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Abstract

It was reported that severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2)

infection may cause brain size reduction and cognitive decline. Whether COVID‐19

may contribute to the development of Alzheimer's disease (AD) is not known. We

conducted genetic correlation and Mendelian randomization (MR) analyses to assess

genetic relationships and potential causal associations between AD and three

COVID‐19 outcomes (SARS‐CoV‐2 infection, COVID‐19 hospitalization, and critical

COVID‐19) by utilizing genome‐wide association study datasets on these traits. A

map of COVID‐19‐driven molecular pathways was constructed to investigate

potential mechanisms underlying the COVID‐19 and AD connection. Genetic

correlation analyses indicated that AD had a significant positive genetic correlation

with hospitalized COVID‐19 (rg = 0.271). The MR analysis from the inverse‐variance‐

weighted model showed that genetic liabilities to hospitalized COVID‐19 (odds ratio:

1.02, 95% confidence interval: 1.01–1.03) and critical COVID‐19 (1.01, 1.00–1.02)

were associated with an increased risk for AD. However, no causal effect of genetic

liability to SARS‐CoV‐2 infection on AD was detected (1.03, 0.97–1.09). A total of

60 functionally interconnected genes were reported to mediate the COVID‐19‐AD

connection, which showed functional enrichment in immunity‐related pathways and

tissue enrichment in the lung and brain. Our study suggests that severe COVID‐19

may contribute to the development of AD, while suffering a mild case of COVID‐19

may not increase the risk for AD. The influence of COVID‐19 on AD may be

mediated by immunity‐related pathways acting predominantly in the lung and brain.
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1 | INTRODUCTION

Since the inception of the severe acute respiratory syndrome

coronavirus 2 (SARS‐CoV‐2) infection pandemic, a large number of

studies have sought to investigate the risk factors for COVID‐19 and

the organismal consequences of this disease.1–3 Although the core

clinical presentations of COVID‐19 occur in the respiratory system,

neurological manifestations are common among individuals with the

infection or patients who recovered after acute COVID‐19 infection.

Mounting evidence points to the neurotropic and neuroinvasive

properties of the virus.4–6 It is well documented that the coronavirus

SARS‐CoV‐2 invades the central nervous system, impacting the

structure, metabolism, function, and activity of the brain.4–6

Therefore, COVID‐19 poses a remarkable threat to the brain health
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of affected individuals, with distinctly differential prognoses in

various subpopulations.

While the vast majority of studies have focused on risk factors in

the immune, respiratory, or cardiovascular systems, studies investi-

gating brain changes following COVID‐19 remain scarce. In a

recent study, Douaud et al.7 reported brain structure changes after

COVID‐19 infection. They performed paired brain scans on 401

COVID‐19 patients from the UK Biobank before and after COVID‐19

infection and compared them to those collected from non‐COVID‐19

controls. Larger‐than‐expected reductions in gray matter thickness

and global brain size were observed along with changes in markers of

olfactory tissue damage and a larger cognitive decline between the

two time points.7

Both brain size reduction and cognitive decline are core features

of Alzheimer's disease (AD). Therefore, there is a vital concern about

the possible association of COVID‐19 with an increased risk for the

development of AD. Longitudinal observations may help us to answer

this question. However, since AD results from a gradual accumulation

of pathological changes in brain tissue, following up a cohort may

take a long time.

The Mendelian randomization (MR) framework tests for

potential causative associations between exposure and outcome

by utilizing genetic variants as instrumental variables.8,9 In this

study, we evaluated potential causal associations between three

COVID‐19 outcomes and AD by MR analysis of the summary

genome‐wide association study (GWAS) datasets. Shared genes

were extracted by comparing genome‐wide genes reported for

each trait, then a map of COVID‐19‐driven molecular pathways

was constructed.

2 | METHODS

2.1 | GWAS summary datasets

We sought to evaluate the potential contribution of COVID‐19 to

AD using MR analysis of GWAS summary results. The study is

based on publicly available GWAS summary results, including

SARS‐CoV‐2 infection (112 612 cases, and 2 474 079 controls,

with 88.9% of participants being of European origins), hospital-

ized COVID‐19 (24 274 cases and 2 061 529 controls, with 87.7%

participants being of European origin), critical COVID‐19 (8779

cases and 1 001 875 controls, with 94.9% participants being of

European origin), and AD (71 880 cases and 383 378 controls).10

The COVID‐19 datasets were obtained from the COVID‐19 Host

Genetics Initiative (HGI) GWAS.11 The “SARS‐CoV‐2 infection”

label reflects the overall susceptibility to the virus, whereas the

“hospitalized” and “critical COVID‐19” labels represent

the severity of the disease. Therefore, we collectively called the

latter two outcomes “severe COVID‐19.” The effects (values and

directions) of single nucleotide polymorphisms (SNPs) were

harmonized between each pair of datasets after the exclusion

of those with conflicting alleles.

2.2 | Genetic correlation analysis

The genetic correlations between AD and COVID‐19 outcomes were

calculated using linkage disequilibrium (LD) score regression.12,13 The

1000 Genome Project Phase 3 was used to estimate the LD structure

for European populations.12–14 SNPs were filtered by 1.1 million

variants, a subset of 1000 Genomes and HapMap3, with minor allele

frequency above 0.05.

2.3 | MR analysis

The main analyses were performed using the inverse‐variance‐weighted

(IVW) model, which assumes an intercept of zero and estimates the

causality by a fixed‐effect meta‐analysis.15 Multiple complementary MR

methods were used for evaluating the sensitivity of the causal

associations, including weighted median (WM), MR‐Egger, penalized

WM, penalized IVW, robust IVW, leave‐one‐out analysis, generalized

summary‐data‐based Mendelian randomization (GSMR), and MR‐

pleiotropy residual sum and outlier (MR‐PRESSO).15–19 We further

evaluated the potential correlated horizontal pleiotropy of the MR

estimates using causal analysis using summary effect estimates

(CAUSE).20 The MendelianRandomisation,9 GSMR,18 MR‐PRESSO,19

and CAUSE20 packages were used for the statistical analyses.

We harmonized each pair of the exposure and outcome datasets by

aligning the effect allele for exposure and outcome and obtained variant

effects and standard errors of each dataset. For each exposure trait,

SNPs with genome‐wide significance (p<5×10−8) were selected as

instrumental variants (IVs) and further pruned using a clumping r2 cutoff

of 0.05 on a 1Mb window. The European subset of the 1000 Genome

Project Phase 3 was used to estimate the LD structure.21 In an MR

analysis, pleiotropy is a potential source of bias and may inflate the

estimation of the causal effect.22 The heat exposure integrated

deprivation index (HEIDI) statistical approach is used to detect and

eliminate genetic instruments with ostensible pleiotropic effects on both

the exposure and the outcome.18,23 We used a p‐value threshold of 0.01

for the outlier detection analysis in HEIDI, which removes 1% of SNPs by

chance if there is no pleiotropic effect.4 The intercept from the MR‐Egger

regression was utilized to evaluate the average horizontal pleiotropy.17

The IVs are not all valid when MR Egger intercepts significantly differs

from zero. The significant associations between mental disorders and

COVID‐19 were determined by IVW‐based false discovery rate

(FDR) < 0.05.

2.4 | Tissue‐specific expression analysis and
knowledge‐based analysis

To identify the tissue specificity of a phenotype, SNP‐based tissue

enrichment analysis was conducted by functional mapping and annota-

tion (FUMA),24 which utilizes gene‐property analyses to test associations

between tissue‐specific gene expression profiles in general GTEx V8
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tissues and GWAS hits. Tissue‐specific expression analysis for AD was

further validated using phenotype‐cell‐gene association (PCGA).25,26

For each set of genes, their tissue specificity was measured

against each of the differentially expressed gene sets using the

hypergeometric test.24 Pathway enrichment analyses of a set of

genes were conducted using FUMA,24 involving the Kyoto Encyclo-

pedia of Genes and Genomes (KEGG). Protein–protein interaction

(PPI) analysis was conducted using STRING v11.27

GWAS results for COVID‐19 and AD were obtained from the

GWAS Catalog database28 and utilized for inferring genome‐wide risk

genes. The genes were further filtered to retain protein‐coding genes

only. Gene overlaps among COVID‐19 and AD gene sets were

assessed by the R package SuperExactTest,29 with the total gene

number in the genome set as 30 000.

A detailed description of the methods is provided in the

Supporting Information File.

2.5 | Construction of COVID‐19‐driven pathways
regulating AD

To explore the potential connection between COVID‐19 and AD at the

molecular level, we performed large‐scale literature data mining and built

a map of molecular pathways connecting COVID‐19 and AD. The data

mining was performed within the Pathway Studio (www.pathwaystudio.

com) environment,30 containing structured descriptions of approximately

14 million unique associations extracted from >40 million scientific

references. The downstream targets of COVID‐19 and upstream

regulators of AD were identified. Respective references were inspected

manually for quality control. The relationships with no polarity or those

indirectly related to the activity of COVID‐19 or AD were removed. The

remaining relationships were utilized to construct the network describing

the molecular pathways driven by COVID‐19 to facilitate AD. Pathway

enrichment analyses of the disease‐gene associations were conducted by

FUMA.24

3 | RESULTS

3.1 | Genetic correlation analysis

Genetic correlation analyses indicated that AD had a significant

positive genetic correlation with hospitalized COVID‐19 (rg = 0.271,

p = 0.013, FDR = 0.039, Table 1). However, AD did not have genetic

correlations with SARS‐CoV‐2 infection (rg = 0.167, p = 0.119) or

critical COVID‐19 requiring mechanical ventilation or extracorporeal

membrane oxygenation (rg = 0.118, p = 0.290).

3.2 | MR analysis

We extracted 14, 22, and 17 IVs for SARS‐CoV‐2 infection,

hospitalized COVID‐19, and critical COVID‐19, respectively. Our

MR analysis indicated that genetically determined liability to

COVID‐19 hospitalization (odds ratio [OR]: 1.02, confidence interval:

1.01–1.03, p = 7.53 × 10−3, FDR = 0.023) and critical COVID‐19 (1.01,

1.00–1.02, p = 0.022, FDR = 0.033) were associated with an

increased risk for AD. However, no causal effects of genetic liability

to SARS‐CoV‐2 infection on AD were detected (1.03, 0.97–1.09,

p = 0.365) (Table 2 and Supporting Information: Table 1).

The sensitivity analyses revealed that the directions of causal

effect estimates across the methods were largely the same

(Supporting Information: Table 1). Tests of MR‐Egger regression did

not support the directional pleiotropy of the IVs for the MR analysis

(MR‐Egger intercept < 0.01, p > 0.05). The MR‐PRESSO, HEIDI, and

leave‐one‐out analyses did not support the existence of outliers in

the MR analyses (Supporting Information: Figures 1 and 2). CAUSE‐

based MR analysis showed that the causal model tended to be a

better fit in the MR analyses between two severe COVID‐19

outcomes and AD (Supporting Information: Figures 3 and 4).

3.3 | Tissue‐specific expression analysis and
knowledge‐based analysis

Tissue‐specific expression analysis showed that disease‐gene associations

for hospitalized COVID‐19 were significantly enriched in lung and spleen

tissue compartments (Figure 1A), while associations for AD were

significantly enriched in lungs, blood, and spleen (Figure 1B). PCGA‐

based tissue‐specific expression analysis for AD identified 20 significantly

enriched tissues, with the top three tissues being the spleen, whole blood,

and lung (Supporting Information: Table 2).

There were 258 and 769 genome‐wide protein‐coding risk genes

for COVID‐19 and AD, respectively. A set of 19 genes were shared

between COVID‐19 and AD, including ANO3, CCDC171, CSMD1,

DAB1, ECHDC3, EDAR, FAT1, GLIS3, GRIN2B, LUZP2, NAALADL2,

NKAIN2, NTM, RBFOX1, RBMS3, SHANK2, ST18, TCF7L2, and UNC5D.

This set of shared genome‐wide risk genes was larger than expected

(p = 4.26 × 10−5). Gene‐based tissue enrichment analysis showed that

these 19 genes were upregulated in the brain (Figure 1C).

Literature‐based pathway analysis allowed us to map 60 genes

connecting COVID‐19 and AD (Figure 2, Supporting Information:

Tables 3 and 4). Gene‐based tissue enrichment analysis showed that

TABLE 1 Genetic correlations between Alzheimer's disease (AD)
and the COVID‐19 outcomes

Trait 1 Trait 2 rg (SE) Z p FDR

AD SARS‐CoV‐2
infection

0.118 (0.112) 1.06 0.290 0.290

AD Hospitalized
COVID‐19

0.271 (0.110) 2.47 0.013 0.039

AD Critical COVID‐19 0.167 (0.107) 1.56 0.119 0.178

Abbreviations: FDR, false discovery rate; rg, genetic correlation
coefficient; SARS‐CoV‐2, severe acute respiratory
syndrome coronavirus 2; SE, standard error.
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these 60 genes were upregulated in the lung, spleen, adipose tissue, and

blood, but downregulated in the brain and testis (Figure 1D). In the

KEGG‐based pathway analysis of the shared gene set, enrichment of

“cytokine interaction with their receptors” and other immunity‐related

pathways was detected (Supporting Information: Figure 5). PPI analysis

using the STRING database showed that the set of 60 shared proteins

forms a tightly interconnected network (Figure 3). Functional analysis of

these genes showed that the effects of COVID‐19 on AD are synergistic

with both intrinsic and extrinsic AD‐promoting pathways (Figure 2).

Specifically, COVID‐19 quantitatively activated 32 out of 36 known AD

TABLE 2 Causal effects of the COVID‐19 outcomes on Alzheimer's disease

Exposure Method Effect (SE) OR (95% CI) N_IV p FDR

SARS‐CoV‐2 infection IVW 0.028 (0.031) 1.03 (0.97–1.09) 14 0.365 0.365

SARS‐CoV‐2 infection Weighted median 0.031 (0.033) 1.03 (0.97–1.10) 14 0.343

SARS‐CoV‐2 infection MR‐Egger 0.052 (0.074) 1.05 (0.91–1.22) 14 0.486

SARS‐CoV‐2 infection GSMR 0.126 (0.101) 1.13 (0.93–1.38) 14 0.214

SARS‐CoV‐2 infection MR‐PRESSO 0.028 (0.031) 1.03 (0.97–1.09) 14 0.381

Hospitalized COVID‐19 IVW 0.019 (0.007) 1.02 (1.01–1.03) 22 7.53E‐03 0.023

Hospitalized COVID‐19 Weighted median 0.018 (0.010) 1.02 (1.00–1.04) 22 0.063

Hospitalized COVID‐19 MR‐Egger −0.007 (0.023) 0.99 (0.95–1.04) 22 0.766

Hospitalized COVID‐19 GSMR 0.218 (0.080) 1.24 (1.06–1.45) 22 6.30E‐03

Hospitalized COVID‐19 MR‐PRESSO 0.019 (0.007) 1.02 (1.01–1.03) 22 0.013

Critical COVID‐19 IVW 0.013 (0.006) 1.01 (1.00–1.02) 17 0.022 0.033

Critical COVID‐19 Weighted median 0.013 (0.007) 1.01 (1.00–1.03) 17 0.069

Critical COVID‐19 MR‐Egger 0.008 (0.017) 1.01 (0.98–1.04) 17 0.626

Critical COVID‐19 GSMR 0.130 (0.065) 1.14 (1.00–1.29) 17 0.046

Critical COVID‐19 MR‐PRESSO 0.013 (0.006) 1.01 (1.00–1.02) 17 0.036

Abbreviations: CI, confidence interval; FDR, false discovery rate; GSMR, generalized summary‐data‐based Mendelian randomization; IVW, inverse‐
variance weighted; MR‐Egger, Mendelian randomization‐Egger; MR‐PRESSO, Mendelian randomization pleiotropy residual sum and outlier; N_IV: number

of instrumental variables; OR, odds ratio; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; SE, standard error.

F IGURE 1 Tissue expression enrichment analyses. (A) Tissue‐specific expression analysis for hospitalized COVID‐19. (B) Tissue‐specific
expression analysis for AD. (C) Gene‐based tissue enrichment analysis of the shared genome‐wide risk genes between COVID and AD. (D) Gene‐
based tissue enrichment analysis of the 60 genes connecting COVID‐19 and AD. Significantly enriched differentially expressed gene (DEG) sets
(pBonferroni < 0.05) are highlighted in red. AD, Alzheimer's disease.
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promoters, while its influence on the set of known AD inhibitors was

balanced, with 11 inhibitors being deactivated and 13 activated. These

results suggest that the impact of COVID‐19 on AD may be exerted

mainly through the activation of AD promoters, which may partially

explain the increased risk of AD for COVID‐19 patients.

4 | DISCUSSION

Although detailed quantification of the impact of COVID‐19 on the

risk of developing AD would require at least a decade of

observations, some studies have already reported that hospitalized

COVID‐19 patients have a higher frequency of memory issues after

discharge (OR: 1.9) than those who recovered at home.31 This type of

study design, however, may not distinguish causal relationships from

nondirectional associations stemming from confounding factors and

is prone to an error of reverse causation.

Our findings indicate that severe forms of COVID‐19 are indeed

associated with an increased risk for AD. Thus, our work provides

further evidence supporting the contribution of severe COVID‐19 to

cognitive impairment, in line with recent studies suggesting that

SARS‐CoV‐2 infection may result in tau hyperphosphorylation and

the damaging “leakage” of RyR2 channels associated with AD.32 In

particular, in hospitalized patients with COVID‐19 encephalopathy,

the levels of AD‐associated biomarkers were increased to levels

higher than those observed in non‐COVID controls with clinically

diagnosed mild cognitive impairment or AD.33

To our surprise, the GWAS hits of AD were enriched in genes

highly expressed in the lung, blood, and spleen, rather than in the

brain itself, which suggests a close relationship between lung function

and AD. This observation supports previous studies indicating that

mid‐life worsening of lung health may be linked to mild cognitive

decline and dementia, both in smokers and nonsmokers.34

Functional analyses showed that the 60 COVID‐19‐AD shared genes

are expressed at a high level in the lung, spleen, adipose tissue, and blood,

supporting the involvement of the local immune responses in both

pathologies. In the brain, these genes were mostly downregulated,

possibly reflecting pathophysiological changes occurring in AD. Pathway

analysis showed that the severity‐related set of 60 genes is enriched in

cytokine‐ and immunity‐related signaling functions, consistent with the

cytokine storm being the major driver of COVID‐19 morbidity.35 The

STRING‐derived map of PPIs (Figure 3) demonstrates high interconnec-

tivity between mapped molecules, with an emphasis on a large, central

core of well‐known key cytokine signaling players, including IL‐6, TNF‐α,

IL‐1B, and interferon‐γ.

F IGURE 2 A map of molecular pathways connecting COVID‐19 and Alzheimer's disease (AD). Quantitative genetic changes driven by
COVID‐19 exert more negative (highlighted in red) than positive (highlighted in green) effects on AD.

F IGURE 3 Protein–protein interactions among the risk genes
shared between COVOD‐19 and AD. Line sizes are proportional to
the combined scores of the interactions. AD, Alzheimer's disease.
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Our data showed that the mild type of COVID‐19, a form of

nonhospitalized virus infection, did not confer additional risk for AD.

In Douaud et al.'s7 study, brain size reductions and cognitive decline

remained significant even after excluding the 15 hospitalized COVID‐

19 patients from the initial dataset. While the findings described

above are certainly concerning, dissection of the genetic component

underlying severe COVID‐19 and AD gives hope that the deleterious

changes occurring in nonhospitalized cases may be reversible and

followed by attenuation or partial recovery over time.

The main strength of the study is that MR analysis is generally

less affected by confounding and reverse causation than traditional

observational studies. The MR framework leverages genetic variants

to evaluate the causative association between exposure and

outcome. We must acknowledge the potential influence of pleiotropy

as a source of potential bias. Therefore, validation of the study

findings in additional follow‐up cohorts is warranted.

In summary, our study suggests that the potential effect of

COVID‐19 on AD may be severity‐dependent: genetic liability to

severe COVID‐19 may contribute to the development of AD, while

nonhospitalized cases of COVID‐19 may not significantly increase

the risk for a cognitive decline of Alzheimer's type. The influence of

COVID‐19 on AD may be mediated by immunity‐related pathways

acting predominantly in the lung and brain.
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