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Chronic and recurring pressure ulcers (PUs) create an unmet need for predic-
tive biomarkers. In this work, we examine the panniculus carnosus, a thin
cutaneous muscle, traditionally considered vestigial in humans, and ask
whether the panniculus may play a role in the chronicity and reinjury of
heel PUs. To determine whether humans have a panniculus muscle layer at
the heel, we dissected eight cadavers. To assess the influence of the panniculus
layer on PU, we performed computational simulations of supine weight bear-
ing. Finally, we assessed panniculus regeneration in fluorescent mice. Results
show a panniculus layer present in all cadavers examined. Simulations show a
thin layer of panniculus muscle causes a dramatic decrease in the volume of
soft tissue experiencing high strain and stress, compared to a heel without
a panniculus. Importantly, in the mouse model, the panniculus fails to regen-
erate after PU, even when other cutaneous layers had fully regenerated. Our
work shows that the panniculus is able to redistribute load around the heel
bone, which might allow it to prevent PUs. Moreover, it is highly susceptible
to incomplete regeneration after PU. Poor panniculus regeneration after PU
might be a predictive anatomical biomarker for recurrence, and this biomarker
should be evaluated prospectively in future clinical trials.
1. Introduction
Pressure ulcers (PUs) are painful wounds that are slow to heal, laborious to pre-
vent and costly to manage. For example, the UK spends £507.0 to £530.7million
per year on PU management [1]. PUs are regions of localized skin and/or tissue
damage caused by pressure and/or shear [2], also known as decubitus ulcers,
pressure injuries or bedsores. The prevalence rate of PUs in hospitalized US
patients ranges from 2.7% to 29% [3–5]. Intriguingly, PUs are classified as chronic
wounds, which raises the question of why they do not regenerate as well as acute
wounds. The vast majority of PU patients are not diabetic [6], and some are
young (i.e. not elderly, for example, patients with spinal cord injury [7]).

In addition to slow healing, PUs have a high rate of recurrence at the same
site (27–63%, depending on the study [8–12]), and efforts to predict PU recur-
rence have not yet been effective [13–15]. Work is underway to identify
criteria, other than closure of the epithelium, for judging the quality of
wound healing [16]. There remains an unmet need to identify which
superficially healed PUs are at elevated risk of PU recurrence.

Muscle tissue is moderately firm and elastic, so it creates an ideal interface
between hard bone and soft tissue by absorbing and redistributing load
[17,18]. Heel regions at highest risk of PU may appear to lack any muscle, but
a report in 2009 described the presence of a layer of panniculus carnosus
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(panniculus) muscle in the subcutaneous tissue of the heel
[19]. Unfortunately, this finding was not pursued beyond n =
3 cadavers. In humans, the panniculus is considered vestigial
and has been largely ignored [20]. Humans do have a panni-
culus layer documented in specific anatomical regions such
as the neck and palm, and many people have a layer of panni-
culus muscle in additional regions, such as over the ribs [21].
In other mammals, the panniculus enables skin twitching,
thermoregulation, cutaneous wound contraction and defence
against skin irritation [20,22]. There is no known function of
the panniculus in humans, except in the palm where it has
been proposed to cushion the wrist and to protect the nerves
and vessels at the ulnar canal [23].

In this study, we ask whether a panniculus layer might
play an underappreciated role in PU prevention, healing
and recurrence. We start by asking what fraction of humans
have a panniculus layer in the heel, because the heel is a
pressure-vulnerable location and second most common site
for PUs [24–26]. We next ask whether the panniculus
would protect the heel from PUs. Finally, we study pannicu-
lus regeneration after a PU, looking for any clues that could
explain or predict the increased risk of PU recurrence or
reinjury after an initial injury.
2. Methods
2.1. Cadaver tissue preparation
Human heels were collected from cadaver lower limbs that were
originally sourced from the United States for an orthopaedic dis-
section course. Specifically, the entire heel pad (including the
non-weight bearing portion of the posterior heel) superficial to
the calcaneum was surgically excised and fixed in 4% formal-
dehyde overnight at 4°C. After fixation, the tissues were
divided and frozen prior to cryo-sectioning. Thirty-micrometre
cross-sections were cut from the mid-portion of the frozen
samples (skin, fascia and fat pad). Frozen sections were stained
with haematoxylin and eosin (H&E). The remaining tissues
were paraffin-embedded and sectioned into 10 micrometre
cross-sections and stained with H&E and Masson’s trichrome
to observe the general morphology. We were not able to control
all aspects of tissue breakdown and degeneration of these
samples, particularly for high-resolution features, and we were
unable to conclusively evaluate striation. All methods were car-
ried out in accordance with the National Healthcare Group
Domain Specific Review Board (reference no. 2017/00935).
2.2. Three-dimensional model of the heel
A simplified geometry of the heel was adopted in this study [27].
Two types of simulations were run. In the first, a 1.5 mm thick
layer of representing the panniculus was inserted between the
skin layer (2 mm thick) and the fatty soft-tissue layer (3 mm
thick). In the second simulation, the panniculus layer was replaced
by a layer of fatty soft tissue of the same thickness. In both simu-
lations, the Achilles’ tendon (5 mm thick) and a spheroidal
calcaneus bone completed the geometry. A force was applied to
the bottom of the heel in the upward direction to simulate the con-
tact reaction force of the bed due to the weight of the foot. A value
of F ¼ 12 N was chosen well within the range of reported weights
of the foot [28]. A zero-displacement boundary condition was
imposed to the top and side of the geometry.

A nearly incompressible hyperelastic neo-Hookean material law
was used. The strain energy function (W) was divided in two
components: a volumetric (Wvol) and an isochoric one (Wiso) [29,30],

W ¼ Wvol þWiso ¼ K
4
ðI3 � 1� 2 ln

ffiffiffiffi
I3

p� �
þ m

2
(Ic � 3),

where I3 ¼ det(C) is the third Cauchy–Green invariant, C is the right
Cauchy–Green tensor, Ic is the first isochoric Cauchy–Green invar-
iant, Ic ¼ I�ð1=3Þ

3 tr(C): m and K are the material parameters. m is
the shear modulus, m ¼ E=ð2ð1þ nÞÞ, where E is Young’s modulus
and n is Poisson’s ratio. K is the bulk modulus, K ¼ m=ð1� 2nÞ: .
The values of m and K are reported in electronic supplementary
material, table S1 alongside the corresponding values of E and n

for all the tissues involved as well as the reference publication.

2.3. Mice
Animal experiments were approved by the institutional animal
care and use committee (IACUC SHS/2016/1257) of SingHealth,
Singapore. To conditionally label Pax7 +muscle satellite stem
cells in mice, the Pax7-Cre-ERT2 mouse was crossed with the
Brainbow2.1 (confetti) mouse. Pax7-Cre-ERT2 provides the Cre-
ERT2 transgene downstream of the Pax7 stop codon, thereby lim-
iting the Cre-ERT2 expression to Pax7 + cells. The Cre-ERT2
system provides tamoxifen-dependent induction of Cre recombi-
nase, so that affected cells carry heritable rather than transient
modification. Upon tamoxifen treatment, the Cre induction
causes recombination of the confetti construct at its loxP loci, lead-
ing to gene expression of one of the four fluorescent proteins in the
construct. The fluorescent proteins are mCerulean (CFPmem),
hrGFP II (GFPnuc), mYFP (YFPcyt) and tdimer2(12) (RFPcyt).
CFPmem contains a localization sequence enabling its transport
to the myofibre membrane (sarcolemma), while GFPnuc contains
a nuclear localization sequence. YFPcyt and RFPcyt have no localiz-
ation sequences and are expected to localize to the cytoplasm.
Figure 1a,b illustrates the transgenic mouse model.

2.4. Murine injury model
Mice were shaved and fur removed by hair removal cream (Veet,
Singapore) prior to injury. Muscle PUs were created in 4 to 5-
month-old transgenic mice by applying a pair of ceramic magnets
(Magnetic Source, Castle Rock, CO, part number: CD14C, grade 8)
to the dorsal skinfold, which includes skin, adipose tissue, panni-
culus muscle and loose areolar tissue. The magnets were 5 mm
thick and 12 mm in diameter, with an average weight of 2.7 g
and pulling force of 640 g. To minimize the effect of hair follicle
(HF) cycling, magnets were placed on ‘white’ skin i.e. on skin
where HFs are in telogen or resting phase. PU induction is per-
formed in two cycles. Each cycle is made up of a 12-h period of
magnet placement followed by a 12-hour period of magnet
removal. Time points post-injury are measured from the end of
last magnet cycle (figure 1c). This procedure induces two pressure
wounds on the back of the mouse, on the left and right side of the
dorsal skinfold. Prior studies have shown that unlike other types
of mouse wound healing, the magnet-induced ulcer remains
open, rather than closing by contraction [31–33]. The mice were
given an analgesic (buprenorphine at 3.33 µl g−1) prior to
magnet placement and again prior to magnet removal. The mice
were individually housed and free to move. Food and water
were given ad libitum. Figure 1c illustrates the experimental
set-up of the murine injury model.
3. Results
3.1. The panniculus carnosus layer is present in the

human heel
Eight heels from the right limbs of eight human cadavers (of
mean age 80.25 ± 11.1 yr and from both sexes; electronic
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supplementary material, table S2) were dissected. Upon histo-
logical analysis, a layer of muscle was found between the
dermis and fat pad in all of the heels (figure 2a–c). The
muscle layer was distinct from the columnar layers of collagen
(figure 2d) as shown by Masson’s trichrome staining. Between
individuals and across each section, the panniculus of the heel
varied in thickness (electronic supplementary material, figure
S1a,b), and the average of the maximal thicknesses was 1712
± 546 µm, while the average minimal thickness was 630 ±
162 µm (figure 2e). There were no significant differences in
panniculus thicknesses due to sex (electronic supplementary
material, figure S1c,d) or age (electronic supplementary
material, figure S1e,f ). Immunofluorescence staining for
alpha-smooth muscle actin was negative in the panniculus
muscle fibres (electronic supplementary material, figure S2).
3.2. The panniculus improves load distribution in
biomechanical simulations of the human heel

Having observed its supposedly vestigial presence in human
heels, we next sought to understand whether its presence mat-
tered. To study how the panniculus could alter load
distribution at the dorsal corner of the heel (analogous to a
supine patient), we undertook a biomechanical simulation with
finite-element modelling. We constructed a simplified three-
dimensional model of tissue layers covering the calcaneus bone
in a human heel (figure 3a–c) and applied an external force repre-
senting the weight of a resting foot. Figure 3d–g shows a section
of the heel, coloured for the levels of displacement and equival-
ent strain that occurred when the panniculus was present or
absent. The presence of the panniculus caused a decrease in over-
all displacement (figure 3d,e; electronic supplementary material,
figure S3a,b), 13% decrease in peak equivalent strain (4.57 with
panniculus versus 5.27 without; figures 3f,g and 4a) and 30%
decrease in peak von Mises stress (126 kPa with panniculus
versus 180 kPa without; figure 4b; electronic supplementary
material, figure S3c,d). Remarkably, the presence of a panniculus
layer caused a 73% decrease in the number of elements in the
mesh with equivalent strain above 2 mmmm−1 (figure 4c) and
an 89% decrease in the number of elements in the mesh with
von Mises stress above 100 kPa (figure 4d).
3.3. Murine model of pressure ulcer exhibits death
of tissue layers

The dorsal skinfold of mice contains the following parallel
layers: a thin epithelium (epidermis), a thicker layer of
connective tissue (dermis), an adipose layer (dermal white adi-
pose tissue), a layer of panniculus muscle and a thick layer of
loose areolar tissue (figure 5a,b). One day following magnet-
induced PU, an external surface wound can be observed on
the skin (figure 5c,d). Wound tissues at 3 d post-injury



maxima minima
0

1000

2000

3000

th
ic

kn
es

s 
(m

m
)

(a)

(b)

(e)

(c)

(d)

1000 mm

Figure 2. A layer of panniculus is found in heel tissues of human cadavers. (a) A cross-section of human cadaveric heel tissue stained with H&E. Panniculus carnosus
is indicated by black arrow. Scale bar is 1000 µm. (b) A cross-section of human cadaveric heel tissue stained with Masson’s trichrome reagent. Note the muscle fibres
(black arrow) are stained red, while collagen is stained blue. (c,d ) Close-ups of muscle fibres in the cadaveric heels. Scale bars are 50 µm. (e) Distribution of minimal
and maximal thickness of panniculus layer in 16 cadaveric heel tissues (two samples from eight patients).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210631

4

showed characteristics of cell death, such as karyolysis, karyor-
rhexis and acidification (eosinification), as shown in the H&E
staining of the panniculus (figure 5e,f ). Secondary indications
of injury include keratinocyte and adipocyte cell death. The
diameter of the external wound contracted gradually from
9.44 ± 0.8 mm at day 1, to 7.79 ± 1.4 mm at day 7, to 4.45 ±
1.5 mm at day 14 and the time to full closure was 18–21
d. The diameter of the muscle defect was 7.82 ± 1.4 mm at
day 3, 6.12 ± 0.7 mm at day 10 and 4.92 ± 0.7 at day 90.

3.4. Murine panniculus layer does not fully regenerate
following magnet-induced pressure ulcer

Forty days after magnet-induced PU, despite complete re-
epithelialization, i.e. an externally healed wound (electronic
supplementary material, figure S4a), an absence of pannicu-
lus muscle is observed in the skinfold at the wound centre,
compared to the uninjured skinfold (figure 6a). Myofibre
sizes are significantly decreased in the newly regenerated
fibres of the wound edge, compared to uninjured muscle
(figure 6b–e; histology score of 0.43 versus 3 respectively).
Clusters of myofibres could be found that exhibited central
nuclei (figure 6f ), indicating immaturity. At 40 d, the panni-
culus layer had not fully regenerated, while the skin layers
such as the dermis and epidermis regenerated successfully
(figure 6g). There was no significant increase in regeneration
from day 40 to day 90 post injury (figure 6h). The confetti
fluorophores (red, green, yellow and cyan) expressed in
newly regenerated myofibres can be observed under confocal
microscopy. Whole-tissue confocal imaging confirmed that
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after 90 d, the centres of the wounded areas were devoid of
fluorescence and did not contain any regenerated muscle
fibres (figure 6i; electronic supplementary material, figure
S4b–d ). Circling this dark centre was newly regenerated myo-
fibres with confetti fluorescence. These fibres were found
only at the edges of the wound, not in the centre (figure 6i).
4. Discussion
We sought to understand the panniculus using three
approaches: ex vivo cadaver studies, computational modelling
and in vivo mouse wound healing. The purpose of microdis-
sections in cadavers was to examine the prevalence and
distribution of the panniculus in the human heel; the purpose
of the computational simulations was to understand the con-
tribution of the panniculus layer to pressure redistribution
and its biomechanical protection of the soft tissues near the
bony prominence, and the purpose of the mouse regeneration
studies was to assess whether regeneration of the panniculus
is sufficient to continue protecting the soft tissue against
pressure-induced reinjury. The purpose of putting these
three together is to explore the unified concept that poor
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panniculus regeneration might predispose human patients to
PU recurrence.

In histological analyses of cadaveric human heels, a thin
layer of muscle was found between the skin layers and fat
pad, which varied in thickness across patients and within
regions of the same patient. Prior anatomical studies of the
heel have often overlooked this muscle, although some studies
have identified muscle there. Cichowitz et al. [19] found a pan-
niculus layer in cadaveric heels, but they suggested the
panniculus to have a detrimental function in initiation of
PUs, due to the intrinsic ischaemic sensitivity of muscle
tissue. Specifically, muscle tissue may undergo irreversible
damage due to deformation and ischaemia, thus initiating a
PU. This viewpoint might appear to be the opposite of our bio-
mechanical studies, because we suggest a protective role of the
panniculus in redistributing load and decreasing regions of
high deformation. However, it is possible that both viewpoints
are correct: the panniculus might function to prevent PUs
under normal circumstances, but under harsher conditions,
for example in a vascular-disease patient or a bedridden
patient, the mechanical forces might not be sufficiently redis-
tributed to avoid PUs, in which case, ischaemia of the
panniculus could initiate or worsen the PU.

In mechanical simulations of a human heel resting on a
firm surface, the displacement, equivalent strain and von
Mises stress were significantly increased when the pannicu-
lus muscle layer was not present. Although some tiny
regions of high deformation were only mildly alleviated
(figure 4a,b), the vast majority of affected regions experienced
strong improvement (i.e. the vast majority of finite elements
in the soft-tissue layer were cushioned from potentially injur-
ious deformations of stress greater than 100 kPa or strain
greater than 2 mmmm−1; figure 4c,d ). In summary, when
the panniculus layer is present, only a pinpoint region
would be damaged. By contrast, without a panniculus
layer, wide regions of soft tissue would experience cell-killing
levels of stress and strain, potentially creating a significant
area of tissue death.

In mouse studies, we found that the panniculus muscle
failed to regenerate fully after magnet-induced PU. The mar-
gins of the wound bed contained new fibres, but stem cells
and their myoblastic daughter cells did not migrate very far
into the two-dimensional layer where the panniculus
should be. We interpret that muscle regeneration has a lim-
ited distance of effect over a sheet-shaped defect. The
regenerated muscle bore lineage labels from Pax7 + con-
ditional fluorescence, indicating that they descended from
cells that were positive for Pax7 at the time of tamoxifen
induction, two weeks prior to injury. Thus, we interpret
that satellite cells of the panniculus were the source of the
regeneration [34]. Prior mapping of stem cell territories
found that Pax7 + cells were present in the dermal territory
[35] during acute skin injury, but a subsequent study [36]
found those cells were not from muscle, which is consistent
with our finding that labelled cells did not enter the dermis
nor other non-muscle layers.

To explain why PUs tend to recur in the same location,
even after a prior injury appears fully healed, we propose a
novel explanation based on our combined results. After a
first injury is superficially healed, the panniculus underneath
may be incomplete or absent. Without the full panniculus
layer, the skin and other soft tissues face increased strain
and stress (in both magnitude and size of affected region)
and a higher risk of tissue breakdown. Thus, the appearance
of an externally healed injury may disguise the fact that
important load distribution functions served by the pannicu-
lus muscle might not be repaired. Additional considerations
for future clinical validation are that externally healed
wounds may differ in composition, stiffness and tensile
strength, compared with adjacent healthy tissues, due to
incomplete regeneration of internal layers and/or due to
the presence of scar tissue [37–39].

There are several caveats to this work. The heel is
obviously not the only anatomical location with vulnerability
to PUs, and our cadaver study did not explore the sacrum
and upper trochanter. Humans have great inter-individual
variability in the locations of panniculus muscle, and some
people have a panniculus layer present in regions where
others do not [20,40]. Furthermore, we could not conduct
molecular characterization of the panniculus due to tissue
breakdown. Therefore, future studies of the panniculus in
the heel and other anatomical locations will be important to
ascertain the nature of the panniculus, the protective role of
the panniculus layer in pressure redistribution and its
potential as an anatomical marker for recurrent PU prediction.

One limitation of our finite-element model is that the
material parameters of the various tissue types were taken
from prior publications with macroscopic mechanics.
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Simplified geometry fails to reflect the complexity of anat-
omy, much less the attributes of microarchitecture and
heterogeneity, such as the non-homogeneous nature of soft
tissue (adipose tissue), which includes one-dimensional
structures (e.g. vessels and filaments) among the fat cells. In
addition, the layers of our heel model are inseparable, and
we are hence not able to study lateral movements and
adhesion between the tissue layers. Finally, simulations did
not compare panniculus versus scar tissue, which might
occur in regions of the heel that have healed after a prior
injury. Scar tissue would likely increase the risk of sub-
sequent injury, due to its increased stiffness [39]. Although
PU is affected by many influences, our results are still infor-
mative because our simulations hold these confounding
variables constant while focusing on a relative comparison
of the incremental effect of adding or subtracting a pannicu-
lus muscle layer from the system.

Animal models with laboratory-created pathologies can
never fully recapitulate naturally arising human pathologies.
Some key differences between murine and human cutaneous
wound healing arise from (i) the natural tendency of murine
skin to heal by contraction instead of regeneration, (ii) our
mice were housed in a facility that is specific-pathogen free
and infected wounds were not observed and (iii) greater HF
coverage in mice, which increases the contribution of HF
stem cells to cutaneous wound healing [41–43]. We attempted
to minimize the HF differences by synchronizing the hair
growth cycle and applying injury only to skin with HFs in
telogen phase. We also believe that the impact of wound con-
traction is limited because we found an absence of panniculus
in the externally healed skinfold, which would not have
occurred if the wound had healed entirely by contraction.

Taken together, our findings show how the panniculus
layer could play an important role in distributing load and
providing biomechanical protection to the soft-tissue layers
around it, thus questioning the widely held notion that the
panniculus is vestigial and holds no functional significance
in humans. Pressure-induced muscle damage led to incom-
plete regeneration of the panniculus muscle layer, which
could deprive the surrounding soft tissues of mechanical
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9
protection and promote recurrence of PUs. There is indeed a
layer of panniculus in the human heel, and more research
should be done to study the predictive value of an intact pan-
niculus after the PU has healed, towards the prediction of PU
recurrence and towards the prioritization of clinical resources
to prevent recurrence.
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