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Abstract

Background: Recent attention has focused on understanding the role of the brain-renin-
angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for
the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective
effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an
antagonist of the angiotensin Il (Ang Il) type | (AT,) receptor, losartan, protects dopaminergic
(DA) neurons against |-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in
primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta
(SNpc) of C57BL/6 mice (Fig. ).

Results: In the presence of exogenous Ang Il, losartan reduced MPP* (5 tM) induced DA neuronal
loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA
neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the
striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25%
and reduced the decrease in striatal TH* immunostaining to 34% of control.

Conclusion: Our study demonstrates that the brain-RAS plays an important neuroprotective role
in the MPTP model of PD and points to AT, receptor as a potential novel target for
neuroprotection.
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Background

Parkinson's disease (PD) was originally described in 1817
by James Parkinson and since then there has been much
progress in determining the etiology of the disease [1].
There is now clear evidence showing that the primary
pathological feature of PD is the loss of dopaminergic
(DA) neurons in the substantia nigra pars compacta
(SNpc) [2]. Insights into the mechanisms responsible for
PD have come from epidemiological studies and through
animal models of DA neurodegeneration [3-5]. Treatment
of rodents and non-human primates with neurotoxins
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), 6-hydroxydopamine [6,7] and rotenone [8] have
helped us understand that oxidative stress, mitochondrial
respiration dysfunction and protein aggregation are pri-
mary mediators of the dopaminergic neurodegeneration
[9]. Even with some understanding of how DA neurons
are lost in PD, there is still no effective therapy to halt or
slow down the progression of the disease. Several clinical
studies have promised the development of new therapies
for prevention of dopaminergic neurodegeneration, such
as through the use of resagiline, co-enzyme Q10, meman-
tine and others [10]. However, additional research is
needed to identify new molecular targets, which may help
find ways to prevent or reduce the DA neuronal loss in
PD. This study explores the hypothesis that the renin-
angiotensin system (RAS) is a potential target for prevent-
ing the loss of DA neurons.

The renin-angiotensin system is best known for its role in
regulating blood pressure, activation of sympathetic path-
ways, stimulation of vasopressin release, regulating drink-
ing behavior and cerebral blood flow [11,12]. Only
recently has it been discovered that all the required com-
ponents of the RAS, such as renin, angiotensinogen, angi-
otensin converting enzyme (ACE), angiotensin II (Ang II)
and the Ang II (AT) receptors, are present in the mamma-
lian brain [13,14]. Ang II is the primary agonist of the RAS
and has similar affinities for the two primary AT receptors,
AT, and AT,. The AT, receptor was originally identified by
the selective binding of a non-peptide receptor antagonist,
2-n-butyl-4-chloro-5-hydroxy-methyl-1-[(2'-(1H)-tetra-
z0l-5-yl)biphenyl-4-yl)methyl]imidazol potassium salt
(DuP 753, losartan), whereas the AT,, receptor was iden-
tified by the selective binding of a non-peptide receptor
antagonist, PD123319 [15]. Both the AT, and AT, recep-
tors are known to be members of the seven-transmem-
brane spanning G-protein coupled receptor (GPCR)
superfamily [15]. AT, receptor signaling activates kinases
through a protein kinase C (PKC) pathway and AT, recep-
tor signaling activates phosphatases through a phosphol-
ipase-2 (PLA2) pathway. The two receptor types have been
suggested to have opposing actions [16].
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Recently, increased attention has focused on understand-
ing the role of the brain-RAS in stroke and neurodegener-
ative diseases such as Alzheimer's disease and multiple
sclerosis [17-24]. Several groups have proposed the possi-
bility that the brain-RAS may also have a role in PD. One
genetic study, suggests that polymorphisms in the gene
encoding for ACE may be a risk factor for PD [25]. Exam-
ination of human postmortem brain tissues has shown a
loss of both AT, and AT, receptor binding sites in the sub-
stantia nigra of PD patients, suggesting that PD-induced
neurodegeneration may involve AT receptor expressing
cells [18]. The brain-RAS is also involved in maintaining
tyrosine hydroxylase (TH) transcription and catecho-
lamine synthesis [26-30]. Recently, Ang II was shown to
increase the number of DA neurons in vitro, via an action
on the AT, receptor [31]. More direct evidence of a role for
the brain-RAS in PD comes from studies demonstrating
the neuroprotective effects of ACE inhibitors in MPTP and
6-hydroxydopamine-treated rodents [32-35]. We have
previously found that in vitro antagonism of the AT, recep-
tor with losartan, and subsequent activation of the AT,
receptor with exogenous Ang II, protects primary ventral
mesencephalic DA neurons against the mitochondrial
complex I inhibitor, rotenone [20]. In the current study,
we demonstrate for the first time that the AT, receptor
antagonist, losartan, can protect DA neurons of the SNpc
against MPTP-induced toxicity in C57BL/6 mice. These
studies raise the possibility that AT, receptor antagonism
may be a novel method for preventing the loss of DA neu-
rons.

Results

Angiotensin Il protects dopaminergic neurons in vitro from
MPP* toxicity only in the presence of the AT, receptor
antagonist losartan

To study the effects of the RAS on MPP+-induced neuro-
toxicity in vitro, primary rat E15 VM cultures were grown
for 6 days and then treated with MPP+ (1-100 uM) for 48
hrs. MPP+-treated cultures showed a dose-dependent loss
of TH immunoreactive DA neurons, with a statistically
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Figure |

Timeline of the experimental design. Arrows point to when
subcutaneous injections of losartan (90 mg/kg) and intraperi-
toneal injections of MPTP-hydrochloride (20 mg/kg) were
administered and when the animals were sacrificed.
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significant loss of 15.9 + 3% to 71.8 + 6% over a dose
range of 1 to 100 uM (Fig. 2).

In an effort to determine whether AT receptor activation
affects the resistance of DA neurons to MPP+ toxicity, VM
cultures were treated with Ang II (100 nM) prior to the
addition of MPP+ (1-100 uM). Select VM cultures were
also pretreated with the AT, receptor antagonist losartan
(1 uM) and/or the AT, receptor antagonist PD123319 (1
uM), prior to the addition of Ang II (Fig. 2). TH* neuronal
counts were determined 48 hrs after the addition of MPP+.
MPP+ dose response conditions were analyzed by one-way
ANOVA followed by a Newman-Keuls post-hoc test. This
analysis showed that MPP+-treated VM cultures pretreated
with Ang II (100 nM), in the presence of losartan (1 uM),
had a statistically significant reduction in DA neuronal
loss when compared to MPP+ exposed VM cultures pre-
treated with Ang II alone or in the presence of PD123319
(Fig. 2). VM cultures treated with Ang II and losartan
showed a 71.6 + 6% and 48.3 + 10% reduction in MPP+-
induced DA neuronal loss when compared to 5 uM and
10 uM MPP+ alone treated VM cultures, respectively (Fig.
2). In combination, both AT receptor antagonists in the
presence of Ang II (100 nM) did not significantly alter
MPP+ toxicity. Ang II alone or in the presence of
PD123319, did not provide significant neuroprotection
(Fig. 2). Both AT receptor antagonists, in the absence of
exogenous Ang II, also did not affect MPP+ toxicity (data
not shown). In addition, VM cultures treated with Ang II
(100 nM) and losartan (1 uM) 15 to 60 min after the addi-
tion of MPP+ (10 uM) and assayed 48 hrs later, were not
neuroprotected against MPP+ (data not shown). This sug-
gests that modification of downstream signaling of the
angiotensin pathway is required prior to neurotoxin expo-
sure.

In vitro AT receptor expression profile in primary VM
cultures

Since downstream signaling of Ang II is dependent on
specific AT receptor distribution, we began examining AT,
and AT, receptor expression in DA neurons in vitro. While
the majority (95%) of TH+* neurons expressed the AT,
receptor using two different antibodies (Abcam and Santa
Cruz) (Fig. 3a), only 65% of the TH+* neurons expressed
the AT, receptor (detectable only with Abcam antibody)
(Fig. 3b). Because of the difference in AT, and AT, receptor
expression in DA neurons, the AT receptor profiles of
other VM culture cell types were subsequently examined.

AT, receptors were co-expressed in cells immunopositive
for nestin (neural progenitors), GFAP (astrocytes), NeuN
and MAP2 (neurons) (Fig. 3a). AT, receptors were
expressed in nestin, GFAP, NeuN and MAP2 stained cells
(Fig. 3b). Approximately half of all cells showed double
labeling for both AT receptors (Fig. 3c).
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In an effort to determine specificity of the antibodies used
for the detection of the AT, and AT, receptors we per-
formed western immunoblot analysis of these receptors in
N27 dopaminergic cells, which were derived from immor-
talized E12 VM. As seen in figure 4, both antibodies detect
the AT, , and the AT, ; and AT, receptors in these dopamin-
ergic cells.

In vivo AT receptor expression profile in dopaminergic
neurons of the substantia nigra pars compacta (SNpc)

To better understand the role of the brain-RAS in prevent-
ing DA neuronal loss in vivo, we determined the AT recep-
tor expression profile of TH+ cells of the SNpc of adult
male C57BL/6 mice by immunohistochemistry. As seen in
figure 5, TH* neurons in the intact SNpc expressed a simi-
lar AT receptor profile to that found in VM cultures, with
the majority of TH* cells expressing the AT, receptor
(95%), but the AT, receptor was expressed in fewer SNpc
dopamine neurons (45%); detectable only with the
Abcam antibody (Fig. 5). Because of the inherently semi-
quantitative nature of the immunohistochemical analysis,
we have also employed an alternative technique for assay-
ing the AT, receptor expression by determining the levels
of Agtr2 mRNA by real-time RT-PCR, in TH* neurons of
the SNpc and ventral tegmental area (VIA), isolated by
laser capture microdissection (LCM). Low levels of Agtr2
mRNA were detected in these cells and there was no sig-
nificant difference between TH+ neurons from the SNpc
and the VTA (Fig. 6). Animal and cell culture treatments
with MPTP or MPP+did not change AT receptor immuno-
reactivity to any detectable level (data not shown). In
addition, we did not observe any differences in the AT
receptor profile between TH+ neurons of the SNpc and
TH+* neurons of the VTA (data not shown), indicating that
previously reported lower susceptibility to MPTP of the
TH* neurons from the VTA is not likely due to a difference
in AT receptor distribution.

Losartan protects SNpc dopaminergic neurons from MPTP
toxicity

A severe loss (61.8 + 10%) of DA neurons was observed in
the SNpc of MPTP-treated mice compared to control mice
treated with saline (Fig. 7). By contrast, the number of DA
neurons lost in MPTP-treated mice receiving losartan was
only 25.0 + 16%, when compared to saline-treated mice.
These results show that pretreatment and daily dosing
with losartan can reduce MPTP-induced DA neuronal loss
in the SNpc by 60% (p < 0.05). In an effort to confirm that
the injected MPTP regimen induced DA neuronal loss and
not just a down-regulation of TH immunoreactivity, we
determined the total number of cells in the SNpc by Nissl
staining. Nissl staining of the SNpc revealed a total cell
loss of 54.1 + 1% in MPTP-treated mice, demonstrating
that the MPTP regimen resulted in DA neuronal cell loss
(Fig. 7). MPTP-treated mice receiving losartan had a 44.9
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Figure 2

Angiotensin |l protects DA neurons in vitro from MPP* toxicity only in the presence of the AT receptor antagonist losartan. (a)
Microscopic view of TH* (DA) neurons in VM cultures in the presence of media or MPP* (10 uM) alone, MPP* with Ang Il (100
nM), and MPP* with either losartan (I uM) or PD 123319 (I uM). Scale bar equal to 50 um. (b) Quantification of TH* neuron
counts in VM cultures treated with increasing concentrations of MPP* (1-100 M) in the presence or absence of Ang Il (100
nM) and AT receptor antagonists, losartan (I uM) (AT,R) and/or PD123319 (I uM) (AT,R). Results are mean + SEM. (n = 4—
6). (*) Represents a significant difference (p < 0.05, One-way ANOVA followed by Newman-Keuls post-hoc test) from MPP*.
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Figure 3

In vitro AT receptor expression profiles in primary rat VM cultures. (a) VM cultures were stained for TH (DA neurons) (green)
(A), AT, receptor (red) (B), and counter stained with Hoechst dye (blue nuclear stain) (C). Merged image of A-C (D). Panels
(E-H) are merged images of AT, receptor (green) co-labeling with either nestin (neural progenitors; red) (E), GFAP (astro-
cytes; red) (F), NeuN (neurons; red) (G), or MAP2 (neuronal marker; red) (H), counter stained with Hoechst dye (blue
nuclear stain) and visualized under fluorescence microscopy (*400). Arrowheads indicate examples of cells of various pheno-
types that contain AT, receptors. Scale bar equal to 50 um. (b) VM cultures were stained for TH (green) (A), AT, receptor
(red) (B), and counter stained with Hoechst dye (C). Merged image of A-C (D). Panels (E-H) are merged images of AT, recep-
tor (green) double stained with either nestin (red) (E), GFAP (red) (F), NeuN (red) (G), or MAP2 (red) (H), counter stained
with Hoechst dye and visualized under fluorescence microscopy. Arrowheads point to various cell types positive for the AT,
receptor (%X400). Scale bar equals 50 um. (c) Panels (A-D) show co-expression of AT, (red) (B) and AT, (green) (A) receptors
counter stained with Hoechst dye (C). Merged image of A-C (D). Arrowheads show examples of cells co-expressing both
types of AT receptors.
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Western immunoblot detection of the AT receptors in N27 dopaminergic cell line using either the Abcam or the Santa Cruz
antibodies. The AT, receptor is detected as two proteins representing the AT, (43 kDa) and AT 5 (53 kDa) encoded by two

different genes. The AT, is detected at 43 kDa.

+ 10% loss of total cells, which was not statistically differ-
ent from the cell loss observed in mice receiving only
MPTP. In mice treated with losartan alone, the numbers of
DA neurons or Nissl-stained cells remained unaltered
when compared to saline control mice (Fig. 7). Our
results show that the AT, receptor antagonist, losartan,
reduces MPTP-induced DA neuronal loss in the SNpc of
C57BL/6 mice.

Losartan protects striatal nerve terminals from MPTP-
induced toxicity

Significant differences between treated animal groups
were also observed when measuring striatal TH* immu-
nostaining densities. Mice treated with MPTP showed a
significant 70.6 + 7% decrease in striatal TH* staining
when compared to saline control animals (Fig. 8). Daily
treatment with losartan significantly reduced the loss of
striatal TH immunoreactivity in the striatum of MPTP-
treated mice by 53.2 + 8% when compared to MPTP-alone
treated mice (Fig. 8). Animals treated with losartan alone

showed no significant change in TH immunoreactivity
when compared to saline control animals (Fig. 8). Our
results demonstrate that inhibition of the AT, receptor
with losartan significantly reduces MPTP-induced dener-
vation of striatal nerve terminals.

Losartan does not interfere with transport of MPTP into
the brain and its conversion to MPP*in C57BL/é mice
The possibility that losartan may interfere with brain
uptake or metabolism of MPTP was examined in the SN
and striatum of mice injected with MPTP. Sixty minutes
after the last MPTP injection, the SN and striatum were
dissected and MPP+ levels were determined through
HPLC. No differences in nigral and striatal MPP+ levels
were observed regardless of whether MPTP-injected mice
were treated with losartan or not (Table 1). These findings
highlight the fact that losartan does not interfere with
brain uptake or metabolism of MPTP.

Page 6 of 17

(page number not for citation purposes)



Molecular Neurodegeneration 2007, 2:1

http://www.molecularneurodegeneration.com/content/2/1/1

Substantia Nigra Pars Compacta

AT2R

Figure 5

In vivo AT receptor profile of DA neurons in the substantia nigra pars compacta (SNpc) of adult C57BL/6 male mice. Coronal
sections (40 m) were stained for (A) AT, receptor (red) or (D) AT, receptor (red), (B, E) TH (DA neurons) (green) and (C,

F) represent merged images. Scale bar equals to 200 um.

Losartan does not interfere with dopamine uptake in VM
cultures

To rule out the possibility that losartan-mediated neuro-
protection was a result of inhibition of the dopamine
transporter (DAT) and subsequent reduction of MPP+
entry into DA neurons, VM cultures were treated with
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Figure 6

Detection of Agtr2, TH and GADH mRNAs by real time RT-
PCR in TH* neurons of the SNpc and VTA. Relative concen-
trations were determined using a standard curve of known
concentrations of whole brain cDNAs.

losartan (1 and 10 uM) and DA uptake levels were deter-
mined. Losartan (1 and 10 uM) did not alter DA uptake in
VM cultures (Table 1). This demonstrates that losartan
does not interfere with the function of the DAT.

Losartan reduces arterial blood pressure in C57BL/6 mice
In an effort to determine if losartan reduces blood pres-
sure (BP) levels in C56BL/6 male mice, we took arterial BP
measurements of mice treated with saline or losartan. In
order to maintain constant BP levels, losartan was admin-
istered in drinking water at a dose of 0.18 mg/mL. Table 2
shows the systolic and diastolic measurements after this
dosing regimen. Losartan alone reduced mean BP by 24 +
3% when compared to saline treated controls (Table 2).

Discussion

The primary goal of this study was to determine if manip-
ulation of brain-RAS with the AT, receptor antagonist,
losartan, could prevent the DA neuronal loss caused by
the parkinsonism-inducing neurotoxin, MPTP. Losartan
in the presence of exogenous Ang II in vitro, was able to
significantly reduce the loss of DA neurons induced by
MPP+. These results are in agreement with our earlier find-
ings demonstrating that antagonism of the AT, receptor
with losartan could protect cultured DA neurons from
rotenone toxicity [20]. In the current study, we also
showed that pretreatment of MPTP-lesioned adult C57BL/
6 mice with losartan significantly reduced the loss of DA
neurons in the SNpc as well as partially spared striatal TH+
terminals.
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Figure 7

Losartan protects DA neurons of the SNpc from MPTP toxicity. (@) TH immunoreactive neurons and Nissl stained cells in the
SNpc from mice treated with saline, MPTP, MPTP + losartan or losartan alone. Scale bars equal to 100 um. Saline panel shows
a representative contour selection of the A9 region. The Cell Selection panel shows an example of counted TH* neurons (indi-
cated with arrows) or Nissl-stained cells with large nuclei (indicated with arrows) and excluded Nissl-stained cells with small
nuclei (indicated with arrowheads). (b) Quantification of the number of TH* neurons and Nissl stained cells in the SNpc,
revealed a significant decrease in the number TH* neurons in MPTP treated mice when compared to saline control treated ani-
mals. MPTP-injected mice treated daily with losartan significantly decreased the MPTP-induced loss of TH* neurons in the
SNpc. Significance is indicated by (#) when compared to MPTP-alone injected mice and (*) when compared to saline-alone
injected mice (p < 0.05, One-way ANOVA followed by Newman-Keuls post-hoc test). Data are represented as mean + SEM, n
= 4-5 for TH immunostain and n = 3 for Nissl stain.
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Losartan prevents MPTP-induced denervation of the striatum. (a) Coronal sections of TH immunoreactivity in the striatum of
mice treated with saline, MPTP, MPTP + losartan or losartan alone. Scale bars equal to 500 um. (b) Quantification of striatal
densities, showing a significant decrease in the percent of TH* immunoreactivity in MPTP-treated mice. MPTP-injected mice
treated daily with losartan had significantly higher levels of TH* immunoreactivity in the striatum when compared to MPTP
alone-injected mice (¥, p < 0.05, One-way ANOVA followed by Newman-Keuls post-hoc test). Data are represented as mean
1 SEM, (n = 4-5).
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Table I: Losartan does not interfere with the metabolism and uptake of MPTP.

(a) MPP* levels in the striatum and substantia nigra of C57BL/6 mice

Treated Groups Striatum
MPTP

MPTP+ Losartan

0.27 £ 0.03 pug MPP*/g tissue
0.26+0.04 ug MPP*/g tissue

Substantia nigra
0.28 £ 0.12 pg MPP*/g tissue
0.22 + 0.05 ug MPP*/g tissue

(b) Dopamine uptake in ventral mesencephalic cultures

68.1 £ 11.2 fmol/sec
72.7 £ 7.9 fmol/sec
76.2 £ 14.5 fmol/sec

Control
Losartan (I uM)
Losartan (10 uM)

(a) MPP* levels in the striatum and substantia nigra of C57BL/6 mice were measured by HPLC analysis 60 min after MPTP injection regimen and
were compared to MPTP injected mice pretreated with the AT, receptor antagonist losartan (n = 3). (b) Dopamine uptake levels in VM cultures

treated with media control, | and 10 uM losartan (n = 3).

The brain-RAS has already been identified to have a
potential beneficial and therapeutic value as a target
against stroke. Several recent studies have shown that
peripheral treatment with AT, receptor antagonists is pro-
tective against ischemia and reduce the cortical volume of
the ischemic lesion [36,37]. We have recently demon-
strated that Ang I], through the actions of the AT, receptor,
protects primary cortical neuronal cultures from hypoxic
injury [19,38]. In addition, we also demonstrated that the
AT, receptor-mediated neuroprotection is dependent on
the delayed rectifier K+ channel, Na*/Ca+2 exchanger and
Na*/K+ATPase [39]. And although we have not yet conclu-
sively identified the mechanism(s) of Ang II-mediated DA
neuroprotection, our previous work, as well as studies by
others, provide some insight into potential mechanisms.

Several groups have suggested a role for the brain-RAS in
PD. A genetic study has implicated polymorphisms of the

angiotensin-converting enzyme (ACE) gene as a risk factor

Table 2: Losartan reduces arterial blood pressure in C57BL/6 mice.

for PD [25]. In addition, postmortem studies have shown
the loss of both AT, and AT, receptor binding sites from
the SN in PD patients, suggesting that PD-induced neuro-
degeneration may involve AT receptor expressing cells
[18]. The brain-RAS is also involved in maintaining TH
transcription and catecholamine synthesis [26-30]. In this
study, we observed that almost all DA neurons express the
AT, receptor and to a lesser extent they express the AT,
receptor, both in vitro and in vivo. Because of the low level
of AT, receptor immunostaining, we confirmed the pres-
ence of Atgr2 mRNA in TH* neurons by real-time RT-PCR.
The immunohistochemical analysis also revealed that all
other cell types examined express both AT receptor sub-
types in vitro. These results suggest that the observed in vivo
neuroprotection may be mediated through the antago-
nism of the AT, receptor and potentially the subsequent
activation of the AT, receptor by Ang II endogenously
present in the brain. These data are in agreement with our
previous findings which suggest a negative role for the AT,

Systolic

Treatment Saline Losartan
Mean 124.28 96.43
Std. error of mean (SEM) 3.53 3.45
Sample size (N) 39 43
Diastolic

Treatment Saline Losartan
Mean 101.24 75.31
Std. error of mean (SEM) 4.68 3.21
Sample size (N) 33 38

Losartan (0.18 mg/mL) was administered through the drinking water and tail artery blood pressures were recorded non-invasively from awake
animals. Data are represented as mean + SEM, (n = 4 animals, >32 readings per animal).
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receptor and a neuroprotective role for the AT, receptor
which under normal conditions is masked by the oppos-
ing role of the AT, receptor [20]. An alternative hypothesis
is that because DA neurons have low levels of the AT,
receptor, it is possible that the observed neuroprotection
may be due to the inhibition of downstream signaling of
the AT, receptors directly in DA neurons and the preferen-
tial activation of AT, receptors in supporting cells, which
then indirectly protect the neurons. In support of the indi-
rect theory, astrocytes are known to produce factors such
as glial cell line-derived neurotrophic factor (GDNF) and
mesencephalic astrocytes-derived neurotrophic factor
(MANF), two highly potent neurotrophic factors for DA
neurons [40,41]. It should be noted that because losartan
did reduce the mean arterial BP in mice, we could not
exclude the possibility that the reduction in BP may be
contributing to losartan's neuroprotective actions in vivo.
Further research is needed to answer many of these ques-
tions.

A rtecent observation by Rodriguez-Pallares et al [31]
describes that developing rat DA neurons derived from
E14 VM express the AT, receptor. Our study extends these
findings and quantitates the proportion of DA neurons
that express the AT, receptor, both in VM cultures (65%)
and in the SNpc of C57BL/6 mice (45%). We also now
report expression of the AT, receptor on nestin positive
VM precursors. Our observation of abundance of the AT,
receptor on immature cells is corroborated by others, who
have reported that during development AT, receptor
expression levels are high in the brain but significantly
decrease during adulthood [42]. More direct evidence for
arole of the brain-RAS in PD comes from studies examin-
ing the neuroprotective effects of ACE inhibitors in 6-
hydroxydopamine and MPTP-induced neurotoxicity
rodent models [32-35]. ACE inhibitors prevent the forma-
tion of Ang II from the decapeptide Ang I, which results in
indiscriminate reduction in signaling at all AT receptors,
including a potential beneficial AT, effect. Our study dem-
onstrates that similar neuroprotection can be obtained by
selective antagonism of the AT, receptor, in the absence of
disruption of Ang Il generation and its activity at other AT
receptors. One possible mechanism for the neuroprotec-
tive effects resulting from inhibiting the AT, receptor
might relate to oxyradical generation. Activation of the
AT, receptor can lead to upregulation of NADPH oxidase,
a mechanism for generation of superoxide and elevation
of oxidative stress [51].

In addition, the AT, receptor has been shown to induce an
upregulation of TH, which may result in higher levels of
DA [26-28]. Studies have suggested that elevated DA lev-
els may lead to DA quinones, which can mediate oxidative
stress. Additional processes that might contribute to sus-
ceptibility of DA neurons in PD include: (1) toxicity of tet-
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rahydrobiopterin (an obligatory cofactor for TH) via
increased DA production and the cofactor's autooxidation
[52] and (2) increasing catecholamine concentrations via
overexpression of a-synuclein and resulting disruption of
vesicular pH that perturbs the ability of vesicles to store
neurotransmitters [53]. Others however argue that ele-
vated DA actually inhibits formation of a-synuclein aggre-
gates [54] and that depletion of DA in vivo does not
protect from acute toxicity of MPTP [55]. Taken together,
these findings have to be interpreted in the context of var-
iations in the models, neurotransmitter concentrations,
and time scales, all of which affect the outcome. Nonethe-
less, most of these studies point to a likely central role for
DA in the pathogenesis of PD.

While it may be beneficial to prevent AT, receptor signal-
ing through the use of ACE inhibitors, the reduction of
Ang II in the brain will also prevent the neuroprotective
actions of AT, receptor-mediated signaling. The beneficial
attributes of the AT, receptor can be seen in studies
describing how the AT, receptor counteracts the actions of
the AT, receptor by means of its downstream signaling
cascades or provide neuroprotection against mitochon-
drial toxins when unopposed by the AT, receptor through
the use of specific receptor antagonists targeting the AT,
receptor [15,19,38,39]. In addition, recent studies have
also shown a relationship between metabolites of Ang I,
such as angiotensin IV, which is believed to be the agonist
for the AT, receptor and is suggested to have a role in
memory [24,44-47].

Conclusion

In this study, we demonstrate that antagonism of the AT,
receptor can protect dopaminergic neurons from a neuro-
toxin based in vivo PD model. While we are actively inves-
tigating the role of the brain-RAS in PD, the angiotensin
system may have a role in other neurodegenerative dis-
eases such as Alzheimer's disease, multiple sclerosis, and
Huntington's disease [22,48]. Additional research will be
needed to completely understand the roles of this system
in the brain.

Methods

Ventral mesencephalic culture

Rat ventral mesencephalic (VM) tissues from E15 Sprague
Dawley embryos were dissected into Ca*2/Mg*2 - free
Hank's buffered salt solution (HBSS), mechanically dis-
persed and centrifuged [49]. The cells were resuspended in
F12 medium with 10% fetal bovine serum, 2 mM L-
glutamine, 100 U/ml penicillin, and 100 pug/ml strepto-
mycin (Sigma). Viability was determined using trypan
blue exclusion. Cells were seeded at a density of 6 x 104
viable cells/cm? on polyethylenimine (1 pg/ml) pre-
coated 96- and 12-well culture plates or 8-chambered
glass slides and incubated for 6 days at 5% CO,/37°C.
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Half of the medium was changed every 3-4 days. After 6
days of growth, primary VM cultures consist of approxi-
mately 55% neurons, 45% type 1 astrocytes and <1%
other cell types, as determined by immunohistochemical
analysis [50]. Dopaminergic (TH*) neurons represented
2-5% of total cells in VM cultures.

Ventral mesencephalic culture treatments

VM cultures were exposed to the parkinsonism-inducing
neurotoxin 1-methyl-4-phenylpyridinium (MPP+) (1-
100 uM) (Sigma) for 48 hrat 37°C and then processed for
analysis. In Ang Il-treated cultures, the octapeptide (1-
100 nM) (Sigma) was added either 30 min prior or 15, 30
or 60 min after MPP+ treatment. In an effort to determine
AT receptor subtype specificity, VM cultures were pre-
treated with 2-n-Butyl-4-chloro-5-hydroxy-methyl-1-[(2'-
(1H)-tetrazol-5-yl)biph enyl-4-yl)methyl]imidazol potas-
sium salt (DuP 753, losartan) (1 uM) (AT, receptor antag-
onist) (Du Pont/Merck, Wilmington, DE) or PD123319
(1 uM) (AT, receptor antagonist) (Sigma) or both, 15 min
prior to the addition of Ang I1 [19,20]. Cells were exposed
to the treatment agents for the duration of the experiment.
VM cultures were then washed with PBS and fixed by the
addition of 4% paraformaldehyde until analyzed.

Animals and treatments

Eight-week-old male C57BL/6 mice (Charles River Labo-
ratories, Wilmington, MA) were used. Mice (n = 4-5 per
group) received subcutaneous (200 pl) injections of 2-n-
Butyl-4-chloro-5-hydroxy-methyl-1-[(2'-(1H)-tetrazol-5-
yl)biphenyl-4-yl)methyl]imidazol potassium salt (DuP
753, losartan) (90 mg/kg) (100 mg tablets, Du Pont/
Merck, Wilmington, DE; dissolved in saline and filtered
through a 0.2 um filter) daily for 16 days, beginning two
days prior to the first MPTP injection (Fig. 1). It is
expected that the current dosing of losartan should result
in greater than 60% inhibition of AT, receptors in the
brain [51]. Control animals received saline injections.
Losartan and saline control treated mice received four
intraperitoneal injections of MPTP-hydrochloride (20
mg/kg of free base; Sigma) in saline at 2-hour intervals on
day 3 followed by a single intraperitoneal injection of
MPTP-hydrochloride (20 mg/kg) on day 9, and were sac-
rificed 7 days after the last MPTP injection [52]. Control
mice received saline injections. This protocol is in accord-
ance with the NIH guidelines for use of live animals and
was approved by the Institutional Animal Care and Use
Committee of the University of Colorado at Denver and
Health Sciences Center.

Immunohistochemical analysis

For immunohistochemical analysis, animals were per-
fused with 20 ml of saline followed by 20 ml of freshly
made 4% paraformaldehyde. Brains were then removed
and stored in 4% paraformaldehyde until analyzed. Fixed
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VM cultures or 40 um brain sections were incubated with
an appropriate primary antibody overnight at 4°C, fol-
lowed by 1 hr incubation with a secondary antibody at
room temperature. To identify DA neurons, a polyclonal
(rabbit) anti-TH antibody (1:500) (Pel-Freez, Rogers, AR)
was used. TH* cells were visualized by nickel-enhanced
DAB staining (Pierce) using a Vectastain kit (Vector labo-
ratories, Burlingame, CA) or by immunofluorescence
using an appropriate secondary antibody. Different cell
types in the cultures were identified with a polyclonal
(mouse) anti-glial fibrillary acidic protein (GFAP) (1:200)
for astrocytes, a polyclonal (mouse) anti-nestin (1:400)
for neural progenitors, and a polyclonal (mouse) anti-
microtubule-associated protein 2 (MAP2) (1:200) or a
polyclonal (mouse) anti-neuronal nuclear protein
(NeuN) (1:200) for neuronal cell types (Chemicon,
Temecula, CA). To determine AT receptor subtypes, a
commercially available polyclonal (rabbit) anti-AT,; (N-
10) (1:50) (Santa Cruz Biotechnology, Inc), polyclonal
(goat) anti-AT, (H-143) (1:50) (Santa Cruz Biotechnol-
ogy, Inc), polyclonal anti-AT,(rabbit) (18801) (1:200)
(Abcam), polyclonal (rabbit) anti-AT, (C-18) (1:100)
(Santa Cruz Biotechnology, Inc) or a polyclonal anti-AT,
(rabbit) (19134) (1:200) (Abcam) antibodies were used
[19,20]. Secondary antibodies used were Alexa 488-conju-
gated (donkey) anti-goat IgG (1:1000), Alexa 488-conju-
gated (donkey) anti-rabbit IgG (1:1000), Alexa 594-
conjugated (donkey) anti-rabbit IgG (1:1000) and Alexa
594-conjugated (donkey) anti-mouse IgG (1:1000)
(Molecular Probes, Eugene, OR). Total cells were visual-
ized by Hoechst stained nuclei. Double and triple staining
was done consecutively. Stained cultures were visualized
by light and/or fluorescence microscopy using Zeiss or
Nikon microscopes. For AT receptor profile counts in vitro,
a total of 700 TH* cells co-labeled for AT, or AT, receptor
were counted from a minimum of 3 fields. For the in vivo
AT receptor profile, TH* cells co-labeled for AT, or AT,
receptor were counted from the SNpc of 3 coronal sec-
tions. To determine the number of total cells in the SNpc,
selected sections were defatted, rehydrated through
descending alcohol concentrations, stained in cresyl violet
acetate for 1 minute followed by acetic formalin, then
dehydrated and cleared in xylene before coverslipping in
Permount. Quantification of VM culture TH+ cells' sur-
vival was done by a blinded observer who counted all the
positively stained cells having a distinct nucleus and visi-
ble neurites in the entire well. Each experimental condi-
tion in vitro represents 4-6 independent experiments.

Measurements of striatal MPP* levels

HPLC with UV detection (wavelength = 295 nm) was used
to measure striatal MPP+ levels [56]. Mice were injected
subcutaneously (n = 3) daily with losartan (90 mg/kg) or
saline for 3 days. On day 3, mice were injected 4 times
every 2 hours intraperitoneally with saline or MPTP-
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hydrochloride (20 mg/kg). Sixty minutes after the last
MPTP injection mice were sacrificed and the brains were
immediately removed. The substantia nigra (SN) and
striatum were dissected out on ice and rapidly frozen on
dry ice and stored at -80°C until analysis. On the day of
the assay, SN and striatum were prepared by sonicating
the tissue samples in 9% (wt/vol) of 5% trichloroacetic
acid (Sigma) containing 5 pg/ml of 4-phenylpyridine
(Sigma), as an internal standard. After centrifugation, 50
ul of supernatant were injected onto a cation-exchange
C18 column (Alltech). The mobile phase consisted of
89% (v/v) 50 mM KH,PO, (pH 3 adjusted with H;PO,)
and 11% (v/v) acetonitrile. The flow rate was 1.5 ml/min.

Dopamine uptake measurements

Dissociated mesencephalic neurons were grown as
described above. The neurons were rinsed and then
assayed at 37°C in Krebs-Ringer HEPES buffer (KRH; 120
mM NaCl, 4.7 mM KCl, 2.2 mM CaCl,, 1.2 mM Mg SO,,
1.2 mM KH,PO,, 10 mM glucose, 10 mM HEPES, pH 7.4)
supplemented with 10 uM pargyline, 10 uM ascorbic acid,
and 10 uM catechol. Assays (1 ml) included 100 nM [3H]
DA. Nonspecific [3H] DA accumulation was determined
in the presence of 1 mM (-) cocaine hydrochloride. After
10 min of incubation at 37°C, uptake was terminated by
quickly washing the neurons three times with 1 ml of ice-
cold KRH. Neurons were then solubilized in 0.5 ml of 3%
trichloroacetic acid for 60 min with gentle shaking. Accu-
mulated [3H| DA was determined by liquid scintillation
counting (n = 3) [57].

Animal blood pressure measurements

Losartan (0.18 mg/mL) was administered through the
drinking water and tail artery blood pressures were
recorded non-invasively from awake animals. Animals
were placed in a restraining tube heated to 37°C, and a
pressure cuff and piezoelectric transducer were secured to
the rostral base of the tail (PowerLab, AD Instruments).
Animals were conditioned for ten to fifteen minutes by
inflating the pressure cuff to 200 mmHg once every
minute. Post-conditioning pulse and cuff pressure record-
ings were simultaneously acquired for up to 45 min at one
reading per minute. Motion artifact detected by the pulse
transducer during cuff deflation served as grounds for
elimination of data points. Systolic and diastolic pressures
were determined offline (Chart, AD Instruments). Systolic
pressure was defined as cuff pressure upon first detection
of pulse during deflation. Diastolic pressure was defined
as cuff pressure when the pulse reading resumed normal
amplitude (n = 4, >32 readings per animal).

Stereological analysis of TH* neurons and Nissl-stained
cells in the SNpc

Substantia nigra sections were immunostained for TH or
stained with cresyl violet as described above. The SN in
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C57BL/6 mice measures approximately 1.7 mm in rostro-
caudal extent. Based on a comparative mouse brain atlas
[58], the SN is completely contained between the coronal
planes defined between -2.40 mm and -4.20 mm from
bregma. A total of 54 (40 um) sections were cut on a cry-
ostat and separated into three section pools using every
third section per pool. The three section pools contained
the entire SN. Due to tissue shrinkage the actual thickness
of fixed and stained tissue was on average 21 um. TH-
immunoreactive SNpc neurons were estimated using an
unbiased stereological method according to the optical
fractionator principle [59-61] using a Leica DMRB micro-
scope with motorized stage running BioQuant Nova
Prime Revision 3.0 (BioQuant Image Analysis Corpora-
tion, Nashville, TN) on a 75 um x 75 um grid with a dis-
sector size of 50 um x 50 um. The contour outlines and
landmarks of the SNpc, which comprise the A9 cell group,
were drawn on an image captured with a 5x objective.
Using a 100x objective and starting at the top of the sec-
tion with the top plane of the cells in focus, the z-plane
guards were determined by excluding 4 um from the sur-
faces and only the TH+ profiles that came into focus
within the counting frame thickness (13 wm) between the
guard zones were counted. Care was taken to ensure that
the top and bottom forbidden planes were not included
in the analysis. Adjacent sections were stained with cresyl
violet acetate and cells in the SNpc were counted in a sim-
ilar manner as with the TH+* immunostained sections,
with the exception that large nuclear Nissl stained cells
were counted instead of TH+ cells. Because Nissl staining
was done separately from TH immunostaining, it is possi-
ble that non-dopaminergic neurons and glia were also
included in the total cell counts. Because of the careful
demarcation of the SNpc (Fig. 7a), the majority of large
nuclear Nissl stained cells in the selected area are likely to
be neurons of the A9 cell group. All stereological counts
were done blindly to the treatment conditions. A coeffi-
cient of error (CE) of <0.02 was accepted (Table 3), for TH
(n=4-5 animals/group) and Nissl stained cells (n = 3 ani-
mals/group). Counts are represented as mean + SEM.

Striatal TH* staining densitometry

Striatal sections were stained for TH as described above.
Digital images were taken of each striatal section (3 sec-
tions per animal counting both the left and right striatum,
n = 4-5 animals/group) using a Nikon Eclipse 800 micro-
scope and a CCD camera with Spot software. TH+* staining
densities were then analyzed using Adobe Photoshop
software. Cortical areas (background) densitometry read-
ings were subtracted from the measured densitometry of
striatal areas. Measurements are represented as percent of
control densities from saline-treated animals and are rep-
resented as mean + SEM. Densitometric quantification of
striatal TH+ staining was done by a blinded observer.
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Table 3: TH* neuronal counts and coefficient of variance (CV) values for all animal groups.

Treatment Saline MPTP MPTP+Los Losartan
Animal Neurons Ccv Neurons Ccv Neurons Ccv Neurons Ccv
| 6749 0.08 3299 0.12 4028 0.09 3728 0.14
2 6138 0.06 2237 0.19 2837 0.06 5714 0.11
3 7389 0.09 2322 0.14 6144 0.10 7766 0.09
4 4591 0.07 1719 0.08 5762 0.07 5723 0.11
5 6446 0.08 2373 0.12

Laser capture microdissection (LCM)

Twelve-week-old male C57BL/6 mice were euthanized
using CO, asphyxiation. The brains were removed and
immediately frozen in isopentane on dry ice. Brains were
then stored at -80°C until analysis. Brains were then cut
on a cryostat and 10 um coronal sections were mounted
on uncoated slides and stored at -80°C. Slides were
allowed to briefly reach room temperature and were
stained for TH using a rapid staining protocol to minimize
mRNA degradation. Briefly, slides were fixed in acetone
(40 seconds), washed briefly 3 times in phosphate buffer
(PB; pH = 7.4), followed by a 5 min incubation with a
mouse-anti-TH antibody (Sigma, 1:1000) diluted in PB.
Slides were washed 3 times with PB, followed by 5 minute
incubation with a Cy3-conjugated goat anti-mouse 1gG
(Jackson Labs, 1:500) diluted in PB. Slides were washed
twice in PB and then dehydrated in ethanol (50%, 70%,
95%, and 100%), (10 seconds each) and delipidated in
xylene (40 seconds). Slides were then allowed to air dry.
All procedures were carried out in an RNAse-free environ-
ment.

Tyrosine hydroxylase positive cells of the SNpc and VTA
were visualized and dissected using a PixCell laser capture
microscope under a 20x objective with an infrared diode
laser (Arcturus Engineering, Santa Clara, CA). Approxi-
mately 500 TH positive cells per animal from the SNpc or
VTA we isolated on a single LCM HS cap (Arcturuss Arctu-
rus Engineering, Santa Clara, CA). RNAs were isolated
using a PicoPure RNA Isolation kit (Arcturus, Mountain
View, CA, USA) according to manufacturer's guidelines,
and subjected to DNAse treatment (Qiagen, Valencia, CA,
USA).

Table 4: List of primers used for Real Time RT-PCR.

Real-time RT-PCR

Atgr2, TH and GAPDH mRNA expression profiles were
done by quantitative real-time PCR on TH* neurons from
the SNpc or VTA. Primers used are listed in table 4. The
primers (18-22 mer) were designed using Primer3 [62].
These primer sets were designed to amplify small ampli-
cons for candidate mRNAs ranging from 100-300 bp in
size. First-strand cDNA synthesis was carried out on
mRNA extracted with SuperscriptTM first-strand synthesis
kit (Invitrogen Carlsbad, CA) according to the manufac-
turer's specifications. Real-time RT-PCR was carried out in
a 96 well plate using a MyiQ iCycler (BioRad, Hercules,
CA), and SYBR Green PCR Master Mix (Applied Biosys-
tems, Foster City, CA). A concentration curve with known
concentrations of whole brain ¢cDNA extracts from 12-
week-old male C57BL/6 mice was used to calculate stand-
ard curves and quantitate the products. The final concen-
tration of each transcript was calculated using the
MyiQ2.0 software provided by BioRad.

Western immunoblot analysis

The expression of AT, and AT, receptors was examined in
an immortalized mesencephalic dopaminergic cell line,
N27 [63]. N27 cells were thawed into RPMI 1640 media
containing 10% FBS, 2 mM glutamine, 100 U/ml penicil-
lin and 100 pg/ml streptomycin. Cells were collected in
lysis buffer (Cell Signaling Technology, Beverly, MA) with
1% SDS. After sonication, the lysate was centrifuged at
10,000 x g for 45 min at 4°C, and the proteins in the
supernatant were separated on 4-12% Bis-Tris polyacryla-
mide gel. After transfer to PVDF membranes, the proteins
were probed for AT, receptors (Santa Cruz polyclonal sc-
1173 or Abcam polyclonal ab 18801, 1:500 dilution), AT,

Atgr2 accaatcggtcatctaccctt
ggcaatgaggatagacaagcc

GAPDH tggtgaagcaggcatctgag
tgctgttgaagtcgeaggag

TH ttctgaaggaacggactgg
ggcatgacggatgactgtg

left
right
left
right
left
right
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receptors (Santa Cruz polyclonal sc-9040 or Abcam poly-
clonal ab 19134, 1:500 dilution). Secondary, alkaline
phosphatase-conjugated anti-rabbit (1:5000; Sigma) and
anti-mouse (1:10,000, Jackson ImmunoResearch) anti-
bodies were followed by Lumi-Phos (Pierce) for chemilu-
minescence detection. Blots were stripped and reprobed
for B-actin (Sigma, 1:10,000) to confirm equal protein
loading on the gel.

Statistical analysis

Data were analyzed using Statistica software. Statistical
significance was determined by one-way ANOVA fol-
lowed by post-hoc Newman-Keuls multiple comparison
tests. Differences in mean values were considered signifi-
cant at p < 0.05. All data were obtained from at least three
independent experiments and are represented as a mean +
SEM.
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