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Abstract: The transcription factor EB (TFEB) is a master regulator of lysosomal function and au-
tophagy. Mechanistic target of rapamycin (mTOR)-mediated phosphorylation on TFEB is known
to regulate TFEB subcellular localization and activity at the lysosomal surface. Recent studies have
shown that TFEB also plays a critical role in physiological processes such as lipid metabolism, and
dysfunction of TFEB has been observed in the pathogenesis of several diseases. Owing to its ability
to improve disease status in murine models, TFEB has attracted attention as a therapeutic target for
diseases. In this review, we will present the regulation of TFEB and its role in the pathogenesis of
liver diseases, particularly non-alcoholic fatty liver disease (NAFLD).
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1. Introduction

The transcription factor EB (TFEB) is a master regulator of lysosomal function and au-
tophagy and a member of the microphthalmia family of basic helix-loop-helix leucine zipper
transcription factors [1]. Mechanistic target of rapamycin (mTOR)-mediated phosphoryla-
tion on TFEB is known to regulate TFEB subcellular localization and activity at the lysoso-
mal surface [1]. As a major transcription regulator of the autophagy-lysosomal pathway,
TFEB positively regulates the expression of autophagy and lysosomal biogenesis-related
genes, thereby promoting autophagosome formation, autophagosome-lysosome fusion,
and the degradation of autophagy substrates [2]. In addition to its roles in autophagy-
lysosomal pathway transcriptional regulation, TFEB also plays a critical role in physio-
logical processes such as lipid metabolism [1,3]. A gene network regulated by TFEB has
been studied using microarray, chromatin immunoprecipitation sequencing (ChIP-seq),
and RNA sequencing in cell lines [4–7]. TFEB-dependent transcriptome changes in the liver
have also been analyzed by microarray in mouse livers overexpressing TFEB [8]. These
studies provide invaluable data for understanding TFEB downstream genes. Dysfunction
of TFEB has been observed in the pathogenesis of several diseases, including neurodegen-
erative disease [9–11], aging [12], kidney diseases [13–15], pancreatitis [16,17], Salmonella
typhimurium infection [18], and melanoma [19]. Owing to its ability to improve disease
status in murine models, TFEB has attracted attention as a therapeutic target for diseases.
In this review, we will present the regulation of TFEB and its role in the pathogenesis of
liver disease, particularly non-alcoholic fatty liver disease (NAFLD).

2. TFEB and Its Regulation
2.1. Transcriptional Regulation

The biological functions of TFEB are strictly regulated through transcriptional regula-
tion, post-translational modifications, protein–protein interactions, and spatial organiza-
tion [1,20,21]. Several transcriptional factors have been found to regulate TFEB expression.
The activation of peroxisome proliferator-activated receptor-α (PPAR-α) by its agonist,
gemfibrozil, can enhance TFEB activity in brain cells [22]. The same study also observed
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the recruitment of retinoid X receptor-α (RXR-α), PPAR-α, and peroxisome proliferator-
activated receptor gamma coactivator 1-α (PGC1-α) on the PPAR-binding site on the
Tfeb promoter by reporter assay and chromatin immunoprecipitation studies. The cAMP-
responsive element-binding protein hepatic-specific (CREBH) is an endoplasmic reticulum
(ER)-tethered, stress-sensing transcription factor. One study shows that CREBH can regu-
late and interact with PPAR-α and PGC1-α to synergistically induce expression of TFEB
upon nutrient starvation [23]. Scavenger receptor class B type I (SCARB1) was shown to
regulate TFEB expression by enhancing PPAR-α activation [24]. These studies suggest
that PPAR-α is a central transcriptional factor for regulating TFEB expression, particularly
under metabolic stress.

Transcriptional factors other than PPAR-α have also been found to regulate TFEB
expression. Programmed cell death 4 (PDCD4), a tumor suppressor, suppresses TFEB
translation in a eukaryotic initiation factor 4A-dependent manner [25]. Tumor protein
P53 activation by mild stress is shown to induce F-box protein 22 expression, which
in turn causes the degradation of a transcription suppressor complex containing MYC
proto-oncogene (MYC), lysine-specific demethylase 4B (KDM4B), and nuclear receptor
corepressor 1 (NCoR1), thereby enhancing transcriptional induction of TFEB [26]. Interest-
ingly, MYC itself also can suppress TFEB expression by directly binding to the promoter of
TFEB, which can be abated by the inhibition of histone deacetylases [27]. Spliced X-box
binding protein 1 (sXBP1) is a key transcription factor that promotes the adaptive unfolded
protein response that has been shown to regulate genes involved in lysosomal function
in the liver under fasting conditions [28]. Mechanically, sXBP1 could occupy the −743 to
−523 site of the promoter of Tfeb and induce TFEB expression.

2.2. Post-Transcriptional Regulation

TFEB nuclear translocation is highly regulated by its phosphorylation (Figure 1).
mTOR is critical for the coordination of cell growth and metabolism [29] and its role in
regulating TFEB activity has been well defined. Briefly, mTOR complex 1 (mTORC1) phos-
phorylates TFEB on Ser211 and triggers the binding of 14-3-3 proteins to TFEB, thereby
causing retention of TFEB in the cytosol [30–32]. This pathway is regulated by Rag guano-
sine triphosphatases (GTPases), which can both activate mTORC1 by sensing lysosomal
amino acids and determine the localization of mTORC1 and TFEB on the cytosolic surface
of lysosomes [33,34]. Indeed, both Rag GTPase-mediated mTORC1-TFEB interaction and
active RagC/D heterodimer are required for TFEB phosphorylation [35]. Intriguingly, TFEB
can induce RagC/D expression. The overactivation of RagC/D contributes to the kidney
phenotype and mTORC1 hyperactivity in folliculin (a RagC and RagD activator) knockout
mice. mTOR is also responsible for TFEB nuclear export. Napolitano et al. [36] showed that
the subcellular distribution of TFEB is dynamically regulated by its continuous shuttling
between the cytosol and the nucleus. This nuclear export seems to be a limiting step of
TFEB shuttling, which is mediated by chromosomal maintenance 1 and a mTOR-dependent
phosphorylation on S142 and S138 of TFEB.

The phosphorylation of TFEB can be suppressed by signaling pathways other than
mTOR [20,21]. For example, TFEB activity can be suppressed by extracellular signal-
regulated kinase 2 (ERK2) through the phosphorylation of TFEB at S142 [4]. Interestingly,
ERK activation by the serine-threonine kinase RIP1 negatively regulates TFEB activity and
modulates basal autophagic flux, suggesting a crosstalk between cell death pathway and au-
tophagy pathway [37]. Mitogen-activated protein kinase kinase kinase kinase 3 (MAP3K3)
can phosphorylate TFEB in an amino acid-dependent manner, which is required for TFEB
interaction with mTORC1-Rag GTPase-Ragulator complex and TFEB cytosolic seques-
tration [38]. Interestingly, AKT also can directly suppress TFEB nuclear translocation by
phosphorylating TFEB at S467, independently of mTORC1 [39]. Some signaling pathways
have also been shown to activate TFEB. Phosphorylation of TFEB at S461, S462, S466, and
S468 by protein kinase C β (PKCβ) can stabilize and increase the activity of TFEB [40].
AMP-activated protein kinase (AMPK)-dependent phosphorylation of TFEB at S466, S467,
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and S469 is required for the transcriptional activity of TFEB [41]. Additionally, AMPK-
mediated signaling can increase levels of coactivator-associated arginine methyltransferase
1 (CARM1), which serves as a transcriptional coactivator through TFEB [42].
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In addition to the phosphorylation of TFEB, protein acetylation is also important
for regulating TFEB activity (Figure 1). One study showed that general control non-
repressed protein 5 (GCN5) induced TFEB acetylation at K274 and K279, and decreased
the transcriptional activity of TFEB by inhibiting its dimerization and its capability to bind
the promoter regions of target genes [43]. In microglia, deacetylase sirtuin-1 (SIRT1) can
bind and deacetylate TFEB at K116, thereby enhancing TFEB transcriptional function [44].
Interestingly, a well-established histone deacetylase inhibitor, suberoylanilide hydroxamic
acid, can activate lysosomal function in human cancer cells by enhancing TFEB acetylation
at K91, K103, K116, and K430 [45]. Besides the acetylation/deacetylation process, the
protein turnover of TFEB also alters TFEB activity. A chaperone-dependent E3 ubiquitin
ligase, STIP1 homology and U-Box containing protein 1 (STUB1) can preferentially target
inactive phosphorylated TFEB for degradation by the ubiquitin-proteasome pathway,
thereby increasing TFEB activity [46].

2.3. Calcium Signaling

Lysosomal calcium signaling plays a critical role in regulating TFEB activity [47]. The
activity of phosphatase calcineurin is regulated by lysosomal calcium release through mu-
colipin 1 (MCOLN1) under stressed conditions. Calcineurin can bind and dephosphorylate
TFEB, thereby promoting its nuclear translocation [48]. Evidence has shown that calcium
signaling-mediated TFEB activation is involved in multiple biological processes. Coxsack-
ievirus B3 (CVB3) can cause viral myocarditis and neurological disorders in infants and
young children [49]. The CVB3 virus-encoded proteinases may cause autophagy dysfunc-
tion by inducing calcineurin-dependent TFEB nuclear translocation. Interestingly, CVB3
proteinase 3 C also participates in the proteolytic processing of TFEB and attenuates its
transcriptional activity. A P38 inhibitor, SB202190, can promote TFEB nuclear translocation
and subsequently enhance autophagy and lysosomal biogenesis in a manner dependent
on ER calcium-related calcineurin activation [50]. Fibroblast growth factor 21 (FGF21), a
fasting-induced hormone, can mobilize calcium from the ER and activate the transcriptional
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repressor downstream regulatory element antagonist modulator, thereby inhibiting the
expression of E3 ligase midline-1. The inhibition of midline-1 causes the accumulation of
protein phosphatase PP2A, which can dephosphorylate and activate TFEB [51]. Interest-
ingly, TFEB can also activate calcium channel MCOLN1 and raise intracellular calcium
levels, thereby promoting the fusion between lysosomes and plasma membrane and reg-
ulating lysosomal exocytosis [52]. Overall, these studies suggest that cellular calcium
signaling plays a critical role in regulating TFEB activity.

2.4. Other Regulation Mechanisms

Liquid-liquid phase separation can compartmentalize transcriptional condensates for
gene expression and has been shown to be a critical mechanism for the transcriptional
regulation of gene expression [53]. TFEB can form distinct puncta that colocalize with the
mediator complex and with mRNAs of its target genes [54]. Intriguingly, inositol polyphos-
phate multikinase can inhibit liquid-liquid phase separation of TFEB and dissolve TFEB
condensates, thereby negatively regulating autophagy activity. MircroRNAs (miRNAs)
can also regulate TFEB transcriptional activity. MiR-30b-5p suppresses the transcriptional
activity of TFEB by translocating into the nucleus and binding to the coordinated lysoso-
mal expression and regulation elements that are required for dephosphorylated TFEB to
recognize and induce expression of its downstream genes [55].

3. TFEB and Autophagy

Autophagy, from the Greek auto (self) and phagein (to eat), is an evolutionally con-
served degradation process that delivers cytoplasmic cargo (macromolecules or organelles)
to the lysosome [56]. Autophagy is critical for maintaining biological homeostasis and its
dysfunction contributes to the pathogenesis of various diseases, including tissue injury,
microbial infection, tumorigenesis, neurodegeneration, and aging [56]. Macroautophagy,
microautophagy, and chaperone-mediated autophagy (CMA) are three major types of
autophagy that have been identified and frequently studied [57]. The most well-defined au-
tophagic process, the macroautophagic process, includes three key steps: (1) the sequestra-
tion of cytosolic materials into autophagosomes, (2) the transportation of autophagosomes
to the lysosome, and (3) the formation and degradation of autolysosomes [57]. Microau-
tophagy is mainly studied in yeast but can also be observed in mammalian cells. The
microautophagic process refers to a direct engulfment of cytoplasmic cargo at the limiting
membrane of the lysosome, thereby mediating both invagination and vesicle scission into
the lumen of lysosomes [57]. CMA is mediated by chaperones such as the heat shock-
cognate protein of 70 kDa, and specific protein targets are shuttled via the chaperones
across the lysosomal membrane for degradation in the lumen [57].

Among these three types of autophagic process, macroautophagy (hereafter simply
autophagy), is the most active form and is modulated by various signaling pathways at
different biological levels [56,58,59]. As a master regulator of lysosomal activity, the role
of TFEB in regulating autophagy has been extensively studied [4,30,31,33]. Interestingly,
TFEB activity can also be altered by several key factors using autophagy machinery. The
kinase PTEN-induced kinase 1 (PINK1) and ubiquitin ligase Parkin are critical for the
selective elimination of damaged mitochondria through autophagy (i.e., mitophagy) [60].
Nezich et al. [60] have shown that nuclear translocation of TFEB and its transcriptional
activity are dependent on PINK and Parkin during mitophagy. Parkin-mediated TFEB
translocation also requires autophagy-related gene (ATG) 9A and ATG5 activity, and the
activation of Rag GTPases prevents TFEB translocation during mitophagy. The lipidation
of microtubule-associated protein 1A/1B-light chain 3 (LC3) is a key step in the autophagic
process. Nakamura et al. [61] found that lysosomal damage can recruit LC3 on lysosomes,
where the lipidated LC3 facilitates calcium efflux by interacting with the lysosomal calcium
channel MCOLN1, thus causing TFEB activation. Sequestosome 1 (P62/SQSTM1) is a
protein considered as a substrate for autophagy. Pan et al. [62] showed that systemic pro-
teasome inhibition increases P62 levels and induces myocardial autophagy. Mechanically, a
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proteasomal malfunction-induced MOCLN1-calcineurin-TFEB-P62 pathway contributes to
the induction of autophagy. Interestingly, P62 may also exert a feed-forward effect on TFEB
activation, suggesting that TFEB can be a central factor that links the ubiquitin-proteasome
system to the autophagic-lysosomal pathway.

Given its master role in regulating lysosomal homeostasis and autophagy, TFEB un-
doubtedly contributes to various pathophysiological changes. For example, Pastore et al. [63]
have shown that TFEB and TFE3 display a circadian activation over a 24-h cycle in mice.
Genetic deletion of TFEB and TFE3 causes dysregulation of autophagy over the diurnal
cycle and alters gene expression, leading to abnormal circadian wheel-running behavior.
Enhancing TFEB-mediated autophagy can also improve neurodegenerative changes in mice.
Decressac et al. [64] have shown that excess cellular levels of alpha-synuclein in nigral
dopamine neurons are associated with a decline in markers of lysosome function and a
cytoplasmic retention of TFEB in a rat model of alpha-synuclein toxicity. Overexpression
of TFEB reverses the changes in lysosomal function in this rat model, providing robust
neuroprotection via the clearance of alpha-synuclein oligomers. Indeed, trehalose, a natural
disaccharide and TFEB activator, has been shown to promote autophagy by activating TFEB
and ameliorating disease phenotypes in multiple neurodegenerative disease models [65,66].

4. TFEB and Liver Disease

Autophagy is critical for liver homeostasis [67–69]. Roles of autophagy in the patho-
genesis of alcohol-associated liver diseases (ALD) have been well characterized. Studies
from murine models have shown that acute alcohol treatment induces autophagy [70],
whereas chronic alcohol treatment suppresses autophagy in the liver [71]. Despite dif-
ferent impacts of alcohol on autophagy by different treatment schemes, the activation
of autophagy improves alcohol-induced liver injury while the inhibition of autophagy
enhances it. Consistent with the autophagy status, the nuclear content of TFEB is increased
in mouse livers following acute alcohol administration but decreased following chronic
alcohol treatment [72]. The role of TFEB in the pathogenesis of ALD has been extensively
elucidated in a study by Chao et al. (Figure 2) [73], in which hepatic levels of TFEB protein
were analyzed in livers from different murine ALD models. Interestingly, TFEB proteins
were decreased in both total lysates and nuclear fractions when mice were given either
chronic-plus-binge or a long-term chronic alcohol treatment, whereas neither a short-term
chronic nor an acute gavage alcohol treatment caused TFEB alteration. In patients with
alcoholic hepatitis, the authors also observed a decrease in nuclear contents of TFEB in
the liver, indicating that TFEB activity may contribute to the pathogenesis of ALD in both
humans and murine models. Further experimental evidence shows that an overexpression
of TFEB improves, while a decrease in TFEB enhances alcohol-induced liver injury in mice,
following chronic-plus-binge alcohol treatment. This effect of TFEB seems to be related
to mTOR activation. In addition to mouse models, TFEB is also altered and involved in
alcohol-induced hepatic steatosis in male Wistar rats given an alcohol liquid diet for six
weeks [74]. Interestingly, this study also shows that withdrawal of alcohol can restore
nuclear TFEB contents and thereby reverse hepatic steatosis. However, despite the strong
evidence that TFEB is impaired in ALD, the TFEB activator trehalose unexpectedly failed
to improve alcohol-impaired TFEB and liver injury in mice, which keeps the translational
potential of targeting TFEB for ALD uncertain [75].

Roles for TFEB-mediated autophagy have also been shown in other types of liver
injury. Deficiency of alpha-1 antitrypsin (AAT) leads to polymerization and aggregation of
mutant AAT, causing liver injury [76]. Interestingly, TFEB-induced autophagy decreases
toxic mutant AAT polymer and improves liver pathology in a murine model of AAT
deficiency [77]. Diclofenac, a nonsteroidal anti-inflammatory drug, can inhibit autophagic
flux in hepatocytes [78]. Transfection of TFEB has been shown to restore lysosomal pH
and thus autophagic flux in diclofenac-induced hepatocyte damage. Activation of TFEB by
carbon monoxide can protect lipopolysaccharide/D-galactosamine-induced liver injury in
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mice [79]. Taken together, this evidence suggests that dysfunction of TFEB activity involves
in different types of liver damage, and targeting TFEB as a therapy seems promising.
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Emerging evidence has shown the contribution of TFEB in the development of cancers.
TFEB affects cancer progression mainly through its functions in lysosome homeostasis,
metabolism, cell cycle regulation, and epithelial-mesenchymal transition [20]. Although
genetic alterations of TFEB are involved in the development of tumors in kidney, exocrine
pancreas, and melanomas [20], alterations and functions of TFEB in liver cancer have not
yet been fully identified. One recently published study has shown the role of TFEB in
controlling liver cell fate during development and regeneration, which may also contribute
to the development of biliary cancer [80]. It also suggested that the expression of TFEB
is enriched in ductal/progenitor cells and contributes to murine liver cell fate during
development and regeneration by direct transcriptional regulation of SRY-box transcription
factor 9 (SOX9). Overexpression of TFEB in either hepatocytes or cholangiocytes can
cause biliary cancer after DDC-diet-induced liver injury by increasing the number of
progenitor/cholangiocyte-like cells. Interestingly, liver-specific TFEB knockout mice seem
to have fewer larger tumors in an HCC model with a combination of diethylnitrosamine
(DEN) and chronic ethanol-feeding treatment [81], suggesting that the role of TFEB in liver
tumorigenesis may vary from different etiologies.

5. TFEB and NAFLD
5.1. TFEB and Metabolism

Evidence has shown that TFEB is critical for maintaining metabolic homeostasis
(Figure 3) [3,82]. Fasting-induced FGF21 signaling can activate Jumonji-D3 histone demethy-
lase (JMJD3) in mice, thereby epigenetically upregulating global autophagy network genes,
including Tfeb [83]. Fasting-promoted expression of the TFEB orthologue HLH-30 is also
observed in C. elegans [84], suggesting a conserved effect of fasting on the expression of
TFEB in both mice and C. elegans. The function of fasting-induced TFEB expression has been
elucidated. In this study, Settembre et al. [8] found that fasting-induced TFEB expression
regulates lipid metabolism. TFEB expression is increased in livers, kidneys, and muscles
following fasting in mice. This increase in TFEB is also found in MEF cells, hepatocytes, and
Caenorhabditis elegans following starvation but drops significantly after refeeding, indicating
that TFEB expression is regulated by nutrient status. Mechanically, TFEB directly mediates
the expression of PGC1-α and thus controls the activity of PPAR-α, thereby contributing to
lipid metabolism. The study also showed that TFEB-mediated lipid breakdown requires
autophagy. TFEB-induced PGC1-α expression is also found in adipocytes and provides
beneficial effects on diet-induced metabolic dysfunction.
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The roles of TFEB in overnutrition status have also been characterized. Evans et al. [85]
found that mice with adipocyte-specific TFEB overexpression are protected from diet-
induced metabolic dysfunction, mainly due to increased metabolic rate. Mechanistic stud-
ies suggest that overexpression of TFEB promotes adipocyte browning through PGC1-α.
Li et al. [86] showed that TFEB with phosphorylation on S142 can be further phosphory-
lated at S138 by glycogen synthase kinase 3β (GSK3β), an enzyme that is essential for
glucose homeostasis. The phosphorylation of both sites, but not either alone, can cause
nuclear export signal and lead TFEB to be re-exported to cytoplasm. Thus, the alteration
of TFEB by GSK3β and the critical roles of AKT-mTOR signaling in both amino acid and
glucose homeostasis suggest that TFEB can be controlled by the availability of both glucose
and amino acid. Evidence from endothelial cell (EC)-specific TFEB knockout or transgenic
mice following a high-fat diet (HFD) has shown a role of EC-TFEB in glucose metabolism.
In the same study, Sun et al. [87] found that following HFD feeding, EC-specific TFEB
transgenic mice exhibited improved glucose tolerance while EC-specific TFEB-knockout
impaired it. Mechanically, TFEB can directly upregulate insulin receptor substrate 2 (IRS2)
and increase IRS1 protein levels by downregulating miR-335, miR-495, and miR-5480.

Increasing TFEB activity is beneficial to diseases related to metabolic syndrome. EC-
specific TFEB transgene can inhibit endothelial cell inflammation and reduce atherosclerosis
development in apolipoprotein E knockout mice [88]. Moreover, TFEB-mediated autophagy
contributes to mesenchymal stem cell-promoted M2 polarization of macrophages, thereby
alleviating diabetic nephropathy [14]. Finally, TFEB also controls metabolic flexibility in
muscles during exercise in a manner independent of PGC1-α. Mansueto et al. [89] found
that TFEB can translocate into myonuclei during physical activity and mediate the expres-
sion changes of genes related to glucose homeostasis, thereby regulating glucose uptake
and glycogen content. The same study also found that TFEB can regulate mitochondrial
biogenesis and function in muscles.

5.2. TFEB in NAFLD/NASH and Its Therapeutic Potential

Obesity is strongly associated with numerous diseases, including heart disease, NAFLD,
stroke, type 2 diabetes, and certain types of cancer [90,91]. Many of these conditions lead to
preventable, premature death and contribute to the high annual medical cost of obesity in
the U.S. [92]. NAFLD is a common obesity-related pathological condition that is intimately
associated with the clinical features of metabolic syndrome [93–95]. NAFLD is usually
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characterized by the presence of excessive fat accumulation in the liver without other
recognized causes of hepatic lipid accumulation [96]. As a leading cause of chronic liver
disease, patients with NAFLD can develop non-alcoholic steatohepatitis (NASH), hepatic
fibrosis, and eventually hepatocellular carcinoma (HCC) [96]. Moreover, NAFLD is also a
systemic disease that can increase the risk of extra hepatic complications [96,97]. Patients
with NAFLD develop increased clinical causes of cardiovascular morbidity and mortality,
including atherosclerosis, cardiomyopathy, and arrhythmia [98,99]; however, although the
mortality rate from NAFLD is increasing in the U.S., FDA-approved therapies for NAFLD
are still lacking [97].

Emerging evidence continues to demonstrate the role of TFEB in the pathogenesis of
liver steatosis and NAFLD. Our previous study showed that nuclear contents of TFEB, as
well as the phosphorylation levels of ribosomal protein S6 kinase β-1 (S6K), a classic target
for mTORC1, are both oscillated in the liver during long-term HFD feeding, indicating
that mTORC1 signaling and TFEB activity are dynamically altered by overnutrition [100].
Moreover, the same oscillation is observed in the expression of TFEB downstream genes,
including genes-related to lysosomal and autophagic functions. This observation is further
confirmed by measuring the activity of lysosomal enzymes and autophagic degradation in
the liver, suggesting that the oscillation of mTORC1 and TFEB activity dynamically regulate
autophagy following HFD-feeding. The oscillation of lipophagy is also observed in HFD-
fed mouse livers. In NAFLD patients, nuclear contents of TFEB are observed and negatively
correlated with steatosis score but not body mass index (BMI). Our data suggest that
TFEB activity is compromised in fatty livers, which may be related to reduced lipophagy
activity. Finally, our study shows that either overexpression of TFEB or suppression
of mTORC1 can improve hepatic status of HFD-fed mice, whereas overexpression of a
constitutively activated RagA mutant that can support mTORC1 activation without amino
acid stimulation impairs liver function. Overall, our study elucidates the critical role of
TFEB in hepatic lipid homeostasis and shows that loss of TFEB function contributes to the
pathogenesis of diet-induced fatty liver.

TFEB also plays a role in the homeostasis of cholesterol. Wang et al. [101] found that
TFEB promotes the gene expression of cytochrome P450 family 7 subfamily A member
1 (Cyp7a1), a key gene for bile acid synthesis. TFEB nuclear translocation is activated
by cholesterol-induced lysosomal stress, whereas bile acid-induced FGF15/19 inhibits
TFEB nuclear translocation by mTOR/ERK signaling and TFEB phosphorylation in the
liver. This regulatory loop is critical for hepatic cholesterol and bile acid homeostasis.
GSK2330672, an inhibitor of apical sodium-dependent bile acid transporter (ASBT), can
cause increased fecal bile acid excretion and reduce enterohepatic levels of bile acids. ASBT
inhibition reduces ileal FGF15 expression and increases nuclear TFEB, thereby inducing the
expression of TFEB target genes. Furthermore, in mice fed a Western diet, ASBT inhibitor
significantly improves hepatic steatosis in a manner correlated with the increase in nuclear
TFEB in the liver. Finally, hepatic TFEB overexpression by adenovirus significantly reduces
hepatic and plasma levels of cholesterol, while hepatic TFEB knockdown exacerbates
hypercholesterolemia in Western diet-fed mice. Taken together, this study pinpoints a key
role of TFEB in balancing hepatic bile acid and cholesterol homeostasis via the gut-liver
axis, which is likely related to bile acid-mediated intestinal farnesoid x receptor (FXR)
activation. Interestingly, another study also shows that FXR can directly suppress TFEB
expression at the transcriptional level [102], suggesting that FXR may be another regulator
of TFEB function.

Given the critical role of TFEB in hepatic lipid metabolism, accumulating evidence
has shown that TFEB can be a promising therapeutic target for metabolic syndrome.
Wang et al. [103] identified small-molecule agonists of TFEB using a nanotechnology-
enabled high-throughput screen and found three novel compounds that are capable of
promoting autophagolysosomal activity. These three compounds include a clinically ap-
proved drug, digoxin; a marine-derived natural product, ikarugamycin; and a synthetic
compound, alexidine dihydrochloride. Mechanically, these compounds activate TFEB via
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three distinct calcium-dependent pathways. In murine models, these compounds confer
hepatoprotection against diet-induced steatosis. Another compound, MSL, identified by
Lim et al. [104], can activate calcineurin and induce TFEB, thereby accelerating intracellular
lipid clearance. MSL treatment also improves the metabolic profiles of ob/ob mice. TFEB
can also be activated by other treatments for hepatic steatosis, including ezetimibe [105],
procyanidin B2 [106], formononetin [107], liraglutide [108], fenofibrate [109], and met-
formin [110]. Overall, evidence strongly suggests that TFEB is a promising therapeutic
target for improving hepatic steatosis.

6. Conclusions and Perspectives

Despite the unmet clinical need and attractive commercial opportunity, no therapies
have been approved by Food and Drug Administration (FDA) for fatty liver disease.
Clinical trials for NAFLD/NASH treatment have shown some encouraging evidence
with several drug candidates through late-stage clinical development [111]. These drug
candidates include anti-fibrotic/inflammatory compounds, FXR agonists, FGF analogs,
PPAR modulators, and compounds directly targeting certain metabolic pathways [111].
Interestingly, many of these therapeutic targets have also been shown to regulate TFEB
function, including PPARs, FXR, FGF15/19, FGF21, and several kinases. Given the master
role of TFEB in regulating lysosomal homeostasis and autophagy, targeting TFEB may
provide a unique therapeutic approach.

Taken together, recent studies have expanded the function of TFEB from a master
regulator of lysosomal homeostasis and autophagy to a critical contributor of metabolic
homeostasis. TFEB’s role in the pathogenesis of liver disease are well known. TFEB
is also a promising therapeutic target for liver diseases, particularly fatty liver disease.
Future studies on molecular mechanisms and specific agonists of TFEB will help to develop
therapeutic approaches for fatty liver disease.
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Abbreviations

AAT alpha-1 antitrypsin
AMPK AMP-activated protein kinase
ASBT Apical sodium-dependent bile acid transporter
ATG Autophagy-related gene
CARM1 coactivator-associated arginine methyltransferase 1
ChIP-seq Chromatin immunoprecipitation sequencing
CMA Chaperone-mediated autophagy
CREBH The cAMP-responsive element-binding protein, hepatic-specific
CVB3 Coxsackievirus B3
Cyp7a1 Cytochrome P450 family 7 subfamily A member 1
DEN diethylnitrosamine
ER Endoplasmic reticulum
ERK Extracellular signal–regulated kinase
FGF Fibroblast growth factor
GCN5 General control non-repressed protein 5
GSK3β Glycogen synthase kinase 3β
GTPases Rag guanosine triphosphatases
IRS Insulin receptor substrate
JMJD3 Jumonji-D3 histone demethylase
KDM4B lysine-specific demethylase 4B
LC3 Microtubule-associated protein 1A/1B-light chain 3
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MAP3K3 Mitogen-activated protein kinase kinase kinase kinase 3
MCOLN1 Mucolipin 1
mTORC1 mTOR complex 1
MYC MYC proto-oncogene
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NCoR1 Nuclear receptor corepressor 1
P62/SQSTM1 Sequestosome 1
PDCD4 Programmed cell death 4
PGC1-α Peroxisome proliferator-activated receptor gamma coactivator 1-α
PINK1 PTEN-induced kinase 1
PKCβ Protein kinase C β

PPAR-α Peroxisome proliferator-activated receptor-α
RXR-α Retinoid X receptor-α
SIRT1 Sirtuin-1
S6K S6 kinase β-1
SOX9 SRY-box transcription factor 9
SCARB1 Scavenger receptor class B type I
STUB1 STIP1 Homology And U-Box Containing Protein 1
sXBP1 Spliced X-box binding protein 1
TFEB The transcription factor EB
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