hypermethylation in CD34+ HSPCs in both IUGR and LGA 

subjects when compared with the controls (Fig. 1a). The clustering of cases (LGA/IUGR) is 

not uniform, with a subset of cases clustering with controls (Fig. 1b), indicating that 

epigenetic dysregulation does not occur universally as a response to extreme fetal growth. 

While there exists a subset of common loci altered in both IUGR and LGA neonates, most 

of the dysregulated loci are distinctive between these groups (Fig. 1c,d). We also see an 

overlap of genes (as opposed to loci) undergoing differential DNA methylation 

(Supplementary Fig. 2).

Sexual dimorphism associated with the extremes of fetal growth

Sex-specific comparisons for DNA methylation patterns are shown between control and 

IUGR and LGA subjects (Fig. 2). Both IUGR males and females show a shift in DNA 

methylation profiles compared to controls, but the number of hypermethylated loci is 

markedly higher in males compared to females (Fig. 2a). Sex-specific differences are also 

seen in the comparison of LGA to controls, with LGA females showing an increase in the 

overall number of candidate differentially-methylated loci compared to males (Fig. 2b). 

These findings indicate a sexual dimorphism in the epigenetic responses of HSPCs to the 

extremes of growth conditions in utero.

Targeting of DNA methylation changes to specific genomic contexts

While the consequences of DNA methylation changes at recognized promoter sequences are 

generally predictable, a genome-wide study of this type can generate a majority of findings 

in un-annotated genomic locations. To predict the functional consequences of these 
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candidate differentially-methylated loci, we take advantage of the mapping of chromatin 

components in CD34+ HSPCs performed as part of the Roadmap Epigenomics Program. 

The details of this annotation are described in a separate report26 and involve the use of the 

Segway algorithm29 to generate genomic features (Methods) that are then interpreted using 

Self-Organizing Maps30. We are thus able to define candidate promoters, enhancers, 

transcribed sequences and repressive chromatin in the epigenome specific to the CD34+ 

HSPC population. Every HpaII site is then assigned to a candidate feature based on its 

genomic position. The HELP-tagging assay represents each of the candidate genomic 

features (based on 993,514 loci) and the candidate differentially-methylated loci (10,043) 

are significantly enriched in Segway features 4 (enhancers, p<0.001) and 6 (promoters, 

p<0.001), indicating preferential targeting to transcriptional regulatory elements (Fig. 3a). 

We show an example of the mapping of the one the candidate differentially-methylated loci, 

to the promoter of the Retinoid X receptor, alpha (RXRA) gene, at an annotated CpG island, 

and within the Segway feature 6 annotation indicating candidate promoter function. The 

HELP-tagging derived methylation scores for cases (IUGR and LGA combined) are 

compared with controls to demonstrate the magnitude of the change at this locus (Fig. 3b).

Targeting of DNA methylation changes to genes with specific properties

We test whether the subset of loci affected by DNA methylation changes are enriched at a 

specific subset of genes characterized by concordance of function of their protein products. 

A candidate differentially methylated locus is linked to a specific gene if the site is (a) 

located in proximity to the transcription start site of the RefSeq gene and (b) overlapping 

candidate regulatory loci (features 4 or 6). We select only those candidate promoters (feature 

6) within ±2 kb and candidate enhancers (feature 4) within ±5 kb of RefSeq transcription 

start sites. While enhancers can act over substantially longer distances than 5 kb31, we are 

deliberately conservative in restricting the distance so that we would be more likely to 

associate an enhancer with the gene upon which it exerts its effects. The resulting list of 

genes is used to perform a gene set enrichment analysis (GSEA). Traditional GSEA does not 

take into account the physical characteristics of the gene and has been shown to be biased by 

factors such as the numbers of CG dinucleotide sites associated with different classes of 

gene and gene promoters32. To address this, the Bioconductor package GoSeq33 was 

developed to control for variability of length of genes. We adapted GoSeq to normalize our 

data to control for the number of CG dinucleotides linked to each gene by the above criteria. 

Detailed information describing the results of the normalized GSEA is shown in 

Supplementary Tables 1–2. Among the different significant pathways from KEGG (Kyoto 

Encyclopedia of Genes and Genomes), two pathways of interest emerge as significant 

regardless of group comparison: the KEGG pathways for Maturity onset diabetes of the 

young, relevant to glucose homeostasis and Hedgehog (HH) signaling. Both of these 

pathways contain genes involved in proliferation, differentiation and self-renewal 

capabilities of stem cells. Permutation analysis was performed to confirm the significance of 

these results. Based on the criteria for assigning HpaII sites to RefSeq genes described 

above, the HELP-tagging assay represents 97.6% of RefSeq genes, so we randomly select 

from within this group of genes the same number of genes used to define our pathways, and 

perform the GSEA analysis 1,000 and 3,000 times to test how frequently the same pathways 

are identified as, defining the significance of our detection of these pathways as p<10−3. The 
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same pathways are targeted by IUGR and LGA even when the loci involved are not identical 

(Fig. 4). A similar effect is seen for the loci affected differentially between males and 

females (Supplementary Fig. 3). These findings combine to show convergence of 

dysregulation of the same pathways by IUGR and LGA and in male and female subjects 

respectively, even though the loci targeted for DNA methylation changes are not necessarily 

the same in each group.

Verification and validation

To test the robustness of our genome-wide technique, we assess the reproducibility of DNA 

methylation differences at our candidate differentially-methylated loci using single locus 

quantitative validation studies. We first perform verification studies on samples from Cohort 

1, on whom the genome-wide studies had been performed, testing 4 loci selected for 

differing levels of DNA methylation in 24 subjects. A strong correlation between bisulphite 

MassArray and HELP-tagging is found (R2 = 0.98, Supplementary Fig. 4). In a second, 

independent set of CD34+ HSPC samples (Cohort 2) consisting of 8 new subjects/group 

(control, IUGR, LGA) with equal numbers of males and females in each group, we perform 

a targeted bisulphite sequencing (TBS) assay, using bisulphite treatment, targeted PCR and 

massively-parallel sequencing to measure DNA methylation at 72 loci in the 24 subjects (see 

Methods and Supplementary Table 3). The correlations between HELP-tagging with 

MassArray in Cohort 1 (R2=0.98, Supplementary Fig. 4) and with TBS in Cohort 2 

(R2=0.72, Supplementary Fig. 5 and Supplementary Table 3) are both strong. These highly 

quantitative verification and validation studies demonstrate the technical robustness of the 

genome-wide HELP-tagging assay, as well as the potential to validate DNA methylation 

differences, even when using a new cohort of subjects. Of the 54 candidate differentially-

methylated loci from the HELP-tagging group comparisons, we focus on loci implicated by 

our GOseq-normalized GSEA results, using primers for candidate differentially-methylated 

loci proximal to WNT6 (Fig. 5a) and PTCH1 (Fig. 5b) from the Hedgehog (HH) signaling 

pathway and MAFA from the Maturity onset diabetes of the young pathway (Supplementary 

Fig. 6). We find the direction of DNA methylation changes to be concordant between 

genome-wide and targeted assays for all three loci, with statistically significant differences 

demonstrable for TBS data from WNT6 (p=0.023) and PTCH1 (p=0.014) (Supplementary 

Table 4). We also show the PTCH1 and WNT6 genes to have increased DNA methylation by 

TBS at local cis-regulatory elements in cases (IUGR and LGA) compared to controls 

(Supplementary Table 4, p<0.05). Finally, we interrogate loci associated with genes that are 

differentially methylated on average between cases (IUGR plus LGA) and controls in 

Cohort 1 and previously found to have epigenetic alterations related to metabolic syndrome 

and type 2 diabetes mellitus, IGF234,35 and RXRA36. A positive correlation is seen between 

the HELP-tagging and TBS DNA methylation levels, but the TBS DNA methylation 

differences between cases and controls are of insufficient magnitude for statistical 

significance to be attributed (Supplementary Table 4). The number of new samples in 

Cohort 2 is limited and thus these validation studies are likely to confirm loci of major effect 

only. Overall, the TBS data are concordant with the genome-wide data, indicating that the 

conclusions based on the genome-wide results are tenable.
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DISCUSSION

Here we show for the first time epigenetic changes associated with the two very different 

types of intrauterine conditions reflected by extremes of fetal growth. All subjects were 

healthy, full-term neonates without any anomalies or dysmorphic features that would 

suggest an etiology innate to the fetus. We combined birth weight with ponderal index 

values to define the distinct groups of infants at either end of the fetal growth continuum. 

Both groups with abnormal growth demonstrate global shifts of increased DNA methylation 

compared to appropriately grown neonates. Although the underlying differences in 

environmental exposures cannot be measured with precision in these subjects, the 

intrauterine conditions of those born at the extremes of birth weight are likely to differ 

substantially from each other. Despite this, the DNA methylation profiles of infants at both 

ends of the growth spectrum are more similar to each other than to the control subjects. 

Several factors contribute to the strength of this study. First, the two-stage design of this 

study increases confidence in our findings. In a recent review of 257 epigenome-wide 

association studies (EWAS) the median number of study subjects included was 46, with 

only about one third of studies validating results in a second cohort21. Our technical 

verification and then validation in Cohort 2 illustrates the robustness of the predictions from 

the genome-wide assays, increasing confidence in our results. We tested CD34+ HSPCs as 

cells with both the long-lived properties and mechanistic properties in inflammation and 

maintenance of vascular integrity that make it a potential mediator of adult disease risks 

associated with extreme fetal growth.

We find that IUGR and LGA share a common response with a tendency toward increased 

DNA methylation. The targeted loci show enrichment at candidate cis-regulatory elements 

and proximity to genes encoding proteins with functions implicated in the Maturity onset 

diabetes of the young and Hedgehog (HH) signaling pathways, in both IUGR and LGA 

subjects despite sharing only a subset of identical loci undergoing DNA methylation 

dysregulation. These gene/protein properties are significant when considered in terms of the 

adult phenotype associated with abnormal fetal growth, such as premature glucose 

intolerance and type 2 diabetes mellitus37. Hedgehog signaling is critical for stem cell 

proliferation and self-renewal38, is necessary for hematopoietic stem cell fate decisions39 

and may play a critical role in CD34+ cells reparative contributions after myocardial 

infarction40.

We also find a sexual dimorphism in the DNA methylation profiles, with IUGR males and 

LGA females showing greatest alterations in global DNA methylation. Some of the large 

epidemiological studies that examined outcomes for males and females separately have 

found sex-specific differences2,41,42, though these have not been consistently reported. 

Results from other EWAS studying epigenetic responses to adverse intrauterine conditions 

have generally presented combined observations for males and females18,19. Our findings of 

a global shift towards increased DNA methylation is inconsistent with findings seen when 

the relationship between fetal growth and DNA methylation of Long Interspersed Nuclear 

Elements (LINE-1) was tested in cord blood leukocytes15,43 and placenta14. Decreased 

LINE-1 methylation, which has been associated with genomic instability and cancer risk44, 

was found in cord blood from newborns with low and high birth weight43. The development 
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of adiposity in 5–12 year old boys but not girls has also been associated with decreased 

LINE-1 methylation in peripheral leukocytes45. Others have examined sex-specific changes 

in association with other environmental exposures, but these were either in a limited number 

of differentially methylated regions46 or global changes with limited sample size 

numbers47,48. All of the prior studies included mixed cell-type samples, which can hamper 

interpretation of DNA methylation studies20.

To avoid the possibility of artifactual results stemming from testing of mixed cell 

populations, we examined purified cell samples. CD34+ HSPCs were chosen for their self-

renewal properties that enable them to propagate a cellular memory of temporally remote 

events, and for their mechanistically plausible contribution to the associated adult 

phenotype, especially the increased susceptibility to cardiovascular complications. CD34+ 

HSPCs play a key role in maintaining the intravascular endothelial layer. Intimal denudation 

generally precedes the development of atherosclerosis49 and HSPCs contribute to repair 

after peripheral ischemic injury through differentiation into endothelial cells50 but may also 

mediate repair through stem cell paracrine effects51,52. In adults, circulating numbers of 

CD34+ HSPCs have been shown to be inversely related to cardiovascular disease risk23,24. 

Furthermore, HSPCs can be induced to differentiate into multiple tissue types, including 

those involved in metabolic regulation53,54. Impaired mobilization of HSPCs from the bone 

marrow55 and decreased circulating HSPCs56 are thought to link metabolic disorders such as 

diabetes to cardiovascular disease risk. The effect of aging on HSPCs includes reduced self-

renewal capacity57,58 and increased myeloid-biased differentiation57,58, which has been 

associated with the increased susceptibility to chronic age-related diseases59,60. HSPCs from 

young and old individuals are similarly effective in reconstituting blood lineages after 

transplantation58,61, but aged HSPCs may be less effective at homing and engrafting at the 

sites of injury57. The regenerative potential of hematopoietic stem cells is multifaceted and 

the contributing roles of functional defects in the stem cell population itself versus 

impairment of the tissue environment are as yet unknown. Future studies are needed to 

determine the clinical impact for stem cell transplantation when using cord blood samples 

from these otherwise healthy neonates with abnormal fetal growth, as our study suggest that 

HSPCs may decrease their abilities to renew and differentiate after exposure.

Studying the epigenetic basis for developmental origins of adult disease poses several 

challenges due to the inaccessibility of the human fetus in utero, the lack of tools to measure 

intrauterine exposures over course of the pregnancy and the duration of the time needed to 

study outcomes that evolve over decades of the human lifespan. While no study is without 

limitations, we present our work in part as a framework for discussion of the challenges and 

considerations when designing EWAS in the future. Our findings indicate that sex-specific 

differences should be examined in addition to a range of clinical phenotypes or experimental 

intrauterine exposures in animal models. CD34+ HSPCs represent a homogenous, accessible 

cell population directly relevant to the study of developmental origins of adult disease given 

their known involvement in cardiovascular disease risk. CD34+ HSPCs are also well 

characterized from a genomic perspective through Roadmap Epigenomics Program mapping 

studies, allowing the investigator to interpret findings in terms of functional elements in this 

cell type specifically. Defining the functional implications of perturbations in the pathways 
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identified here will be a valuable further avenue of research. Our findings provide key 

insights into how seemingly opposing intrauterine exposures give rise to similar adult 

phenotypes, through perturbation of DNA methylation converging on common loci or at 

distinct loci targeting genes in common pathways. As methods for design and execution of 

EWAS become better defined, the discovery of novel biomarkers that represent cumulative 

prior exposures in early life may ultimately provide new tools that identify at-risk neonates 

for preventative interventions.

METHODS

This study was approved by the institutional review board (IBR) of the Montefiore Medical 

Center and the Committee on Clinical Investigation at the Albert Einstein College of 

Medicine and is in accordance with Health Insurance Portability and Accountability Act 

(HIPAA) regulations. Written informed consent was obtained from all subjects prior to 

participation.

Sample Collection

Cord blood from neonates was the source of material for this study. Biological samples and 

clinical information were collected (n=84) from consenting women who delivered healthy 

infants without any anomalies or dysmorphic features and following an uncomplicated 

intrapartum course, without evidence of fetal distress (normal Apgar scores and cord blood 

gases without acidemia). The three groups were comprised of infants with appropriate 

growth, IUGR or LGA (matched for gestational age at delivery and sex). Both birth weight 

and ponderal index (a measurement of neonatal weight relative to length) were used to 

identify case and control subjects. IUGR and LGA were respectively defined by birth weight 

and ponderal index values <10th or >90th percentile for gestational age and sex. Control 

infants had normal parameters (>10th and <90th percentiles) for both birth weight and 

ponderal index. Maternal and infant characteristics are shown in Table 1. Cohort 1 (genome-

wide assays) is composed of 20 samples per group, while Cohort 2 (validation cohort, 

targeted assays) has 8 samples per group, with equal representation between male and 

female subjects in all groups.

Isolation of CD34+ HSPCs

CD34+ cells, which constitute approximately 1% of nucleated blood cells in umbilical cord 

blood62, were isolated from the cord blood specimen using an immunomagnetic separation 

technique. Mononuclear cells were separated by Ficoll-Paque density gradient or using 

PrepaCyte-WBC following which CD34+ cells were obtained by positive immunomagnetic 

bead selection, using the AutoMACS Separator (Miltenyi Biotech). This resulted in the 

isolation of cells with ≥95% purity. We cryopreserved the purified cells in 10% DMSO 

using controlled rate freezing.

Genome-wide DNA methylation assay

The HELP-tagging assay was performed after isolation of genomic DNA from frozen 

CD34+ HSPCs, digested to completion by either HpaII or MspI. The digested DNA was 

ligated to two custom adapters containing Illumina adapter sequences, an EcoP15I 
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recognition site and the T7 promoter sequence. Using EcoP15I, we isolated sequence tags 

flanking the sites digested by each enzyme, methylation-sensitive HpaII or methylation-

insensitive MspI, followed by massively-parallel sequencing of the resulting libraries 

(Illumina technology)27. HpaII profiles were obtained for each sample (n=60), calculating 

methylation scores using a previously generated MspI human reference.

Data processing and statistical analysis

DNA methylation scores from 0 (fully methylated) to 100 (unmethylated) were filtered by 

confidence scores. These confidence scores were calculated for each sample based on the 

total number of HpaII-generated reads as a function of the total number of MspI-generated 

reads, excluding loci for which the confidence score was lower than the expected mean by 

locus. To understand the relative effects of known technical covariates acting on methylation 

data variability, we performed principal components analysis (PCA, R package princomp) 

on the DNA methylation score obtained from the preprocessed data. We fit a linear model 

for each of the 10 principal components as a function of each covariate, and summarized the 

data with a heatmap of the negative log10 p-values of each regression. We found batch 

effects (date of sequencing and presence in the same lane of the Illumina machine) to be 

significant confounding covariates (Supplementary Fig. 7). We confirmed that the effect of a 

global increase of DNA methylation in cases compared to controls remained after 

controlling by adjusting p values for the batch covariate.

Candidate differentially methylated loci were identified using ANOVA with pairwise two-

tailed Tukey-tests when comparing controls with either IUGR or LGA as well as two-sided t 

tests when comparing control/cases to define locus specific differences in average 

methylation between groups. Confirmatory linear regression of DNA methylation on group 

adjusting for batch effects was also performed. Comparisons between control/IUGR, 

control/LGA, and IUGR/LGA were also stratified by sex. For each comparison, only loci 

with at least 8 samples from each sex were retained. After confidence score filtering and 

selection for a minimum number of observations in each group, the number of testable loci 

decreased from >1.8 million to 993,514. We defined candidate differentially methylated loci 

to have a difference between mean DNA methylation scores >20% and a p value <0.05. The 

necessary amplitude of DNA methylation score differences was defined using power 

calculations from a preliminary analysis of a subset of our samples (5 per group). Using the 

average methylation from the control group, the standard deviations from each of the three 

groups and 16 samples per group (our minimum sample requirement per group after QC), 

we are fully powered (>99%) to detect at least one group methylation difference >20% at an 

FDR=0.05. To demonstrate that our technique still exceeds minimum power 

recommendations for gender specific comparisons, we ran simulations of the gender 

comparisons with 8 samples per group and we were powered at roughly 85% to detect at 

least one group methylation difference >20% at an FDR=0.05.

Bisulphite MassArray verification assays

We selected 24 samples from Cohort 1 to test the technical performance of the genome-wide 

DNA methylation studies, a verification approach on our original cohort. Bisulphite 

conversion and MassArray (Sequenom, San Diego, CA, USA) were performed63. Primers 
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were designed to cover loci with low, intermediate and high levels of DNA methylation 

from the HELP-tagging data across all samples regardless of group (Supplementary Fig. 4).

Targeted bisulphite sequencing (TBS)

We bisulphite-converted 200 ng of DNA using the Zymo EZ-96 Methylation-Lightning Kit. 

After separate PCR amplification of individual target regions (primers listed in 

Supplementary Table 5), we pooled the amplicons in equal ratios and generated Illumina 

libraries using robotic automation (Tecan). In total, 24 libraries were multiplexed on the 

Illumina Miseq for 250 bp paired end sequencing. Amplicons were selected to be part of our 

differentially methylated loci, covering the entire spectrum of predicted DNA methylation 

values (from 0 to 100) and allowing us to validate our specific pathways.

Amplicon bisulphite sequence alignment, DNA methylation calls

Sequence reads from the Illumina MiSeq were trimmed for adapter sequences and aligned to 

the human genome using bsmap (Bisulphite Sequencing Mapping Platform)64 using the 

default settings, requiring a PHRED score of ≥37 during alignment. We checked for 

bisulphite conversion efficiency (C→T in CH contexts, Supplementary Table 6) and 

quantified the percent methylation for each sample (from 0 (unmethylated) to 1 (fully 

methylated)) at every CpG in the amplicons using the methratio tool provided by bsmap. We 

performed validation on 24 new CD34+ HSPC samples (Cohort 2 with 8 subjects/group).

Genome annotation

We obtained publicly available chromatin immunoprecipitation followed by massively-

parallel sequencing (ChIP-seq) data from the Roadmap in Epigenomics project for CD34+ 

mobilized HSPCs from a 33 year old, Caucasian female (RO_01549/GSM706857). 

Annotation of genomic features consisted of processing raw data provided through http://

www.roadmapepigenomics.org/ for chromatin accessibility (DNase hypersensitivity) as well 

as ChIP-seq data for six histone modifications, followed by the use of the Segway 

algorithm29 to predict 7 features, interpreted using Self-Organizing Maps30 and RefSeq gene 

metaplots to define promoter, enhancer, transcribed and repressed sequences in the CD34+ 

HSPCs.

Functional enrichment analysis

To perform gene set enrichment analysis (GSEA)65 we first linked RefSeq genes to our 

candidate differentially-methylated loci. We filtered these candidate differentially-

methylated loci to include only those overlapping candidate promoters (feature 6) or 

enhancers (feature 4), thereby enriching for loci with greater likelihood to have functional 

consequences. Candidate differentially-methylated loci overlapping candidate promoters 

within ±2 kb and candidate enhancers within ±5 kb of RefSeq gene transcription start sites 

were used to link DNA methylation changes with specific genes. Differentially enriched 

pathways found using a False Discovery Rate (FDR) q value <0.05 are shown in 

Supplementary Table 1. We validated the KEGG Maturity onset diabetes of the young and 

HH signaling pathways (Supplementary Table 2) using the Bioconductor package GOseq33 

to control for bias due to the variation of number of HpaII sites associated with different 
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genes. As our analyses included a large number of genes, we wanted to test further the 

robustness of the enrichment of the 2 pathways selected, by generating random datasets 

using a permutation approach. As our original analysis was based on the top 2,000 candidate 

differentially-methylated loci from HELP-tagging, we selected 2,000 genes randomly from 

those represented by HELP-tagging (97.6% of total) from the hg19 RefGene database (R 

package geneLenDataBase, database org.Hs.egREFSEQ2EG) 1,000 or 3,000 times, and ran 

the GOseq algorithm on each of these samples. The Maturity onset diabetes of the young 

pathway was not predicted in any of the 1,000 iterations, and 3 times in the 3,000 iterations, 

while Hedgehog signaling was predicted once in the 1,000 iterations and not at all in the 

3,000 iterations. We therefore define the observed enrichment for these pathways at our 

dysregulated genes to be specific and statistically significant (p<0.001). We visualize the 

association of DNA methylation changes and gene properties using pathways identified 

from the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/

pathway.html). Gene pathways were visualized in Cytoscape v3.0.2 with edges representing 

the physical interactions between nodes (genes/proteins). Node colors and sizes were 

adjusted to reflect the enrichment for IUGR or LGA separately or together (Fig. 4), and for 

sex specificity (Supplementary Fig. 3). A complete list of genes associated with these 

pathways is shown in Supplementary Table 7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide DNA methylation profiles
(a) Density plots of methylation scores for IUGR or LGA compared with controls. The 

distributions of DNA methylation scores are shown in red. (b) A self-organizing heatmap of 

candidate differentially methylated loci showing clustering by sample. (c) Volcano plots of 

DNA methylation score differences for IUGR compared with control, LGA compared with 

control and IUGR compared with LGA, based on 993,514 loci throughout the genome. 

Differentially methylated loci with p value <0.05 and methylation difference >|20| are 

shown in black. (d) Differentially methylated loci meeting threshold criteria are quantified 

in a proportional Venn diagram for each comparison.
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Figure 2. Sexual dimorphism in IUGR males and LGA females for differentially methylated loci
The lower panels show volcano plots of DNA methylation score differences, the upper 

panels quantify the densities of differentially methylated loci (p value<0.05 using ANOVA 

with pairwise two-tailed Tukey-tests, methylation difference >|20|). (a) IUGR compared 

with controls, (b) LGA compared with controls.
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Figure 3. Candidate differentially-methylated loci are enriched at cis-regulatory elements
(a) Based on empirical annotation of promoter, enhancer, repressive and transcribed regions, 

enrichment of candidate differentially-methylated loci (n=10,043) in cases (IUGR and LGA) 

compared with controls is illustrated with significance values shown for enriched sequence 

features. The bar on the left represents the proportional representation of each feature in 

terms of loci tested by HELP-tagging, while the bar on the right shows the proportions of 

features at which differentially-methylated loci are found. Significant enrichment for 

differential methylation at candidate promoters and enhancers is observed. (b) An example 

of the RXRA gene with a candidate differentially-methylated locus is shown. The DNA 

methylation score differences between controls and IUGR (top), LGA (middle) and cases 

(bottom, IUGR and LGA combined) is depicted, with a site identified as being a candidate 

differentially-methylated locus in the CpG island promoter region shown in gray. Blue, 

positive values represent decreased DNA methylation in the cases of extreme fetal growth, 

yellow, negative value increased methylation.
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Figure 4. Network Analysis
A network representation of KEGG pathways for (a) Maturity onset diabetes of the young 

and (b) Hedgehog (HH) signaling. Nodes are color- and size-coded based on the association 

of genes represented by each node with LGA or IUGR, or with both LGA and IUGR. Edges 

(solid lines) represent known physical interaction between genes.
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Figure 5. Biological validation
Validation of significant loci of interest by targeted bisulphite sequencing (TBS) in Cohort 2 

for loci at the (a) WNT6 and (b) PTCH1 genes. Candidate differentially-methylated loci are 

shown as the HpaII sites within the amplicon regions (gray boxes), with results of DNA 

methylation distributions for controls and cases (IUGR and LGA combined) from HELP-

tagging (orange) and TBS (white) depicted as violin plots (mean shown in red, 1st and 3rd 

quartile are depicted by the thick black bar). The results show concordance for similar types 
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of changes between HELP-tagging and TBS results at these loci with significant results 

(p<0.05, t-test) for TBS marked with asterisks.
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