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Graphical Abstract

Summary
Diverse disciplines of science use near-infrared (NIR) spectroscopy for chemical analysis because it is rapid and 
inexpensive, and it provides reproducible results. Many animal scientists perform in vitro rumen fermentation 
tests to measure the production of volatile fatty acids (VFA) and methane (indicative of energy loss) from 
different feeds or diets. We used NIR spectroscopy to develop calibration models that predict the production 
of different VFA (acetic, propionic, butyric, valeric, isovaleric, and isobutyric acids), total gas, and methane from 
in vitro rumen fermentation of different silage-based diets. Our models provided reliable estimates of these 
rumen fermentation products.

Highlights
• Near-infrared (NIR) prediction models accurately predicted volatile fatty acids, methane, and  

gas production.
• Outputs of models could provide useful information for calibrating rumen mechanistic models. 
• Calibrations of valeric and isovaleric acids need to be improved.
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Abstract: Volatile fatty acids (VFA) and methane (CH4) are the major products of rumen fermentation. The VFA are considered an energy 
source for the animal and rumen microbiota, and CH4 (which is released by eructation) is considered an energy loss. Quantification of 
these fermentation products is fundamental for the evaluation of feeds and diets, and provides important information regarding the use 
of nutrients by ruminants. Near-infrared (NIR) spectroscopy is increasingly used for the evaluation of animal feeds because it is rapid, 
nondestructive, noninvasive, and inexpensive; does not require reagents; and the results are reproducible. The aim of this study was to 
develop NIR calibration models for estimating the production of VFA (acetic, propionic, butyric, valeric, isovaleric, and isobutyric acids), 
total gas, and CH4 using in vitro gas production tests with buffered rumen inoculum throughout fermentation. Fifty-four total mixed 
rations (TMRs) were examined, and rumen fluid was manually collected from 2 dry Holstein dairy cows that had ruminal fistulas and 
were fed at maintenance energy levels. Then, 30 mL of buffered rumen fluid was incubated in bottles with ~220 mg of TMR. The total 
gas, VFA, and CH4 were measured after 2, 5, 9, 24, 30, 48, and 72 h of rumen incubation for each TMR. The VFA were measured on 32 
randomly selected TMR. In particular, 7 bottles were used for each TMR, one for each incubation time. Methane was measured in the 
headspace and VFA were measured in the buffered rumen fluid. The bottles were considered experimental units for calibration purposes. 
The production of CH4 was quantified from the bottle headspaces by gas chromatography, and total gas production was measured using a 
pressure transducer at each incubation time. Two aliquots of the fermented liquids were sampled by opening the bottles at each incubation 
time, and (1) the concentrations of VFA were determined by gas chromatography or (2) spectra were obtained from Fourier-transform 
NIR spectroscopy. The data were randomly divided into calibration and validation data sets. The average concentrations of acetic acid 
(45.30 ± 11.92 and 43.86 ± 11.93 mmol/L), propionic acid (14.97 ± 6.08 and 14.38 ± 6.56 mmol/L), butyric acid (8.47 ± 3.47 and 8.65 
± 3.79 mmol/L), total gas (111.34 ± 81.90 and 116.46 ± 82.44 mL/g of organic matter), and CH4 (9.65 ± 9.45 and 10.35 ± 9.33 mmol/L) 
were similar in the 2 data sets. The best calibration models were retained based on the coefficient of determination (R2) and the ratio 
of prediction to deviation (RPD). The R2 values for prediction of VFA ranged from 0.69 (RPD = 3.28) for valeric acid to 0.94 (RPD = 
4.20) for acetic acid. The models also provided good predictions of CH4 (R2 = 0.89, RPD = 3.05) and cumulative gas production (R2 = 
0.91, RPD = 3.30). The models described here precisely and accurately estimated the production of CH4 and VFA during in vitro rumen 
fermentation tests. Validations at additional laboratories may provide more robust calibrations.

Volatile fatty acids are the main products of rumen fermenta-
tion, and represent about 40 to 70% of digestible energy intake 

(Dijkstra et al., 2005). The proportions of acetic, butyric, and 
propionic acids from rumen fermentation determine the amount 
of hydrogen (H2) available for methanogenic bacteria (Alemu 
et al., 2011). In contrast, methane (CH4) production results from 
microbial digestion, and ruminants expel CH4 by belching (eructa-
tion). The production of CH4 indicates an energy loss for ruminants 
(Ellis et al., 2008) because it decreases the efficiency of the feed 
use, and it also contributes to global warming (Rossi et al., 2001). 
Several approaches that use mathematical models or direct labora-
tory methods can quantify rumen CH4 and VFA productions. The 
molar proportions of VFA in the rumen are the consequence of 
differences in the rate of production, interconversion, and absorp-
tion (Morvay et al., 2011). Thus, researchers use stoichiometric 

coefficients (Bannink et al., 2006) in mechanistic models of the 
rumen to estimate VFA production. In addition, individual VFA 
in rumen can be directly determined using GC of samples (Cottyn 
and Boucque, 1968). The CH4 can also be quantified using math-
ematical models or direct measurements (Negussie et al., 2017), 
and indirect estimates can be from empirical or process-based 
mechanistic models.

The development and use of these equations requires measure-
ments of many parameters in different conditions (e.g., physi-
ological stage of the animal, feeding strategy, DMI) to achieve 
high prediction accuracy (Patra, 2016). The most commonly used 
techniques for direct analysis are respiration chambers, the sulfur 
hexafluoride (SF6) tracer method, and the automated head-chamber 
system (i.e., GreenFeed). These all provide reliable measurements 
but are not suitable for large-scale applications (Patra, 2016).
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Alternatively, in vitro methods that measure gas production by 
buffered rumen inoculum can be used to estimate ruminant feed-
stuff value, characterize rumen fermentation dynamics, and mea-
sure CH4 production over time (Serment et al., 2016). Under con-
trolled conditions, these in vitro methods quantify VFA and CH4 at 
different times, and these measurements are inexpensive to acquire 
and provide reproducible results. Getachew et al. (2005) reported 
that in vitro and in vivo techniques yielded similar measurements 
of CH4 production, although the scientific literature has contradic-
tory results regarding the agreement of data from these different 
methods (Maccarana et al., 2016). In addition, Bhatta et al. (2006) 
compared results from the in vivo SF6 method with those from the 
in vitro rumen simulation technique (i.e., RUSITEC) and the in 
vitro gas production technique. They concluded that methane es-
timation using the gas production technique was very close to that 
measured by the in vivo technique, and the average coefficients 
of determination ranged from 0.92 to 0.99, depending on the diet. 
Recently, Danielsson et al. (2017) compared CH4 production mea-
sured by the GreenFeed system and gas production for 49 different 
diets. These authors reported a coefficient of determination of 0.96 
when in vitro data were used to predict in vivo CH4 emission.

To avoid the need for an in vivo trial, some mechanistic models 
simulating the rumen ecosystem have provided results that suc-
cessfully reproduced rumen fermentation pathways. Recently, 
Muñoz-Tamayo et al. (2016) proposed a mechanistic rumen model 
that considered microbial metabolisms, acid-base reactions, and 
liquid-gas transfers based on in vitro data from Serment et al. 
(2016). These researchers subsequently validated this mechanistic 
model using an external data set, with in vitro data on VFA and 
CH4 production obtained by rumen fermentation of high-silage 
diets (Muñoz-Tamayo et al., 2019). A critical consideration for the 
accurate representation of the rumen ecosystem when using these 
models is the availability of data for model calibration and vali-
dation. Near-infrared (NIR) spectroscopy is an inexpensive and 
simple technique that can potentially provide these data.

Animal scientists who study livestock and feed evaluation are in-
creasingly using NIR spectroscopy. The advantages of this method 
are that it is rapid, it does not require reagents, it is nondestructive 
and noninvasive, and it provides reproducible results at very low 
cost. Some researchers have used infrared calibration in the near- 
or mid-infrared (MIR) regions to measure many different biologic 
substrates (Yakubu et al., 2020). In the NIR region, the peaks are 
overtones and combination peaks of molecular vibrations. These 
nonfundamental excitations are weaker than the fundamental 
bands and arise from the O–H, C–H, S–H, and N–H stretching 
modes (Zhang et al., 2009). The main constraints for obtaining ac-
curate calibration models are the accuracy, variability, and distribu-
tion of the primary data, as well as the concentration and physical 
structure of the chemical compounds and types of samples. Despite 
these limitations, Zhang et al. (2021) successfully used NIR spec-
troscopy to evaluate single feed or TMR chemical composition and 
in situ disappearance, and other researchers successfully used NIR 
spectroscopy to measure in vitro digestibility (Andrés et al., 2005; 
Mentink et al., 2006). However, little information is available on 
the accuracy of the NIR method for predicting the production of 
total gas, VFA, and CH4 from a rumen fluid sample.

The aim of this study was to assess the use of NIR calibration 
models to determine the major rumen fermentation parameters by 

direct analysis of fermented buffered rumen fluids. The specific 
fermentation products produced by incubating TMR in vitro with 
a buffered rumen fluid collected from fistulated animals were VFA 
(acetic, propionic, butyric, valeric, isovaleric and isobutyric acids), 
total gas, and CH4.

A total of 54 TMR were collected from dairy farms in the Po 
valley of northern Italy during 2018. Details regarding locations of 
dairy farms and TMR sampling technique were previously reported 
(Atzori et al., 2021). These TMR were dried in a 65°C forced-air 
oven to constant weight, and then ground to a particle size of 1 mm 
in a rotor speed laboratory mill (Pulverisette 19). For in vitro gas 
production tests, a sample (~220 mg) was added into a 100-mL 
glass bottle (Gallo et al., 2016). Each experimental run consisted 
of 18 TMR that were incubated together. There were 7 replicates 
of each TMR sample, 1 for each incubation time. In addition, 4 
bottles with only buffered rumen fluid (blanks) and 4 bottles with a 
starch sample (internal standard, Gelose 80 maize starch; Penford 
Food Ingredients Co.) were incubated in each experimental run. 
Blanks and internal standards were used to verify gas production 
dynamics of each run. Indeed, the cumulative blanks or internal 
standard gas production of all fermentation runs performed in the 
experiment had to be within the average value ± 1 standard devia-
tion to be considered acceptable. If this condition was not met, the 
run was repeated.

A buffer-mineral solution (Menke and Steingass, 1988) was pre-
pared on the same day as inoculation, and it was added to a water 
bath at 39°C under continuous CO2 flushing to create anaerobic 
conditions. The pH was adjusted to 6.5 to 6.6. Rumen fluids were 
manually collected from 2 Holstein dry dairy cows that had ruminal 
fistulas (BW 625 ± 10 kg) and were maintained at the CERZOO 
experimental station (San Bonico, Piacenza, Italy). These cows 
received maintenance diets, and rumen samples were collected 
after the morning feeding (NRC, 2001). The TMR had 12% CP and 
55% NDF, determined by using amylase and sodium sulfite, on a 
DM basis, and consisted of grass hay (75% DM), corn silage (15% 
DM), and a protein vitamin mineral supplement (10% DM). On the 
day of rumen collection, the rumen fluid inoculum was transferred 
into 2 warmed thermos flasks, combined, filtered through 2 layers 
of cheesecloth, added to the buffered mineral solution, and then 
maintained at 39°C in a water bath and flushed with CO2. The ru-
men inoculum was maintained in a warm insulated flask and used 
within 20 min of sampling. The rumen inoculum was then diluted 
(1:2 vol/vol rumen fluid: buffer -mineral solution) and the buffered 
rumen mixture was maintained in continuous agitation, at con-
stant temperature, and under anaerobic conditions. As described 
by Pirondini et al. (2012) and Serment et al. (2016) with minor 
modifications, about 30 mL of diluted rumen fluid was transferred 
into each bottle containing the TMR. First, the bottle headspace 
(70-mL volume) was flushed with CO2 and the bottle was then 
hermetically closed with rubber caps and degassed. The headspace 
pressure was recorded after 2, 5, 9, 24, 30, 48, and 72 h using a gas 
pressure transducer (digital test gauge XP2i, Crystal Engineering 
Corp.). The remaining gas was then released by puncturing the cap 
with a needle, and the pressure was brought back to atmospheric 
level. To preserve normal microbial activity, the headspace pres-
sure never exceeded 48 kPa, as recommended by Theodorou et al. 
(1994). The gas pressure results were converted to moles of gas 
using the ideal gas law:
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 n = p × V/(R × T), [1]

where n is moles of gas, p is pressure (kPa), V is headspace vol-
ume (L), R is the gas constant (8.314 L·kPa·K–1·mol–1), and T is 
temperature (K).

One bottle that contained substrate and fermented liquid was 
used at each incubation time to measure CH4 in the headspace 
and VFA concentrations in the buffered rumen inoculum. For this 
procedure, the bottle was put on ice to stop fermentation, and 1 mL 
of headspace gas was then sampled using a 2-mL gas-tight glass 

syringe with a pressure lock (VICI, Precision Sampling Inc.) to 
collect a sample. This 1-mL sample of gas was analyzed using a 
GC system (Agilent 7820A, Agilent Technologies) using N2 as a 
carrier. An external standard mixture of CO2 and CH4 prepared by 
SIAD S.p.A. (Bergamo, Italy) was used for instrument calibration. 
Peak areas were calculated by automatic integration. The amount 
of CH4 (mmol) produced between adjacent time points and the final 
amount were calculated as described by Tavendale et al. (2005).

Then, 2 aliquots of fermented rumen fluid were stored at −20°C 
and used for measurements by 2 different methods. In the first 
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Figure 1. Selection of latent variables for each partial least squares model: (a) acetic acid; (b) propionic acid; (c) butyric acid; (d) isobutyric acid; (e) valeric acid; 
(f ) isovaleric acid; (g) methane; and (h) total gas.
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method, VFA concentrations were determined using a GC system 
(2025 Shimadzu GC, Shimadzu S.r.l.). This device had an auto-
sampler (AOC-20i Shimadzu S.r.l.), flame-ionization detector, and 
capillary column (DB-FFAP; 30 m, 0.250 mm, 0.25 µm; Agilent 
Technologies S.p.A.). The injector operated at 200°C and the de-
tector at 220°C. The injection volume was 1 µL and the split ratio 
was 100:1. In the second method, Fourier-transform (FT)-NIR 
spectroscopy of samples was performed using an MPA II Multi-
Purpose FT-NIR Analyzer (Bruker Italia S.r.l. Unipersonale). 
Before this analysis, the buffered rumen fluid was thawed at 37°C 
in a water bath for 15 min, cooled in a water and ice solution, cen-
trifuged at 3,800 × g for 16 min at 6°C, and placed in a thermostati-
cally controlled water bath at 30°C for 10 min. All spectra were 
acquired in duplicate. The flow cell thermostat was set to 30°C and 
the resolution was 8 cm−1 in the range of 12,488 to 4,000 cm−1. For 
methane, a primary database was created and measurements were 
recorded from each bottle of each fermented TMR. There were 
378 observations (7 bottles for each of the 54 TMR). For measure-
ments of gas production, results were obtained on all remaining 
unopened bottles at each incubation time. For VFA, 32 randomly 
selected TMR were sampled and used to generate measurements 
for NIR calibrations. The databases were analyzed to determine 
fermentation parameters and NIR spectra using a statistical filter-
ing procedure, based on univariate and multivariate approaches. 
The detection of outliers in the primary data was determined using 
the threshold technique of calculating an acceptability range:

 Thresholdmin = mean − a × SD; Thresholdmax = mean + a × SD,  

  [2]

where the control parameter (a) was set to 2 (Yang et al., 2019). 
Then, principal component analysis (PCA) was used to analyze 
spectra and detect outliers according the influence plot, based on 
Hoteling’s T2 statistic with a 5% limit. The acquired spectra were 
processed by Unscrambler X software (version 10.5.1, CAMO 
Software) for development of calibration curves using partial 
least squares (PLS) fitting. In particular, spectra were randomly 
assigned to a calibration set or a validation set in a 70:30 ratio. 
Different preprocessing methods were used to remove physical 
variations in the spectra (Rinnan et al., 2009). These methods cor-
rected for scatter (standard normal variate method) and spectral 
derivation (Savitzky-Golay polynomial derivative method). Using 
the calibration set, a PLS regression model with a cross-validation 
leave-one-out criterion and a nonlinear iterative PLS (NIPALS) 
algorithm were performed using NIR wavelengths as the predic-

tor terms. To avoid redundancy and collinearity and improve the 
robustness of the calibration models, specific NIR spectral regions 
were selected according to an optimal number of latent variables 
(Gowen et al., 2011). In this procedure, the software set the re-
sidual variance to quantify the effect of adding an additional factor 
to the model on the increase of R2 (Figure 1). An R2 value close 
to 1 indicates good linear dependence between the observed and 
predicted values; that is, good predictability of the model (Sileoni 
et al., 2013). If the variance between 2 consecutive factors was 
less than 6%, the latent factor extraction process was stopped and 
the model was developed using the optimal number of factors 
(Tian et al., 2021). All regression models were then applied to the 
validation set to determine the accuracy of predictions. In particu-
lar, the accuracy of the models was evaluated by calculating the 
coefficient of determination (R2), the root mean square error, the 
standard error of calibration, the standard error of cross-validation, 
the standard error of prediction (SEP), and the ratio of prediction 
to deviation (RPD). The models that provided the best predictions 
were retained (Aptula et al., 2005).

We first calculated the means, SD, ranges, and coefficients of 
variation (CV) for data on the production of VFA, CH4, and total 
gas for the calibration and validation data sets (Table 1). The cali-
bration set had the greatest CV for isobutyric acid (0.59), isovaleric 
acid (0.67), valeric acid (0.62), CH4 (0.98), and total gas (0.74). 
The average concentration between calibration and validation sets 
of acetic acid was 44.58 ± 1.92 mmol/L, the average of propionic 
acid was 14.64 ± 6.32 mmol/L, and the average of butyric acid was 
8.56 ± 3.63 mmol/L. The wide range in these concentrations was 
related to the different fermentation times (rumen sampling times).

We assessed the performance of prediction models using NIR 
data for each parameter (Table 2). The prediction of VFA levels 
could be considered satisfactory, in that the R2 ranged from 0.69 
(SEP = 0.21 mmol/L) for valeric acid to 0.94 (SEP = 2.84 mmol/L) 
for acetic acid. The model also provided good predictions for CH4 
(R2 = 0.89, SEP = 3.06 mmol/L) and total cumulative gas produc-
tion (R2 = 0.91, SEP = 24.99 mL/g of OM) as measured from 2 h to 
72 h of rumen incubations. Williams (2001) recommends an RPD 
value >3 to define a predictive model as excellent. Thus, all of our 
models were excellent except the model for isovaleric acid (RPD 
= 1.95, Table 2). In particular, the low RPD for isovaleric acid 
suggests that our method can simply distinguish between high and 
low values, and that a more accurate NIR spectroscopy calibration 
must be used for this branched VFA.

Only a few previous studies reported calibration models to pre-
dict VFA and CH4 from direct analysis of rumen fluid from NIR 
spectroscopy. For example, Turza et al. (2002) found that NIR 
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Table 1. Levels of in vitro rumen fermentation products in the calibration and validation data sets

Fermentation product

Calibration data

CV  

Validation data

CVMean Maximum Minimum SD Mean Maximum Minimum SD

Acetic acid, mmol/L 45.30 69.41 22.69 11.92 0.26  43.86 64.56 23.81 11.93 0.27
Propionic acid, mmol/L 14.97 33.15 3.77 6.08 0.41  14.38 32.92 5.47 6.56 0.46
Butyric acid, mmol/L 8.47 16.79 2.22 3.47 0.41  8.65 19.70 1.75 3.79 0.44
Valeric acid, mmol/L 1.00 3.07 0.15 0.62 0.62  1.01 3.15 0.16 0.69 0.69
Isobutyric acid, mmol/L 0.60 2.10 0.15 0.35 0.59  0.67 2.11 0.22 0.44 0.66
Isovaleric acid, mmol/L 0.93 3.51 0.22 0.63 0.67  0.90 1.83 0.30 0.49 0.54
Methane, mmol/L 9.65 33.94 0.02 9.45 0.98  10.35 32.30 0.01 9.33 0.90
Total gas, mL/g of OM 111.34 276.89 0.01 81.90 0.74  116.46 280.63 0.01 82.44 0.71
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spectroscopy had the potential to properly predict rumen fluid 
composition when a specially designed fiber optic method was 
used. In particular, their predictive models achieved satisfactory 
results, with R2 values ranging from 0.81 (isobutyric acid) to 0.92 
(acetic acid). The performance of our predictive models for acetic, 
butyric, valeric, and isobutyric acids were in line these previous 
results. Our models had lower R2 values for propionic acid (0.81) 
and isovaleric acid (0.73) than did the models reported by Turza 
et al. (2002). These differences could be attributable to the greater 
variation of the primary data used in our validation and calibration 
data sets.

Udén and Sjaunja (2009) developed rumen fermentation models 
to predict acetate, propionate, and butyrate, and reported satisfac-
tory accuracy. Specifically, they analyzed 308 samples for calibra-
tion using FT-MIR spectroscopy of samples of semi-artificial ru-
men fluids that were spiked with acetate, propionate, and butyrate, 
with and without bicarbonate and phosphate. Tagliapietra et al. 
(2015) analyzed in vitro rumen fermentation fluid using FT-MIR 
spectroscopy with Bayesian models and reported similar accuracy 
in their predictive models. In particular, these researchers devel-
oped different VFA calibration models using 8 diets for lactating 
cows that differed in the content of fiber, CP, lipids, and starch. 
These diets were fermented for specific times (24 and 48 h) and 
there were 4 different in vitro incubations. Their results for acetic 
acid (R2 = 0.92) and butyric acid (R2 = 0.84) were similar to our 
results, but they reported better results for the other VFA (propi-
onic acid: R2 = 0.90; isobutyric acid: R2 = 0.91, isovaleric acid: 
R2 = 0.93, valeric acid: R2 = 0.91). This could be due to their use 
of different spectral regions in the predictive models. In particular, 
absorbance in the MIR region is directly related to the concentra-
tion of individual compounds, but absorbance in the NIR region 
results from overtones and their combinations (Udén and Sjaunja, 
2009).

Zhang et al. (2009) developed an FT-NIR calibration for VFA 
and ethanol in the effluent of an anaerobic H2-producing bioreactor. 
Generally, the discriminant absorption bands in calibration models 
are related to the frequencies of the third overtone of C–H bonds 
and the second overtone of O–H bonds, to the first overtone of 
C–H combinations (7,200–6,100 cm−1 and 6,100–5,400 cm−1) and 
the first overtone of O–H bonds (7,200–6,100 cm−1), and to C–H 
bond combinations and C–H and O–H combinations (4,900–4,100 
cm−1), consistent with our results (Figure 1). Previous studies used 
NIR spectroscopy to predict the kinetics of in vitro fermentation of 
dairy cow feed for hay, but the results were unsatisfactory (Herrero 
et al., 1997; Andrés et al., 2005). Another study (Lovett et al., 2004) 
reported moderately successful results for silage. Our predictive 
models had good performance and low error in the calibration and 
validation data sets.

Critically, the present study should be considered a preliminary 
evaluation of the use of NIR spectroscopy to predict the production 
of CH4 and VFA from in vitro rumen fermentation. We suggest 
that future calibrations should be performed by organizing specific 
collaborative interlaboratory experiments to improve the applica-
bility to research and commercial laboratories. For each diet, we 
used 7 different bottles for measurements at 7 incubation times to 
generate profiles of VFA and CH4, in line with the method previ-
ously adopted by Serment et al. (2016). We considered each bottle 
a separate experimental unit, although some of these bottles con-
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tained the same TMR and were incubated with the same buffered 
rumen fluid. We know that a further step of intra- or interlaboratory 
calibration development should be done by analyzing additional 
TMR to be more representative of different nutritional strategies, 
environmental conditions, and production systems.

In conclusion, the NIR spectroscopy models presented here 
provided good predictions of the production of VFA, total gas, and 
methane from in vitro fermentation of rumen fluid. The outputs 
of these models could provide useful information for calibrating 
rumen mechanistic models that simulate the ruminal compartment 
of dairy cows, with the notable advantages that NIR spectroscopy 
is rapid and inexpensive. However, it is important to improve the 
calibrations for valeric acid and isovaleric acid to obtain more ac-
curate NIR models for these VFA.
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