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Abstract: Polyvinylidene fluoride and its copolymers are a well-known family of low-cost fer-
roelectric materials widely used for the fabrication of devices for a wide range of applications. A
biocompatibility, high optical quality, chemical and mechanical durability of poly(vinylidene fluoride–
trifluoroethylene), (P(VDF–TrFE)), makes it particularly attractive for designing of effective coating
layers for different diagnostic techniques. In the present work, the nonlinear optical characterization
of P(VDF-TrFE)-coating films deposited onto a glass substrate was done. Advantages of the coating
application for cells/substrates in the field of multiphoton imaging the efficiency of such coating
layer for long-duration characterization of so-called harmonic nanoparticles (HNPs) were shown.
The influence of glass surface protection by P(VDF-TrFE) film from an effect of HNPs sticking to
the walls of the flow-cell was analyzed for effective studying of the optical harmonics generation
efficiency of HNPs making the analysis more robust.

Keywords: P(VDF-TrFE) coating; laser beam self-action; optical damage threshold; third harmonic
generation; harmonic nanoparticles

1. Introduction

The main idea of the work is to study the perspective of using new type of cuvette coat-
ing for application in bioimaging systems and different nanoparticles characterization tech-
niques. We present results with coating based on poly(vinylidenefluoride-trifluoroethylene)
P(VDF-TrFE) copolymer with chemical formula (CH2-CFH)n. In general, it is optically
transparent, semi-crystalline piezoelectric polymer, where chains exhibit strong prefer-
ential orientation [1–4]. This lightweight, low cost, ultra-sensitive, and high deformable
polymer is mainly used in areas requiring excellent chemical resistance, high purity, and
excellent mechanical properties [5]. It is also used in piezoelectric [6] and electrostriction
applications [7] as wearable electronics [8], flexible tactile sensing devices [9–11], ultrasonic
measurement devices [12–14], human skin, and many others [9,15–20]. Because of an
efficient nonlinear optical response, P(VDF-TrFE) copolymer is promising for many optical
applications, such as sensors [21,22], ultrafast switches, ultrashort pulsed lasers, and many
others. In addition, we should mention the utilization of the PVDF-based composites as
they superhydrophobic and antibacterial material [23,24] that make them perspective for
designing of effective coating layers.

For practical applications in the field of bioimaging, the efficiency of the optical har-
monics generation of harmonic nanoparticles (HNPs) should be well studied. In this case,
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diffrent techniques should be applied for the characterization of HNPs. Among them are
the hyper-Rayleigh scattering technique [25,26] and the interface scanning technique [25],
which can be applied for studying the second harmonic (SH) and third harmonic (TH)
generation correspondingly. In case of hyper-Rayleigh scattering technique, the SH signal
can be easily readout from the center of the cuvette with colloidal suspension of NPs.

The interface scanning technique can be used to readout the TH signals generated
from the interfaces between two media inside of the cuvette-colloidal suspension and
glass. Comparison of the TH signal at the interface colloid/glass and glass/air allows
estimating the efficiency of TH generation of suspension and extracting the efficiency of
HNPs by applying the effective media model. This technique was first designed for the
characterization of liquids and gases and then it was optimized in order to study the
different objects, such as different nanoparticles [26], red blood cells [27,28], embryonic
development [29], organic solvents [30], neurons [31], and skin biopsy samples [32].

However, the high sensitivity of the interface scanning technique significantly depends
on the quality of the interface surface. Considering the small readout volume, it is important
to minimize the effects of hydrothermodynamical motion of HNPs (or other types of
studied objects) in the area close to the waist of the focused laser beam, sticking to the
surface of the cuvette, and agglomeration and ablation effects [25]. As a result, each
measurement should be done fast and the cuvette must be cleaned each time, which can
be difficult on practice. An alternative solution for such problem is based on using the
system with a flow cell that provides effective refreshing colloidal suspension of studied
material in readout volume per each laser shot [25] for correct response averaging with
minimal fluctuation of the signal. Such approach can significantly increase the efficiency
of measurements, but it cannot completely solve the problems with sticking and requires
periodical cleaning of the cell walls.

In order to solve the problem with HNPs sticking to the cuvette’s surface, a specific
coating can be used. The main requirements to this coating are high durability (optical
and chemical), low absorption, and small impact to the resulting TH signal at the coated
interface in comparison with the uncoated one.

We used zinc oxide (ZnO) harmonic nanoparticles (HNPs) to investigate the inter-
action with polymer interface. ZnO is a widely used material in optics, optoelectronics,
biosensorics research because of its non-toxicity, biocompatibility, and easy of fabrication.
The composites with ZnO nanoparticles (NPs) demonstrated both corrosion protective
effect [24] and UV-induced robust self-cleaning ability [23]. Moreover, the influence of
ZnO inhalation on the airway inflammatory markers [32], ZnO nanoparticles as metal-
based drugs [33,34], and functionalized ZnO used to treat cancer cells were studied [35].
HNPs are a new type of nonlinear optical (NLO) markers for biological systems based on
inorganic oxide nanocrystals with a noncentrosymmetric lattice that effectively converts
a frequency of laser radiation [36–38]. This term was introduced for the designation of
a new broad class of NPs that can simultaneously generate SH, TH, and higher optical
harmonics with high efficiency. HNPs markers are promising for applications in the field
of bioimaging, because of the tunable bands position of harmonic signals, the high depth
of imaging [35], and photostability for long-duration observation.

The obtained result presented in this work can be important for a more precise
scientific tool—a third harmonic generation microscopy that is a flavor of multipho-
ton microscopy which can provide images of biological samples based on spatial vari-
ations in third-order nonlinear susceptibility (χ(3)), refractive index (n), and dispersion
(n3ω–nω) [29,39]. This method is widely used to obtain structural information about a
variety of biological specimens. Its nature allows depth-resolved imaging [40] of inhomo-
geneities, with practically no background from surrounding homogeneous media. With an
appropriate illumination geometry, third harmonic generation microscopy is shown to be
particularly suitable for imaging of biogenic components and is perspective for studying of
biological tissues [29,41]. Applying of P(VDF-TrFE) coating with well-characterized NLO
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properties for substrates in Third Harmonic Generation (THG) microscopy can significantly
increase the precision of this approach.

2. Materials and Methods
2.1. Experimental Setup

Designing of novel coatings for nonlinear optical applications requires precise charac-
terization for working excitation intensity range. For this purpose a laser beam self-action
analysis technique [42–45] was used (see Figure 1a). For measurements, Nd:YAG-based
laser (1064 nm, FWHM 42 ps, repetition rate 40 Hz, Institute of Physics, National Academy
of Science of Ukraine, Kyiv, Ukraine) was applied. Studied sample S was positioned after
the waist of the focusing lens L1. Input power was varied by neutral density gradient
filter A and monitored by calibrated photodiode PD1. Analysis of the total and on-axis
transmittance were done by photodiodes PD2 and PD3, with longpass filters to remove the
signals of optical harmonics and PL.
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Figure 1. (a) Scheme of experimental setup for analysis of photoinduced variations of total and on-axis transmittance due
to the self-action of the laser beam under ps pulsed excitation at 1064 nm; (b) experimental setup for interface scanning
technique at TH. A—neutral density gradient filter; BS—beam splitter; L1, L2—focusing lenses; D—finite diaphragm
(d = 2 mm); PD1, PD2, PD3—photodiodes; PMT—photomultiplier tube; LP—longpass filter; SP—shortpass filter; BP—
bandpass filter; S—sample; C—flow cell; R—main reservoir; PP—peristaltic pump.

For measurement of the THG efficiency (see Figure 1b) the sample was positioned on
the 3-axis translation stage. For the interface scanning technique, the studied sample was
scanned by the waist of the focused laser beam. Generated TH signal in the forward Z-
direction was collected by lens L2 and measured with a photomultiplier PMT (Hamamatsu
H10721-210) placed after a shortpass and a bandpass filter to remove the pump beam and
to extract the TH response at 355 nm.

2.2. Samples Preparation

Studied P(VDF-TrFE) copolymer films with different thickness were deposited on
cover glass (see Table 1). Pellet forms of P(VDF-TrFE) were preferably dissolved in methyl
ethyl ketone (MEK) with a molar ratio of 70/30. The solution was then spun onto glass
coverslip at about 3000 rpm/min for 60 s. The rotational speed mainly affected the polymer
film thickness after evaporation of solvent. Using a rotation speed ranging from 3000 up to
5000 rpm/min for about 60 s, a thickness in the range 1–2 µm was obtained. A calibrated



Micromachines 2021, 12, 41 4 of 12

process allows a control on the thickness in the nm range, while the roughness depends
also on the roughness of the substrate. Poling procedure of the samples was accomplished
with a constant electric field of about 2.5 MV/m per 30 min and then annealed on a hot
plate at 80 ◦C for about 30 min, in order to allow the solvent evaporation. After removing
the electric field, a cooling process was carried out at room temperature. In order to analyze
the influence of poling and thickness two additional samples were prepared: (i) a thin
(<2 µm) unpoled film and (ii) a thick (~40 µm) unpoled film of PVDF.

Table 1. The real Re (χ(3)) and imaginary Im(χ(3)) parts of the cubic NLO susceptibility at 1064 nm for
the samples of P(VDF-TrFE) copolymer with different thickness L. Asterisk “*” marks the samples
without poling.

№ Sample L, µm Re(χ(3)), 10−8 esu Im(χ(3)), 10−11 esu FOM

1 *P(VDF-TrFE) 1.0 21.1 7.5 75
2 P(VDF-TrFE) 1.2 20.2 10.3 52
3 P(VDF-TrFE) 1.3 8.6 12.3 18
4 P(VDF-TrFE) 1.5 1.3 1.8 19
5 *PVDF 40.0 0.2 −0.1 39

To study the influence of HNPs sticking on the THG response of the interface col-
loid/glass the two cases were studied: (i) HNPs deposited on the surface of the substrate
and (ii) colloidal suspension circulation in flow cell.

For analysis of the HNPs sticking to the surface of the glass, ZnO HNPs (NanoAmor,
Katy, TX, USA) [46] (average diameter of NPs~150 nm) were used because of the high
efficiency of SH [47], TH [25], and PL signals. Scheme of the sample’s preparation with
deposited ZnO HNPs is presented in Figure 2. At the first stage an initial ethanol-based
colloidal suspension (6 mg/mL) was deposited on the cover glass by a micropipette. Drying
of the sample allows to obtain a homogeneous layer of NPs on the surface of the glass. This
step can be interpreted as a result of longtime measurements with sedimentation/sticking
of NPs during experiment with colloidal suspensions.
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The typical and easiest approach (but not the most efficient, as it will be presented
below) to remove HNPs from the surface is to use standard laboratory ultrasonic bath. For
his step, the part of the samples covered by HNPs was inserted into the ultrasound bath
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filled by ethanol for 3 min and after that it was dried. The same procedure of samples
preparation was realized for cover glass coated by P(VDF-TrFE). In general, the results
obtained for ZnO HNPs in future can be used to develop practical solutions in case of
colloidal suspensions of other types of NPs, biological and organic components.

3. Results and Discussion
3.1. Self-Action Analysis

Typically studying [25] the TH generation efficiency via the interface scanning tech-
nique was realized at intensities about 1-10 GW/cm2. At these levels of excitation intensity,
the influence of NLO effects based on self-action of laser beam cannot be neglected. In
order to analyze NLO properties of polymer, the technique based on spatial profile analysis
via laser beam self-action [44] was used. Figure 3 shows the photoinduced variations of
total and on-axis transmittance versus the peak laser intensity for the studied P(VDF-TrFE)
samples with different thickness—one of the significant parameters for coating. It should
be noted that the total (Figure 3a) and on-axis transmittance (Figure 3b) of the sample were
normalized by cover glass response as apparatus function for this experiment.
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intensity of picosecond laser pulses at 1064 nm for the samples of P(VDF-TrFE) copolymer with different thickness:
(1)—1 µm, (2)—1.2 µm; (3)—1.3 µm; (4)—1.5 µm.

Analysis of the absorptive NLO responses (Figure 3a) have shown the photodarkening
effect manifestation to be less than 4% that saturates at intensities I > 2 GW/cm2 for all of
the samples. At the same time the studied samples demonstrate the self-focusing effect
with efficiency Re(χ(3))~10−7esu (see Table 1) in the range I < 1 GW/cm2 (see Figure 3a),
that corresponds to the positive photoinduced variations of the refractive index ∆n > 0. It
saturates at intensities of about 1GW/cm2 and turns to self-defocusing.

Figure 4 shows the influence of the thickness of polymer layer on the nonlinear optical
response. In general, the real part of cubic NLO susceptibility Re(χ(3)) is about 3 orders of
magnitude higher than the imaginary part Im(χ(3)), that shows a high optical quality of
the studied materials. Both Re(χ(3)) and Im(χ(3)) decrease with the increase in thickness.
However, the dynamics of this variation is different. For this case, it is efficient to estimate
FOM = ∆n/(λ∆α)−igure of merit, where α is the absorption coefficient (see Figure 4b). In
general, it shows the ratio between the efficiency of refractive and absorptive responses of
the studied material.
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In case of performing measurements in a wide range of intensities, the nonlinear-
optical properties of the materials are important, because they can lead to a distortion
of the laser beam and a misinterpretation of the results. Analysis of FOM variation vs.
samples thickness (see Figure 4b) shows that the poled films with thicknesses 1.3/1.5 µm
demonstrated the low FOM = 18/19 factor (see Table 1) that reflects a reduction of the NLO
refractive contribution in total optical response of the material. Collation of total/on-axis
transmittances of the samples 3 and 4 have shown exact drop of the photodarkening/self-
focusing effects manifestation—photoinduced variation of the mentioned transmittance at
the level about 1%—for the film № 4 with thickness 1.5 µm. Increase of the film thickness
of 15% vs. the film № 3 decreases at about of order of magnitude efficiencies both of
refractive and of absorptive cubic NLO responses. On practice, it means that applying
of this sample as coating will not significantly distort and absorb laser beam at different
excitation intensities.

To study the durability of coating films the photoinduced variations of the total and
on-axis transmittances were analyzed in range up to 2 TW/cm2 (see Figure 5). We have
observed significant irreversible reduction of the films total transmittances at peak laser
intensities at about 1 TW/cm2 attributed to the optical damage threshold. Below the thresh-
old the nonlinear optical variations of the refractive index and optical absorption were
reversible along the rise and consequent reduction of the laser intensity. This fact demon-
strates the high durability of P(VDF-TrFE) coating for the high-intensity excitation regimes.
It should be noted that unpoled film №1 demonstrates lower threshold magnitude—about
0.7 TW/cm2—in comparison with the poled ones of similar thickness.

Analysis of the total and the on-axis transmittances variations (solid and dotted
curves at Figure 5) demonstrates different threshold intensities that can be explained
by the reorientation of the polymer molecules (poled or randomly oriented) under high
excitation intensities, as it was shown for systems of liquid crystals with different thickness
in comparison to the effective interaction length [48].
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We compared the obtained refractive cubic NLO response efficiency Re (χ(3)) with
the available reference data for PVDF-based materials (see Table 2). Most of the previous
measurements were realized at wavelength 532 nm with doubled energy quanta versus
our case. It was shown that at peak laser intensity 1 GW/cm2 the PVDF-based composites
demonstrated self-focusing/defocusing effects with efficiency |Re (χ(3))| ≤ 2.2 × 10−8

esu [48]. For the similar ZnO dopant type [49] the efficiency of the NLO response reduces
about three times at higher excitation intensity with the decrease of dopant fraction. We
have also observed a saturation of the self-focusing effect manifestation accompanied with
1-2 orders of magnitude of Re(χ(3)) drop in the studied films. In PVDF/RGO compos-
ites authors obtained pronounced optical limiting effect with suppressed NLO refractive
response one [50].

Table 2. Comparison of the obtained refractive cubic NLO response efficiency Re (χ(3)) with reference data for PVDF based materials,
where RGO—reduced graphene oxide, HNT—halloysite nanotube.

Samples λ, nm Pulsewidth,
Repetition Rate Intensity Re (χ(3)), esu Ref.

PVDF/ZnO (8 wt.%)
532 7 ns, 5 Hz 1 GW/cm2 −1.4 × 10−8

2.2 × 10−8 [51]PVDF/ZnO/CuO (8/1 wt.%)
PVDF/ZnO (1 wt.%) 532 7 ns, 5 Hz 12 GW/cm2 −0.4 × 10−8 [49]

PVDF/RGO (0.1 wt.%) 532 7 ns, 10 Hz 0.14 GW/cm2 3.5 × 10−12 [50]
Pristine PVDF

633 CW 145 W/cm2 −1.8 × 10−8

1.2 × 10−8 [52]PVDF/HNT (1%)
PVDF

1064 42 ps, 40 Hz 1 GW/cm2 0.2 × 10−8
Present workP(VDF-TrFE) ≥1.3 × 10−8

In general in our work the obtained magnitudes |Re (χ(3))|~10−8 esu of self-action
effect manifestation at wavelength 1064 nm corresponded to the reference data, where the
sign and the magnitude of Re(χ(3)) depended on the dopant type and its concentration.
The opposite signs of the refractive NLO response can be attributed to the difference
in excitation regimes concerning (i) laser wavelength [53], (ii) pulsed (ns vs. ps) or CW
mode [54], and (iii) range of the applied peak laser intensities [44].
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3.2. Analysis of Harmonic Nanoparticles (HNPs) Sticking Effect on Third Harmonic Generation
(THG) Response of the Interface

Because of the presence of two media with different refractive index and/or cubic
NLO susceptibilities, THG is observed at the material’s interfaces for tightly focused laser
beam. In the case of several interfaces, for example, glass/film/HNPs, resulting signal
depends on interrelation of their efficiencies [25], third-order susceptibilities χ(3). It is
necessary to know, the properties of each layer at the interface. In the case of several
interfaces, it is necessary to know, the properties of each layer at the interface, for example,
glass/film/HNPs-resulting signal depends on the interrelation of their efficiencies, third-
order susceptibilities χ(3).

The scanning was performed by linear translation in perpendicular direction to the
fringes of different sample areas: (i) initial glass, (ii) deposited ZnO HNPs, and (iii) area
cleaned by ultrasonic bath. The same was done for the sample with polymer coating.

Obtained results of surface scanning are presented in Figure 6. In case of uncoated
glass, the TH scanning signal profile can be explained by variation of ZnO HNPs concentra-
tion from initial area without HNPs through deposited layer of ZnO HNPs to area cleaned
by ultrasonic bath. Obtained results demonstrate the low efficiency of cleaning in ultrasonic
bath for uncoated glass without additional mechanical treatment in the cleaning process.
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Figure 6. The THG signal scanning in plane of the sample under picosecond range pulsed laser
excitation at 1064 nm for glass cover slip (blue) and cover glass coated by P(VDF-TrFE) (red). Filled
areas correspond to the initial area, area with deposited ZnO HNPs and cleaned part in ultrasonic
bath. Signals for coated and uncoated areas are normalized on the response at initial area. Solid lines
obtained by moving average filtering of raw data, for better visualization of signal variation.

In contrary to the uncoated substrate, P(VDF-TrFE), coating demonstrates minimal
variations of TH signal in all of the studied areas. It should be noted that the studied
samples were positioned vertically during measurements, tested excitation intensities were
below 500 GW/cm2, and examination by optical microscopy did not reveal the areas with
optical damage of the coating. Taking into consideration these facts, it is possible to assume
that at excitation intensities of about 500 GW/cm2 the HNPs can be removed from the
coated surface by laser beam. However, this fact requires further detailed analysis.
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3.3. HNPs Sticking Effect in Flow Cell

Next stage, after the study of HNPs deposited on substrate, was to provide mea-
surements with flow-cell system and colloidal suspension circulation. Figure 7 shows
the TH signal measured by scanning the interfaces of the flow cell. Experimental data
represent four THG peaks, that correspond to interfaces of the cell: air/glass, glass/liquid,
liquid/glass, and glass/air interfaces, respectively.
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Figure 7. Experimental data of the TH signal measured by scanning the interface of the flow cell
with different concentrations (see Table 1). C1—ethanol, C2—ZnO HNPs in ethanol (~1 mg/mL),
C3—ethanol in cell after ~30 min of measurements with ZnO HNPs colloidal suspension. The
insert shows the comparison of the initial ethanol response C1 and C4—ethanol after 30 min of
measurements with lower concentration (~0.1 mg/mL) of ZnO HNPs colloidal suspension.

First, THG measurements at the interfaces of flow cell with circulation of ethanol were
done. Comparison of the THG peaks at the coated and uncoated interfaces inside of the
cell showed slight difference, due to the impact of the PVDF-TrFE layer, that should be
taken into account in case of precise calibration of experimental setup.

In previous works [25,55] the typical measurements with reproducible response for
low concentrations (up to 0.1 mg/mL) of colloidal suspensions were provided for a time
lapse below 15 min. In order to demonstrate the efficiency of coating, in this work the
concentration of HNPs was increased by ten times and the circulation time was extended
to 30 min. We should mention that the experiment with high concentration of NPs was real-
ized only to demonstrate the efficient manifestation of the HNPs sticking, being improper
for the distinct measurements within the interface scanning technique.

At the next stage, the colloidal suspension was pumped up from the circulation
system and replaced by clean ethanol. Obtained results demonstrate the reproducibility
of the measurements at the interfaces with uncoated and coated internal walls of the cell:
amplitude of the TH peak at uncoated interface increased two times while the signal at the
coated interface stayed unchanged.

In results, the surface coating was not only protected from impurity, but also allowed
self-cleaning under the influence of high intensity of the focused laser beam. Because of
this effect and its mechanical, electrical, thermal, and chemical resistance, the polymer can
be used as an effective coating layer for the substrates/cuvettes/cells interfaces to promote
NLO characterization of NPs and/or biological samples.
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4. Conclusions

An applicability of the P(VDF-TrFE) coating at the glass substrate as a part of ex-
perimental cell was studied for the third harmonic generation effect in colloids of ZnO
HNPs. Conventional glass walls of the cuvette or flow cell demonstrates effect of sticking of
HNPs during longtime nonlinear optical measurements that can deteriorate estimation of
magnitudes of laser frequency conversion efficiency. Comparison of the flow cell windows
coated with the P(VDF-TrFE) internal coating vs. the uncoated ones has shown that the
coating utilization reduced HNPs sticking on its interface, being monitored by the TH
signal registration. Obtained results demonstrate the reproducibility of the measurements
at the interfaces with uncoated and coated internal walls of the cell: amplitude of the TH
peak at uncoated interface increased two times while the signal at the coated interface
stayed unchanged. As a result, such an approach can significantly increase the efficiency of
long-duration measurements.

For the estimation of adhesion level, it is possible to use a polymer for the creation
of spatially periodic structures (patterning). In this configuration, the response from the
polymer-coated surface and the substrate can be compared. We have studied self-action
effects manifestation of picosecond range pulsed laser radiation at wavelength 1064 nm
in broad range of peak laser intensity up to 2 TW/cm2. The optical damage threshold
was observed at about 1 TW/cm2: (i) Photoinduced variations of the refractive index and
optical absorption were reversible along the rise and consequent reduction of the peak
intensity below the threshold; (ii) irreversible significant reduction of the transparency was
observed for the excitation above the threshold. Its magnitude depends on the coating
thickness; unpoled films have lower threshold magnitude vs. the similar poled ones.

Below the optical damage threshold the P(VDF-TrFE) films demonstrated efficient
refractive NLO response—self-focusing effect—with Re(χ(3)~10−8 esu that saturated at
about 1 GW/cm2 excitation intensity. It accompanied with slight photodarkening of the
coatings with Re(χ(3)~10−11 esu that corresponded to high FOM~20–80. The measurements
have shown that the poled film with thickness about 1.5 µm demonstrated the FOM = 19
factor with minimal refractive and absorptive NLO responses efficiencies among the poled
films. We suggest that the mentioned coating is going to be an optimal one for the HNPs
diagnostics application, because of the reduction of the photoinduced refractive NLO
response contribution impact on the optical harmonics generation effects studied in the
cell with the interface scanning technique.

Taking into account the high optical damage threshold and laser damage resistance,
high mechanical, electrical, thermal, and chemical resistance, it is possible to conclude that
P(VDF-TrFE)-based coating is promising for improving the existing and designing new
experimental techniques for harmonic nanoparticles characterization. The obtained results
are promising for utilization in multiphoton microscopy diagnostics both of nanoparticles
and of biological objects.
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