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Abstract: The Global Initiative for Chronic Obstructive Lung Disease 2021 Report recommends
inhaled corticosteroid (ICS)-containing regimens as part of pharmacological treatment in patients with
chronic obstructive lung disease (COPD) and frequent exacerbations, particularly with eosinophilic
inflammation. However, real-world studies reveal overprescription of ICS in COPD, irrespective of
disease presentation and inflammatory endotype, leading to increased risk of side effects, mainly
respiratory infections. The optimal use of ICS in COPD therefore remains an area of intensive
research, and additional biomarkers of benefit and risk are needed. Although the interplay between
inflammation and infection in COPD is widely acknowledged, the role of the microbiome in shaping
lower airway inflammation has only recently been explored. Next-generation sequencing has
revealed that COPD disease progression and exacerbation frequency are associated with changes
in the composition of the lung microbiome, and that the immunosuppressive effects of ICS can
contribute to potentially deleterious airway microbiota changes by increasing bacterial load and
the abundance of potentially pathogenic taxa such as Streptococcus and Haemophilus. Here, we
explore the relationship between microbiome, inflammation, ICS use and disease phenotype. This
relationship may inform the benefit:risk assessment of ICS use in patients with COPD and lead to
more personalised pharmacological management.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a condition with a heterogeneous
phenotype characterised by chronic bronchitis, emphysema and small airways disease,
resulting in progressive airflow limitation that is not fully reversible [1–4]. Globally, COPD
presents a growing social and economic burden in terms of both disease prevalence and
mortality [5].

According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD)
2021 Strategy Report [6], the goals of treatment in COPD include improvement in exercise
capacity and quality of life, reduced exacerbations (which are major drivers of disease
progression) and prevention of premature mortality. Non-pharmacological management,
including smoking cessation and exercise, is critical. Pharmacological treatment of COPD
mainly consists of bronchodilators, i.e., long-acting β2-agonists (LABAs) and/or long-
acting muscarinic antagonists (LAMAs) [6]. Bronchodilators can improve quality of life,
improve lung function, and reduce exacerbation rate in patients with COPD [6]. Inhaled
corticosteroid (ICS)-containing regimens are recommended primarily as step-up phar-
macological therapy for those patients with COPD who are still experiencing frequent
exacerbations despite regular treatments with bronchodilator(s) and who have evidence of
eosinophilic inflammation [6].

Despite the GOLD recommendations, evidence from real-world studies suggests that
ICS is being over-prescribed in COPD, irrespective of disease presentation and underlying
inflammation [7–9]. This has important clinical implications, as ICS use is associated with
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increased risk of side effects, including infection events [10–13] and particularly with an
increased risk of pneumonia [14].

Neutrophil inflammation is the dominant inflammatory endotype of COPD. Airway
neutrophilic inflammation is associated with increasing exacerbation frequency, disease
severity and mortality in COPD [15–17]. Conversely, eosinophilic inflammation accounts
for only about 20% of patients when defined by sputum eosinophil counts >3% or blood
eosinophils >300 cells/µL [18]. This distinction is important for considering the role of anti-
inflammatory therapy in COPD, as corticosteroids can aid the resolution of eosinophilic
inflammation through inducing apoptosis of eosinophils. In contrast, neutrophilic dis-
ease does not respond to ICS, and evidence suggests that ICS may worsen neutrophilic
inflammation by delaying neutrophil apoptosis [19,20], leading to increased secondary
necrosis which may release damaging proteases such as neutrophil elastase. This has the
potential to impair host defence against infection. Indeed, ICS use has been associated with
an increased risk of pneumonia [14], and in vitro and in vivo studies have shown that ICS
can impair pulmonary host defences against pathogens [21–24]. In addition to effects on
neutrophils and eosinophils, ICS have multiple anti-inflammatory effects on airway ep-
ithelial cells, including downregulation of pro-inflammatory cytokines such as interleukin
(IL) 1 beta, granulocyte-macrophage colony-stimulating factor and IL-8, and decreased
production of enzymes such as inducible nitric oxide synthase and cyclooxygenase-2,
and adhesion molecules including intracellular adhesion molecule 1 [25]. Belvisi and
colleagues [26] showed enhanced release of matrix metalloproteinases (MMPs) 1 and 9
and other inflammatory mediators from alveolar macrophages in patients with COPD
compared with healthy controls, and Belchamber and coworkers showed that macrophage
phagocytosis and clearance of bacteria are impaired in COPD [27]. The release of pro-
inflammatory cytokines and MMPs from alveolar macrophages is usually inhibited by
corticosteroids but COPD macrophages have been shown to be resistant to corticosteroid
inhibition [28,29]. Likewise, impairment in phagocytosis does not appear to be correlated
with the use of ICS [30,31].

Airway infections play a central role in the manifestation of the disease, with changes
in the composition of the airway microbial community, known as the microbiome, contribut-
ing to disease progression and exacerbation frequency [32]. Bacterial and viral infections
have been most commonly implicated in the cause of exacerbations, but the extent to
which this affects lower airway inflammation and clinical presentation is not completely
understood [33,34]. It is widely accepted that the roles of inflammation and infection
in COPD are closely linked, and the introduction of next-generation sequencing (NGS)
techniques such as 16S rRNA sequencing has enhanced our understanding of the role the
lung microbiome plays in disease progression [35].

ICS are immunosuppressive and can affect the interplay between host and microbe,
leading to changes in the airway microbiome. For example, in asthma and rhinosinusitis,
ICS use has been associated with alteration in the microbiome composition of both the
lung and nasal cavity [36,37]. It is also well known that ICS use affects the oral microbiome,
predisposing people to fungal infections such as candidiasis [38]. Therefore, identifying
and understanding the underlying biological mechanisms behind phenotypes of COPD,
during both stable and exacerbating periods, may lead to more targeted and appropriate
treatment. This “personalised medicine” approach aims to target ICS treatment to only
those patients for whom a benefit:risk ratio is appropriate, rather than a “one size fits all”
in which risk may outweigh benefit.

Emerging data on the effects of ICS on the lung microbiome in COPD may help our
understanding of the role of ICS, and in this review, we examine recent data suggesting
that the lung microbiome may help to inform the benefit:risk assessment associated with
the prescription of ICS as well as helping to understand how different patterns of lung
inflammation carry different benefits and risks associated with ICS.
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2. What Do We Know about the Microbiome in COPD?

Charlson et al. in 2011 were the first to conclusively show that the lung in healthy
subjects (no history of pulmonary disease or ongoing serious medical illnesses, normal
spirometry, and no upper respiratory tract symptoms within 4 weeks) is host to a bacterial
microbiome, predominantly the Proteobacteria Neisseriaceae, Firmicutes Streptococcaceae
and Veillonellaceae, and Fusobacteria [39]. Dickson and colleagues went on to show that the
prevalence and diversity of genera do not significantly differ across lung locations (lingula,
right middle lobe, right upper lobe and left upper lobe) [40]. Although present in lower
abundance compared with bacteria, a fungal microbiome (the mycobiome) also exists in
the healthy airway, with a predominance of Candida and Saccharomyces [41].

Through classical culture-based methods, it has been shown that the COPD lung
can also be host to potentially pathogenic bacteria (e.g., the Proteobacteria Haemophilus
influenzae, Moraxella catarrhalis and Pseudomonas aeruginosa, and the Firmicutes Streptococcus
pneumoniae) [42,43]. It is also firmly established that bacteria play an important role in
COPD pathogenesis, with bacterial colonisation correlating with inflammatory response,
local immune response and symptoms [44]. Further, pathogenic bacteria contribute to
lung damage and loss of lung function, and these pathogens are believed to be responsible
for around half of COPD exacerbations [34]. Now, with the advent of NGS technologies,
researchers in COPD are able to move beyond culture to further examine how changes in
microbiome composition may play a role.

NGS allows massive parallel high-throughput analysis of microbes—the vast majority
of which are not cultured routinely in clinical practice [32] (Figure 1). The analysis begins
with sample collection (e.g., sputum, bronchoalveolar lavage, oral wash or upper airway
swabs), followed by DNA extraction. In the most widely used techniques, polymerase
chain reaction (PCR) is then carried out to amplify bacterial or fungal genes. The most
commonly used target genes are the 16S rRNA gene, in the case of bacteria [45], or the
internal transcribed spacer-1 (ITS1) DNA between the 5.8S, 18S and 28S rRNA genes, in the
case of fungi [46], although other approaches are available. These genes consist of both
highly conserved and variable regions. The nucleotide sequences of the variable regions of
the 16S rRNA gene and ITS1 vary at the genus level, and so sequencing across these regions
can be used to provide taxonomic information about members of the bacterial and fungal
microbiomes. The resulting amplicon sequences are interrogated against a database of
known taxonomic sequences. Sequences are then grouped into operational taxonomic units
(OTUs), which can identify members of the microbiome from family to genus level [45]. A
more recent technology involves the analysis of sequences for amplicon sequence variants,
which offers potentially improved sensitivity and specificity over OTUs [47]. Outputs
from these analyses are used to examine the diversity within the sample (the α diversity)
and between samples (the β diversity) [48]. The diversity of the microbiome is reflected
by the richness and evenness of the populations present within the airway. In disease,
there is often a loss of diversity, reflected by the dominance of one or a few genera. In
inflammatory lung diseases such as bronchiectasis and cystic fibrosis, diversity has been
shown to decrease, and studies indicate that changes in the composition of the lung
microbiome might contribute to, and result from, chronic inflammation [49–51]. Further,
studies have shown relationships between asthma severity and low diversity; for example,
severe asthma has been associated with a clear loss of diversity [52], and lower diversity has
been associated with neutrophilic asthma, which is often more severe than eosinophilic [53].
In addition, interactions between members of the microbiome can be analysed (whether
members co-occur or co-exclude, and the strength of these relationships).
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lung microbiome. 

Sequencing techniques are not quantitative and therefore analysis of microbiome 
composition can be supplemented with techniques such as quantitative PCR (qPCR) and 
droplet digital PCR to determine microbial burden. Primers specific for conserved regions 

Figure 1. Analysis of the lung microbiome. Abbreviations: ASV: amplicon sequence variant;
db: database; ddPCR: droplet digital quantitative polymerase chain reaction; ETS: external tran-
scribed spacer; ITS: internal transcribed spacer; NTS: non-transcribed spacer; OTU: operational
taxonomic unit; qPCR: quantitative polymerase chain reaction; V: variable region.

The high-throughput analysis of microbes as described above is relatively cost-
effective and can generate data from samples containing organisms that are otherwise
rarely cultured. However, the trade-off is that the amplicons generated through widely
used 16S rRNA sequencing approaches are too short to provide resolution at the species
level, although full-length sequencing of the 16S rRNA gene is possible and is being in-
creasingly used [54–57]. So-called “shotgun” metagenomic technologies, although not
yet commonly used in microbiome analysis in COPD, go further to allow comprehensive
sequencing of microbes across the various kingdoms, with the potential to simultaneously
sequence bacteria, fungi, viruses and other microbes within a sample [58]. This technique
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will become more and more commonplace and certainly will be applied to the analysis of
the COPD lung microbiome.

Sequencing techniques are not quantitative and therefore analysis of microbiome
composition can be supplemented with techniques such as quantitative PCR (qPCR) and
droplet digital PCR to determine microbial burden. Primers specific for conserved regions
such as those for the 16S rRNA and ITS genes can be used to determine the absolute
microbial burden and specific primers used to quantify individual species.

Armed with these powerful tools, the role of the microbiome in COPD and other
respiratory diseases is being investigated.

2.1. The Microbiome of the COPD Lung versus the Healthy Lung

As indicated above, it is firmly established that the COPD lung is often host to
potentially pathogenic bacteria, including H. influenzae, M. catarrhalis, P. aeruginosa and
S. pneumoniae [42,43]. Studies have now demonstrated that the composition of the lung
microbiome is altered in patients with COPD compared with controls. Einarsson and
colleagues [59] compared the lower airway microbiomes of patients with clinically stable
COPD and mild-to-severe airflow obstruction, healthy smokers and healthy non-smokers.
They found that bronchial wash samples from patients with COPD had a greater prevalence
of Proteobacteria (Haemophilus) compared with smokers and non-smokers. Haldar and
coworkers [60] then went on to compare sputum samples from patients with COPD from
the COPDMAP consortium with healthy (no evidence of asthma, COPD or bronchiectasis)
smokers and healthy non-smokers. In agreement with Einarsson, it was demonstrated that
Proteobacteria (Haemophilus and Moraxella) was the most frequently dominant taxon in
patients with COPD versus healthy controls, in which Firmicutes, Bacteroidetes and Acti-
nobacteria (Streptococcus, Veillonella, Prevotella, Actinomyces and Rothia) were the dominant
taxa. Recently, in a closer examination of the interaction between the lung microbiome
and host, Wang and colleagues [61] carried out a large multi-omic meta-analysis of public
COPD sputum microbiome datasets, totalling over 1600 samples from across the world.
Adjusting for factors such as age, gender and smoking history, Haemophilus and Moraxella
were enriched in stable COPD compared with non-COPD controls, whereas the abundance
of genera such as Campylobacter and Prevotella were reduced. This multi-omic approach
was able to reveal that pathways involved in the biosynthesis of bacterial palmitate, ho-
mocysteine and urate were upregulated in the COPD microbiome. These metabolites
are postulated to have disease-promoting effects: palmitate is known to be associated
with enhanced inflammation [62] and oxidative stress [63], and has been observed to be
increased in COPD airways previously [64,65].

Taken together, these studies indicate that there is a “COPD lung microbiome” as
compared with the non-COPD lung and lower airway, characterised by dominance by
Proteobacteria (chiefly Haemophilus and Moraxella).

2.2. The Microbiome in Stable COPD

Although there appears to be a COPD lung microbiome, it is complex and highly dis-
tinct between individual patients. In stable disease, studies have demonstrated variations
in the microbiome over time within individuals. As such, many questions remain to be
answered concerning the precise role of the microbiome in COPD.

In a longitudinal cohort study of clinically stable patients with COPD, Dicker et al. [35]
showed that lower microbiome diversity coupled with Proteobacteria dominance (predom-
inantly Haemophilus) was associated with more severe COPD, blood eosinophil levels of
≤100/µL and increased mortality rate. Increased blood eosinophil counts were positively
associated with the percentage of Firmicutes and Streptococcus, and negatively associated
with Proteobacteria and Haemophilus.

In an analysis of the sputum microbiota from patients with COPD across four sites
in the UK, Wang and colleagues [66] found that the microbiome was heterogeneous in
those patients with neutrophilic disease, with two primary communities differentiated
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by the prevalence of Haemophilus: a Haemophilus-predominant subgroup and a balanced
microbiome subgroup. Patients with a balanced microbiome could temporally switch
to both neutrophilic-Haemophilus-predominant and eosinophilic states during exacerba-
tions. Temporal changes in the proportions of Campylobacter and Granulicatella were in-
dicative of switches from neutrophilic to eosinophilic inflammation, keeping track with
sputum eosinophilia over time. There were distinct host–microbiome interaction patterns
between neutrophilic-Haemophilus-predominant, neutrophilic-balanced-microbiome and
eosinophilic subgroups. This study suggests that the microbiome could be used to stratify
a neutrophilic COPD endotype into subgroups that may benefit from different therapies.

Opron and colleagues [67] examined bronchoalveolar lavage from subjects in the
SPIROMICS cohort (never-smokers, smokers without COPD, patients with mild-to-moderate
COPD and patients with severe COPD). Microbiome composition alterations (chiefly in the
proportions of Streptococcus, Prevotella, Veillonella, Staphylococcus and Pseudomonas) were found
to associate with several clinical features (bronchodilator responsiveness, peak expiratory
flow, forced expiratory flow rate 25–75% forced vital capacity), degree of symptom burden
and extent of functional impairment. This study highlights that the relationship between the
microbiome and airway dysfunction is not only limited to severe disease.

2.3. The Microbiome at Exacerbation

In addition to stable disease, exacerbations in COPD are associated with changes in
the lung microbiome. Wang and colleagues [68] examined microbiome composition in
patients with predominantly GOLD stage II and III COPD and 1–2 previous exacerbations.
They found that, prior to exacerbations, samples could be clustered by the dominance
of Proteobacteria, Firmicutes or Bacteroidetes phyla. During exacerbations, microbiome
diversity decreased and proportions of Proteobacteria and particularly Moraxella increased,
and these changes correlated with increased blood neutrophil count. When the exacerbation
endotype was examined, bacterial exacerbation (defined as a positive bacterial pathogen on
routine culture (H. influenzae, M. catarrhalis, S. pneumoniae, S. aureus or P. aeruginosa) or a total
aerobic colony-forming unit count ≥107 cells) was associated with a significant decrease in
the proportion of Firmicutes and an increase in the proportion of Proteobacteria compared
with eosinophilic exacerbation (defined as sputum eosinophils >3%). At the genus level,
there was a decrease in the proportion of Streptococcus and an increase in the proportion
of Haemophilus. There was also a notable decrease in the Proteobacteria:Firmicutes ratio
during eosinophilic exacerbations versus all other exacerbation endotypes.

These results were later supported by a larger study by Wang and colleagues [69], in
which temporal changes in the microbiome of patients with COPD from the COPDMAP
study across three clinical centres were analysed. Across all centres, microbiome composi-
tion was similar between stable and exacerbation state, with the exception of a decrease in
Veillonella at exacerbation. Bacterial exacerbations produced a distinct microbiome profile
compared with exacerbations associated with eosinophilic airway inflammation. Changes
in the composition of the microbiome during exacerbation were associated with increased
exacerbation severity, particularly in eosinophilic patients. Mayhew et al. [70] also found
that the stability of the lung microbiome was more likely to decrease over time during
exacerbations and in individuals with higher exacerbation frequencies. It was also found
that bacterial and eosinophilic exacerbations were more likely to be repeated, whereas viral
exacerbations were not. Haemophilus and Moraxella genera were associated with disease
severity, exacerbations and bronchiectasis [71]. In a study from the UK, no temporal differ-
ences were found when stable and exacerbation states were compared, consistent with the
results of the COPDMAP study. However, this study demonstrated that exacerbations can
be sub-grouped into bacterial, eosinophilic and viral/other endotypes, each with significant
differences in microbiome composition and clinical characteristics.

Changes in the microbiome following exacerbation have also been found to be as-
sociated with mortality. Leitao Filho et al. [72] found that changes were associated with
the pathogenesis of acute exacerbations leading to hospitalisation and 1-year mortality.
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Specifically, increased mortality was associated with lower microbiome diversity and an
increased relative abundance of Staphylococcus in acute exacerbations. The above studies
highlight that the microbiome not only plays a pivotal role in disease progression but
could also be used to help understand exacerbation endotypes. There is growing evidence
to suggest that COPD exacerbations are heterogenous events that require a personalised
approach to treatment.

Taken together, it is clearly demonstrated that the bacterial microbiome in COPD is
both individual and highly variable, and that its composition is closely related to disease
status and progression, even in mild COPD. It is clear that there are distinct subtypes of
COPD exacerbation, which are dependent on both inflammation and microbiome char-
acteristics. The identification of endotypes of COPD exacerbation may be used to guide
treatment in the future.

3. Interactions between Inflammation, Clinical Characteristics and the Microbiome
3.1. Neutrophilic and Eosinophilic Inflammation

Airway inflammation is one of the defining features of COPD, but the inflammatory
endotype is heterogeneous across the disease course and between patients; therefore, un-
derstanding the nature of inflammation may increase our understanding of COPD and how
to treat it. Between 60% and 80% of patients with COPD have predominantly neutrophilic
inflammation, which has been associated with increasing exacerbation frequency, lower
forced expiratory volume in 1 s, and increased mortality [15–17]. Conversely, eosinophil-
dominated inflammation accounts for only about 20% of patients and is associated with a
higher likelihood of co-existing asthma [18,35]. In addition, exacerbation endotypes are
associated with distinct inflammatory profiles [73]. It is therefore pertinent to examine the
interplay between the microbiome and the inflammatory status of the airways in COPD.
Inflammatory cells, and particularly neutrophils and macrophages, are essential for control
of airway infection, whereas airway infection is the primary driver for inflammatory cell
recruitment to the airway. Consequently, there is a reciprocal “chicken and egg” interaction
between the microbiome and airway inflammation.

Several studies demonstrate this close relationship. Ghebre and colleagues [74] found
that the exacerbations of patients with moderate-to-severe COPD could be separated into
three biological clusters. All clusters exhibited increased expression of pro-inflammatory
mediators. Cluster 1 exhibited increased blood and sputum neutrophils and an increased
proportion of Proteobacteria. Cluster 2 exhibited increased blood and sputum eosinophils
and an increased proportion of Bacteroidetes. Cluster 3 exhibited an increased propor-
tion of Firmicutes and Actinobacteria. These data suggest an association between sputum
pro-inflammatory mediators, cellular and microbiome profiles. Dicker et al. [35] went
on to use an integrated clinical, microbiome and proteomic approach to investigate how
microbiome profiles influence the pathophysiology of COPD in three predefined sputum
microbiome profiles: balanced, Proteobacteria-dominated, and Firmicutes-dominated. In the
Firmicutes-dominated group, upregulated proteins were suggestive of a negative regulation
of peptidase activity pathway (e.g., cystatin B, cysteine-S, α1-antitrypsin). In contrast, in
Proteobacteria-dominated patients, there was increased relative abundance of myeloperox-
idase, catalase, MMP-9, MMP-8 and neutrophil elastase, all of which reflect neutrophilic
inflammation. Pathway analysis indicated that significantly upregulated proteins in the
Proteobacteria group were associated with a neutrophil activation pathway. Proteobacteria
dominance was associated with increased mortality compared with Firmicutes-dominated or
balanced profiles, linking the microbiome with clinical phenotypes and long-term outcomes.

Neutrophilic and eosinophilic inflammation represent broad “umbrella” terms, which
hide considerable complexity in cell behaviour. Some endotypes of inflammation deserve
special mention. For example, neutrophil extracellular trap (NET) formation is a well-
described alternative method of neutrophil antimicrobial defence [75], in which neutrophils
extrude webs of decondensed chromatin-containing histones, neutrophil elastase and other
granule products that ensnare bacteria. NETs have been observed in the sputum of patients
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with stable and exacerbating COPD [76–78], and COPD disease severity is associated with
increased NET-associated neutrophil elastase [76]. Dicker et al. [79] demonstrated that
NETs are more abundant in patients with severe COPD, and are associated with more
frequent exacerbations, and importantly, reduced microbiome diversity and an increase
in Haemophilus species. NETs are particularly important as a mechanism in COPD since
neutrophil-derived DNA in NETs contributes to the thick sputum production in chronic
bronchitis, whereas NET-associated proteases such as neutrophil elastase promote goblet
cell hyperplasia and secretion of mucins.

The relationship between bacterial infection and neutrophil levels in COPD is reason-
ably well described. The relationship with eosinophil levels, however, is unclear, although
it is known that eosinophils contribute to a proportion of COPD exacerbations [80]. Kol-
sum and colleagues [81] showed that low sputum eosinophil levels may be associated
with infection with potentially pathogenic bacteria: in patients positive for H. influenzae,
M. catarrhalis and S. pneumoniae (defined as ≥104/mL copies of bacterial DNA qPCR target
sequence), bacterial load and eosinophil count were inversely related; however, this rela-
tionship was only found with sputum eosinophils and not in blood. Conversely, during
exacerbations, this inverse relation was found with blood eosinophils in infection-positive
patients but not in infection-negative patients. A recent study by Zhou and colleagues [82]
also demonstrated significantly increased peripheral blood eosinophil count in patients
with COPD acute exacerbations (AECOPD) with pulmonary infection (chiefly Klebsiella
pneumoniae, P. aeruginosa, Acinetobacter baumannii and S. aureus) compared with AECOPD
patients without pulmonary infection.

Taken together, these studies demonstrate that the microbiome is linked to both
neutrophilic and eosinophilic inflammatory profiles.

3.2. Pneumonia

Although changes in the composition of the microbiome do not necessarily mean
infection with potentially pathogenic bacteria, and it is unclear whether such changes lead
to increased risk of pneumonia, the latter is theoretically likely as Haemophilus infection is
the most common cause of pneumonia in patients with COPD.

Pavord and colleagues [83] carried out a meta-analysis of double-blind RCTs of pa-
tients with COPD. In 10 trials (10,861 patients) with baseline eosinophil count data, low
(<2%) blood eosinophil levels were associated with a small but significant increased rate of
pneumonia events compared with patients with eosinophil levels >2%. Further, a network
analysis by Martinez-Garcia et al. [84] of patients with moderate-to-severe COPD found
that: (i) chronic bronchial infection (CBI) increased the risk of pneumonia in patients with
>100 eosinophils/µL, (ii) in patients with <100 eosinophils/µL, risk of pneumonia in-
creased independently of presence or absence of CBI, and (iii) treatment with ICS increased
pneumonia risk further in patients with <100 eosinophils/µL and CBI. These two studies
suggest that chronic infection, low levels of eosinophils, and low levels of eosinophils
together with ICS treatment predispose COPD patients to pneumonia.

Several RCTs, systematic reviews and observational studies have also demonstrated
an increased incidence of pneumonia with ICS use in COPD [14]. Consistent with the
meta-analysis by Pavord [83], a post hoc analysis of the TORCH study [85]—a double-blind
RCT comparing salmeterol, fluticasone propionate (FP), and salmeterol/FP in patients
with moderate-to-severe COPD—found a greater rate of pneumonia was observed in the
FP and salmeterol/FP arms compared with the salmeterol monotherapy arm. In line with
these studies, in two replicate double-blind RCTs of patients with moderate-to-very-severe
COPD, radiographically confirmed pneumonia risk was increased with inhaled fluticasone
furoate/vilanterol dual therapy versus vilanterol alone [86]. Further, the ETHOS study [87]
(a Phase III, randomised trial of budesonide/glycopyrrolate/formoterol versus either
glycopyrrolate/formoterol or budesonide/formoterol in patients with moderate-to-very-
severe COPD and at least one exacerbation in the past year) found an increase in rates of
pneumonia of up to two-fold in the ICS-containing groups versus the LAMA/LABA group.
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The IMPACT study [88]—a Phase III RCT of fluticasone furoate/umeclidium/vilanterol
versus umeclidium/vilanterol—likewise found that the risk of pneumonia was significantly
higher (approximately 50% higher) in the ICS-containing group than in the LAMA/LABA
group. These studies demonstrate the consistent increased risk of pneumonia infection
which can occur with ICS treatment, again emphasising the need for a more personalised
approach to treatment.

Evidence for the role of ICS use in increased infection events, pneumonia and exacer-
bations has been presented. Is it therefore reasonable to hypothesise that ICS use in patients
with COPD leads to changes in microbiome composition, in turn leading to the observed
adverse events?

4. ICS—A Help or a Hinderance? What Effect Does ICS Use Have on the Microbiome?

Recent studies (Table 1) have attempted to analyse the interactions between ICS
use (chiefly FP), inflammatory endotype, airway infection, microbiome disordering and
pneumonia risk in COPD, bringing together a complex story (Figure 2). The risk of
pneumonia is considered a class effect of ICS, and pneumonia has been observed as an
adverse effect in randomised studies of all ICS molecules [89]. Nevertheless, different
ICS molecules have different pharmacologies and are administered in different doses.
Fluticasone is a lipophilic drug and therefore is retained within the airway lumen for longer
periods than other drugs such as budesonide. Budesonide is highly soluble in water and is
therefore readily absorbed into airway surface liquid followed by translocation into lung
tissue. Inside lung tissue, it is conjugated with fatty acids to retain the drug within the
lung, therefore reducing the amount of drug in the airway. Kamal and colleagues [90]
showed that when airway epithelial cells were infected in vitro with S. pneumoniae after
treatment at equimolar concentrations of FP, budesonide or beclomethasone dipropionate
(BDP), FP and budesonide had marked suppressive effects on pro-inflammatory cytokine
release. Similar effects were observed in mice infected with S. pneumoniae, with greater
suppression of host immunity with FP and budesonide compared with BDP. In addition,
bacterial loads in the lungs of infected mice were increased with FP and budesonide but
not with BDP. Heijink and coworkers [91] compared the effects of budesonide and FP on
human bronchial epithelial cells in response to a viral mimic or cigarette smoke extract
and found similar effects on preventing pro-inflammatory cytokine secretion. However,
at the level of the epithelial barrier function, which is reduced by infection or cigarette
smoke, budesonide protected the epithelium to a greater degree than FP. Provost and
colleagues [92] showed that both ICS reduced pro-inflammatory cytokine release from
monocyte-derived macrophages equally, but similarly found that budesonide was more
effective than FP in preventing bacteria-induced receptor suppression in macrophages.
Although pneumonia is a class effect of ICS as stated above, these studies demonstrate the
different effects of ICS within the class on markers of inflammation and host immunity.
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Table 1. Summary of studies examining the effects of ICS on the lung microbiome.

Authors Year Study Population Treatment Endpoints Observations

Turturice [36] 2017

Adult atopic asthma, intermittent
or mild/moderate persistent

symptoms (n = 13); age-matched
non-asthmatic controls (n = 6)

6 weeks’ FP vs. before treatment

Inflammatory markers
(cytokine + chemokine panel) and
metagenomic sequencing of lower

airway microbiome in BAL

Reductions in S. pneumoniae,
N. meningitis, E. faecium, E. faecalis.

Associated with decreased MIP-1β,
increased IL-2

Ramakrishnan
[37] 2018

Adult chronic non-infectious
rhinitis males (n = 4); healthy

female (n = 1)

Non-infectious rhinitis males:
mometasone furoate nasal spray

QD for 1 month
healthy female: BID topical
mupirocin decolonisation

Serial nasal cavity swab
microbiome analysis over 8 weeks

(16S rRNA gene)

Increased abundance of staphylococci;
reduced abundance of Moraxella and
streptococci. Increase in diversity in

2/4 subjects

Contoli [93] 2017
Steroid-naïve, stable moderate

COPD (n = 60) on treatment with
SAL

1:1 SAL/FP:SAL BID 12 months Sputum bacterial load, microbiome
composition (16S rRNA gene)

Increased bacterial load, an increased
proportion of S. pneumoniae,

H. influenzae with low blood/sputum
eosinophils.

Increase in diversity, an increased
proportion of Firmicutes, Candida; the
reduced proportion of Proteobacteria

Leitao Filho [94] 2021

Adults (n = 63) with stable
moderate-to-severe COPD, 4-week
ICS washout, 4-week run-in with

FORM

BUD/FORM or FP/SAL vs. FORM

Bronchoscopy bacterial load,
microbiome composition,

microbiome changes vs. clinical
parameters

In FP/Sal group, reduction in diversity,
greater number of changes in

microbiome from BL, decreased
abundance of Haemophilus, decreased

Proteobacteria:Firmicutes ratio

Singanayagam
[95] 2019

Stable mild-moderate COPD:
current ICS use (n = 10); non-use of

ICS (muscarinic antagonist;
SABA/LABA; n = 13)

FP, BUD, BD Sputum bacterial load, microbiome
composition (16S rRNA gene)

Increase in abundance of Streptococcus;
increased bacterial load and diversity

Patients reporting exacerbations:
current ICS use (n = 11); non-use of

ICS (n = 16)
FP, BUD, BD Sputum hCAP18, BAL cathepsin D

concentration
Suppressed hCAP18 concentrations;

increased cathepsin D concentrations

Mouse model of COPD; WT mice FP vs. pre-FP

S. pneumoniae load,
cathelicidin-related AMP

concentration, cathepsin D
concentration in BAL, whole lung,

blood

Increased S. pneumoniae load; reduced
concentrations of cathelicidin-related

AMP; increased cathepsin D
concentrations

Cathelicidin knock-out mouse FP vs. control Bacterial load; S. pneumoniae load
in BAL

No effect of FP on cathelicidin
knockouts
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Table 1. Cont.

Authors Year Study Population Treatment Endpoints Observations

BEAS2B bronchial epithelial cells FP vs. control hCAP18 concentration; cathepsin
D concentration

Suppressed hCAP18 concentrations;
augmented cathepsin D induction

COPD primary bronchial epithelial
cells FP vs. control hCAP18 concentration Suppressed hCAP18 concentrations

Garcha [96] 2012 Stable COPD GOLD stages II–IV
(n = 134)

n = 47 using ICS (median
[IQR] beclomethasone-equivalent
dosage 2000 (640–2000) mg daily)

Sputum bacterial load; severe
airflow limitation

Higher airway bacterial load
associated with higher ICS usage and

more severe airflow limitation

Huang [97] 2014 COPD patients with bacterial
infection (n = 12)

Antibiotics only vs. oral
corticosteroids only vs. both

Sputum microbiome composition
(16S rRNA gene)

Oral corticosteroids alone: increased
proportion of Proteobacteria,
Bacteroidetes and Firmicutes,
particularly Enterobacteriaceae,

Lachnospiraceae, Burkholderiaceae,
Neisseriaceae

Oral corticosteroids plus antibiotics:
increase in Proteobacteria

Wang [68] 2016 Stable and exacerbative COPD
patients (n = 87)

Antibiotics only vs. oral
corticosteroids only vs. both

Sputum microbiome composition
(16S rRNA gene)

Oral corticosteroids alone: decreased
diversity; increased proportion of

Proteobacteria; decrease in
Streptococcus, increase in Haemophilus

and Moraxella

Abbreviations: AMP: antimicrobial peptide; BAL: bronchoalveolar lavage; BD: beclomethasone dipropionate; BID: twice daily; BL: baseline; BUD: budesonide; COPD: chronic obstructive pulmonary disease;
FLUT: fluticasone; FORM: formoterol; FP: fluticasone propionate; GOLD: Global Initiative for Chronic Obstructive Lung Disease; hCAP18: human cathelicidin; ICS: inhaled corticosteroids; IL-2: interleukin 2;
IQR: interquartile range; LABA: long-acting β2-agonist; MIP-1β: macrophage inflammatory protein 1β; QD: daily; SAL: salmeterol; SABA: short-acting β2-agonist; WT: wild-type.
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Figure 2. Overall associations between the spectrum of microbiome composition, inflammatory
endotype, ICS use and disease phenotype in COPD. Abbreviations: FEV1: forced expiratory volume
in 1 s; ICS: inhaled corticosteroids. In Proteobacteria-dominant, neutrophilic patients, ICS use
may promote increased bacterial load and increased Haemophilus and Streptococcus [93], while in
Firmicutes-dominant, eosinophilic patients, lesser changes in the airway microbiome were observed,
potentially linking to their lower risk of infective adverse events [83,93].

As well as the above effects on the host, it should be considered whether corticos-
teroids can directly impact bacteria; however, studies are lacking. As noted, H. influen-
zae is the most frequent pathogen isolated in severe COPD, and studies suggest that
through indirect effects on the host, FP and budesonide inhibit intracellular persistence
of H. influenzae [98,99]. Budesonide has also been shown to promote invasion of epithelial
cells by P. aeruginosa [100]. These data suggest that ICS may influence changes in the
microbiome by promoting the persistence of some bacteria and opposing the persistence
of others. Much less is known of the direct effects of corticosteroids on bacteria under
physiological conditions.

Due to the relatively new nature of the field, studies specifically powered to assess
the impact of ICS on the lung microbiome in COPD are few. Clues may be gleaned from
studies in other respiratory diseases. For example, in asthma, it has been demonstrated that
inflammation is related to the lung microbiome composition, and changes in the composi-
tion were associated with FP use [36]. A pilot study in rhinosinusitis also demonstrated
that increases in the diversity of the nasal cavity microbiome resulted from the use of the
intranasal steroid mometasone furoate [37].

Contoli and colleagues [93] were the first to carry out a study powered to investigate
the effect of long-term treatment with an ICS added to a LABA on sputum bacterial load
in patients with stable COPD. This key, proof-of-concept, prospective trial randomised
patients with stable moderate COPD to receive either salmeterol/FP combination therapy
or salmeterol alone for 12 months. Compared with salmeterol alone, 12 months of treatment
with the combination therapy resulted in a significant increase in sputum bacterial load,
modification of the sputum microbial composition and increased airway load of potentially
pathogenic bacteria. Importantly, increased bacterial load and increased proportion of
S. pneumoniae and H. influenzae were only observed in patients with lower (≤2%) sputum
or blood eosinophils, and not in patients with higher baseline eosinophils. In each group
(salmeterol/FP vs. salmeterol alone), there was no significant difference in microbiome
composition at baseline versus 1 year of treatment. However, when comparing salme-
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terol/FP versus salmeterol alone, there was a significant increase in diversity after 1 year of
treatment, and an increased proportion of Firmicutes and Candida species, with a significant
reduction in Proteobacteria. At the species level, a relative increase in the proportion of
S. pneumoniae and H. influenzae was observed in the dual therapy group after 1 year.

Recently, Leitao Filho and colleagues [94] compared the effects of treatment with
budesonide/formoterol and FP/salmeterol against formoterol only on the airway micro-
biome of patients with stable COPD. After 12 weeks’ treatment with FP/salmeterol, a
significant reduction in airway microbiome diversity was observed compared with for-
moterol alone, and a greater number of changes in microbiome from baseline compared
with both formoterol alone and budesonide/formoterol groups. The greatest changes
in bacterial relative abundance in the FP/salmeterol group included a decrease in the
abundance of Haemophilus. A significant decrease in the Proteobacteria:Firmicutes ratio
was observed, which was driven by a non-significant increase in abundance of Firmicutes
and the above significant decrease in the abundance of Haemophilus. Overall bacterial
load was not significantly different between treatment groups. These results present some
differences from those of Contoli and colleagues, who, in the FP/salmeterol group, showed
an increased bacterial load, an increased proportion of H. influenzae and increased diversity.
These differences may be due to sampling, FP dose and the LABA comparator selected:
Contoli sampled sputum, whereas Leitao Filho employed bronchoscopy; the dose of FP
used in Contoli’s study was lower; and Contoli selected salmeterol as the LABA comparator
whereas Leitao Filho selected formoterol. Both studies, however, did show a decrease in
the Proteobacteria:Firmicutes ratio.

Other studies have broadly agreed with Contoli’s study, although they were not
specifically powered to investigate the impact of ICS on the bacterial microbiome. A study
by Singanayagam [95] of patients with stable COPD also found that patients taking FP
had a significantly higher abundance of Streptococcus, with increased overall bacterial load
and diversity compared with patients not taking ICS. A limitation to this analysis is its
cross-sectional nature which cannot infer causality. Therefore, to examine the mechanisms
of this apparent ICS-induced proliferation of Streptococcus, cellular and mouse models of
lung infection with S. pneumoniae were treated with FP. An increase in the abundance of
S. pneumoniae and impaired bacterial clearance was observed, which was associated with
downregulation of the antimicrobial peptide cathelicidin. In the same study, Singanayagam
went on to examine the mechanism of FP-mediated downregulation of cathelicidin and it
was found that augmentation of the protease cathepsin D led to ICS-induced degradation of
cathelicidin. It should be caveated, however, that mouse models may be poorly predictive of
effects in humans. The majority of Streptococci in the COPD microbiome are oropharyngeal
rather than S. pneumoniae and so the animal models may not be directly linked to the human
observations. In an investigation of bacterial load and microbiome composition in stable
disease and exacerbations, Garcha and colleagues [96] demonstrated a dose–response
relationship between ICS dose, bacterial load and severe airflow limitation at a stable state.
However, again, bias may exist in cross-sectional studies such as these, as patients on
ICS usually have more severe disease. Huang and colleagues [97] found that chronic oral
steroid use in COPD altered the microbiome composition, with a trend towards increased
diversity, and in patients treated with oral steroids plus antibiotics, there was a significant
increase in Proteobacteria. The authors suggested that alterations in the airway microbiome
may be due to steroid-induced immunosuppression. In a similar study, Wang et al. [68]
examined COPD patients treated with oral corticosteroids, antibiotics and a combination of
both at stable state, exacerbation, 2 weeks post-therapy and 6 weeks’ recovery. In patients
taking oral corticosteroids, a decrease in diversity was found, and increased Proteobacteria
over Firmicutes (at the genus level, an increase in Haemophilus and Moraxella, and a decrease
in Streptococcus). The apparent contradiction in which inhaled steroids promoted increased
Streptococcus in the study by Singanayagam but oral corticosteroids caused an increase
in Proteobacteria and decreased Streptococcus in the studies by Wang and Huang, has
not been explained. In the study by Dicker and colleagues [79] described earlier in this
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review, in which a positive correlation between NET formation and fluticasone/salmeterol
dual therapy was demonstrated, an in vitro analysis demonstrated that therapeutically
relevant doses of fluticasone inhibited neutrophil phagocytosis of fluorescently labelled
E. coli. As it has previously been shown that inhibition of neutrophil phagocytosis leads
to NET formation [101], and that NETs are a less effective means of bacterial killing [102],
the authors speculate that this may be a mechanism by which ICS use in COPD may
inhibit phagocytosis, leading to the observed decrease in bacterial diversity and increased
abundance of Haemophilus. Scott and colleagues [103] also showed that phagocytosis was
impaired by fluticasone, beclomethasone and budesonide in a dose-dependent manner,
with fluticasone having the greatest inhibitory effect.

Taken together, these studies suggest that ICS use may promote increases in bacte-
rial load through impaired neutrophil phagocytosis, impaired neutrophil apoptosis and
increased NET formation.

5. Conclusions

ICS is indicated in patients with frequent exacerbations and an eosinophilic endotype.
The evidence presented in this review suggests that ICS use in patients with a neutrophilic
endotype may lead to changes in the composition of the lung microbiome that could poten-
tially explain the increased risk of pneumonia and other adverse events seen in neutrophilic
patients. This review therefore bolsters the GOLD recommendations to appropriately target
ICS based on inflammatory endotype, and to avoid inappropriate prescription of ICS in pa-
tients without a history of exacerbations or with neutrophil dominant disease. Point-of-care
or near-patient tools that can detect neutrophilic inflammation, the use of blood eosinophils
or detection of pathogens such as H. influenzae and Streptococcus may aid precision medicine
approaches in the future in identifying which patients are most likely to achieve optimal
risk:benefit in COPD.
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