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Abstract

This paper focuses on the application of machine learning algorithms for predicting spinal

abnormalities. As a data preprocessing step, univariate feature selection as a filter based

feature selection, and principal component analysis (PCA) as a feature extraction algorithm

are considered. A number of machine learning approaches namely support vector machine

(SVM), logistic regression (LR), bagging ensemble methods are considered for the diagno-

sis of spinal abnormality. The SVM, LR, bagging SVM and bagging LR models are applied

on a dataset of 310 samples publicly available in Kaggle repository. The performance of

classification of abnormal and normal spinal patients is evaluated in terms of a number of

factors including training and testing accuracy, recall, and miss rate. The classifier models

are also evaluated by optimizing the kernel parameters, and by using the results of receiver

operating characteristic (ROC) and precision-recall curves. Results indicate that when 78%

data are used for training, the observed training accuracies for SVM, LR, bagging SVM and

bagging LR are 86.30%, 85.47%, 86.72% and 85.06%, respectively. On the other hand, the

accuracies for the test dataset for SVM, LR, bagging SVM and bagging LR are the same

being 86.96%. However, bagging SVM is the most attractive as it has a higher recall value

and a lower miss rate compared to others. Hence, bagging SVM is suitable for the classifica-

tion of spinal patients when applied on the most five important features of spinal samples.

Introduction

The spine is the central support structure of human body. The spine connects different parts

of human skeleton and keeps the body upright. The spinal cord is often protected by the verte-

bral column [1–2]. Lumbar vertebrae which is one of the vertebral column segments helps sup-

port most of the body weight. The low back is the structure that connects the bones, joints,

nerves, ligaments, and muscles which together provide body support, body strength, and body

flexibility. Abnormal spinal alignment and posture are generally associated with poor general

health, physical function, emotional function, social function, and lower back pain (LBP) [1].

There are a number of attributes for spinal disorder, for example, pelvic tilt, pelvic incidence,

sacral slope, etc. Fig 1 illustrates these three attributes of a spino-pelvic system [3].
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LBP is often caused by the complications in the lumbar spine [3] affecting the patients’

mobility. A minority of cases of LBP can be caused by osteoporosis as well as by trauma to the

back. LBP as a form of spinal disorder has a negative socioeconomic impact [4–6,7,8–13]. It is

reported in [14] that about 100 million people in the United States has chronic LBP (CLBP).

Since spinal disorders in the form of LBP or CLBP cause disability [15], the prevention and

early detection of the problems are essential.

A number of research papers report the application of machine learning techniques in med-

ical diagnosis [3, 16–22]. Such techniques enable classification of normal and abnormal cases

helping the diagnoses process of patients. For example, machine learning can be used to iden-

tify heart disease, cerebral infarction, urological dysfunction, diagnosis of students with learn-

ing disabilities, muscle fatigue prediction, etc. [20–21]. In addition, research is going on the

aspect of spinal abnormalities and low back pain. Some research papers focus on different clas-

sification methods for the referral system known as clinical decision support system (CDSS) of

LBP patients [14, 18, 22]. On the other hand, some research works identify the degree of

importance on lower back pain with abnormal spine whether it is chronic or not [3, 16–17].

The authors in [16] obtain classification accuracy of 85.32% and 79.5% in identifying the

abnormal spine using k-nearest neighbours (KNN) and random forest algorithms, respectively.

In the work [17], both base and meta-level classification algorithms such as naïve Bayes, Bayes

net, multilayer perceptron (MLP), random forest, decision table are applied. Prediction accu-

racy of 81.9%, 83.87% and 83.87% are achieved for random forest, naïve Bayes and MLP classi-

fiers, respectively [17]. In [3], the authors use kernel with moderate decreasing (KMOD) and

linear kernels of SVM where KMOD kernel exhibits 85.9% classification accuracy. Table 1

briefly summarizes the important works in the research of spinal abnormality.

All the above mentioned research papers only consider the testing accuracy of machine

learning based spinal disease prediction. The issues of training accuracy and overfitting are

not considered in these papers. Moreover, when searching for the suitable machine learning

algorithm, these works do not emphasis on the value of the miss rate which is an indication of

how many cases of spinal abnormalities are incorrectly detected as normal spine. Therefore,

this work focuses on the issues of test and training accuracies, miss rate and recall values in

finding the best machine learning algorithm for the prediction of spinal diseases. The contri-

butions of this paper can be summarized as

1. Selecting appropriate attributes of spinal abnormality dataset obtained from the Kaggle

repository using univariate feature selection method.

2. Extracting features using principal component analysis (PCA) based feature extraction

method in order to analyse the spinal abnormalities.

3. Applying machine learning algorithms of support vector machine (SVM), logistic regression
(LR) and bagging ensemble methods on the important features of spinal abnormalities.

4. Comparing the machine learning algorithms with one another and with the algorithms

mentioned in the literature in terms of several factors including train and testing accuracy,

recall and miss rate.

The findings may be used as initial steps towards an automatic discrimination between nor-

mal and abnormal spines, which may assist practitioners in the clinical treatment of spinal

abnormality. The rest of the paper is organized as follows. Section 2 provides a brief descrip-

tion of the overall methodology of this research. Section 3 describes the univariate feature

selection and PCA processes for spinal abnormality detection. The SVM, LR and bagging

methods are discussed in Section 4. The performance metrics are reported in Section 5.

Data-driven diagnosis of spinal abnormalities
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Comparative results on the application of SVM, LR and bagging on the dataset with appropri-

ate features are presented in Section 6. Section 7 provides the concluding remarks.

Methodology

In this research, experiments were performed to classify normal and abnormal spines among

the samples available in the dataset. As mentioned earlier, the dataset used in this research was

collected from publicly available Kaggle repository [23]. This research work was implemented

using scikit-learn which is a machine learning library for the Python programming language.

Scikit-learn is built upon NumPy, pandas, and Matplotlib, etc. The work flow diagram of this

research is shown in Fig 2. First there were a number of stages for preprocessing of data includ-

ing data labelling, and data scaling. After that either feature selection or feature extraction

were performed. The selected features were then used to classify the data using classification

algorithms. This research used categorical data and so SVM and LR were considered as good

choices for classification of samples. Furthermore, a form of ensemble classifiers known as bag-
ging was also considered in this work. In the experiments with bagging, SVM and LR were

used as the base model. We used the train_test_split() class from scikit-learn library to split the

Fig 1. Illustration of a spino-pelvic system (a) pelvic tilt (PT) (b) pelvic incidence (PI) (c) sacral slope (SS) [3].

https://doi.org/10.1371/journal.pone.0228422.g001

Table 1. Comparison of relevant research works.

Reference Specific Work on Spinal Abnormality Machine Learning model used Dataset

[16] Identify spinal abnormality k-NN, random Forest Kaggle website

[17] Identify spinal abnormality naive Bayes- MPL, random forest, etc. Kaggle website

[18] Develop a CDSS system decision tree, random forest, boosted tree Personal collection of data

[14] Develop a CDSS system Classification and regression trees (CART) Personal collection of data

[3] Diagnostic of Pathology SVM with linear and moderate decreasing (KMOD) kernel supplied by Dr. Henrique da Mota

https://doi.org/10.1371/journal.pone.0228422.t001
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dataset. This approach of splitting the dataset is known as holdout method. For separating the

training and testing data, we also applied the cross validation method using cross_val_score()

from scikit-learn library. We trained the model and then test spinal data samples were applied

on the trained model to detect abnormal spine.

We found that the dataset had 12 attributes for each of the 310 patients. These records were

categorized into two classes, normal and abnormal. The numbers of normal and abnormal

patients were 100 and 210, respectively. As a part of data labelling, the non-numerical categori-

cal attributes were converted into numerical values. The values of abnormal and normal were

transformed into 0 and 1, respectively. As a part of data scaling for feature selection, the min-

Fig 2. Work flow diagram.

https://doi.org/10.1371/journal.pone.0228422.g002
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max scaling or min-max normalization were used as follows:

x0 ¼ ðx � xminÞ=ðxmax � xminÞ ð1Þ

where x is the original value of a feature, xmin is the minimum of x, xmax is the maximum of x
and x0 is the normalized value of x. In order to normalize our data to get the p value, the Min-
MaxScaler() function was used. Once the features are selected, the features were normalized

using the auto-scaling known as standardization or z-transformation. This was done using the

expression below.

x0 ¼ ðx � xmeanÞ=s ð2Þ

where σ is the standard deviation. In order to normalize the selected features to be used by

machine learning algorithms, we used StandardScaler() from scikit-learn library.

Feature selection and feature extraction

This section describes feature selection and feature extraction methods used in this research.

Feature selection

Feature selection is essentially the process of picking some informative and relevant features

from a larger collection of features that produce a better characterization of patterns of multi-

ple classes. There are a number of feature selection techniques including filtering based

method, wrapper method and embedded methods. As a feature selection method, filter tech-

niques are faster compared to other methods. This is because a filter based method evaluates

one feature at a time, rather than evaluating several features together. Furthermore, filter tech-

niques are highly scalable which is important and critical for high-dimensional datasets, rela-

tively simple and efficient, and independent of the underlying classification algorithms [24].

One form of filtering based approach is the univariate feature selection method which consid-

ers each feature independently that is with regard to the dependent variable. Each feature is

scored individually on certain specified criteria and the features are then selected based on the

higher scores or higher ranks [25].

In this study, univariate feature selection method was used for identifying the important

features of abnormal spine. In order to select the k best features from the spinal dataset, we

used the SelectKBest() class using chi-square distribution function, chi2() [25]. The chi-square

distribution (chi2) function was used to obtain the p-value which is between 0 and 1. The best

features were selected by sorting out the features with the lowest p-values.
Algorithm 1. Feature selection and other preprocessing
Input: A training dataset
Output: Selected features ranked according to p-value
Process:
1: Load the data using read_csv() function of panda library
2. Delete any null column using drop() function
3. Label the target using LabelEncoder() function
4. Divide the data and assign the full dataset (except the target) to
x
5. Assign the target to y
6. Use the holdout method to separate the train and test dataset as
x_train, y_train, x_test, y_test using train_test_split() function or
apply cross validation using cross_val_score()
7. Scale the feature by for a range of 0 to 1 with MinMaxScaler()
function

Data-driven diagnosis of spinal abnormalities

PLOS ONE | https://doi.org/10.1371/journal.pone.0228422 February 6, 2020 5 / 21

https://doi.org/10.1371/journal.pone.0228422


8. Obtain selected number of features using SelectKBest() function
having arguments of chi2() and x_train

Feature extraction

One way of feature extraction is the PCA. PCA reduces the dimensionality or the number of fea-

tures of a large dataset by transforming several features into small number of principal features.

The transformed smaller set of variables in PCA still contains the majority of information that

is in the actual large dataset. Hence, PCA lowers the complexity of a model and also reduces the

chances of overfitting. For the case where the features are measured in different scaling factors,

the features need to be standardized as PCA is sensitive to data scaling. Once the features are

standardized before PCA, the features are treated with the same importance in the PCA process.

In this work, we used the PCA() function in in scikit-learn to perform the PCA operation.

Classification using supervised machine learning

Once the appropriate number of features were selected either by feature selection or feature

extraction method, the feature subset was then taken into the classifier training stage where

SVM and LR were employed.

SVM

SVM performs data classification by forming an N-dimensional hyperplane which separates

data samples into appropriate classes. SVM can achieve good performance when applied to

real world problems [26]. Since SVM is a global representative of the data samples and this

reduces the chances of overfitting [27]. In this study, a number of SVM kernels were used: lin-

ear, sigmoid, radial basic functions (RBF), and polynomials. [28–29]. These kernels have a

parameter cwhich controls the trade-off between obtaining training accuracy and testing accu-

racy. Furthermore, RBF kernel has a parameter gamma, γ, which controls the influence of a

single training data sample. The SVM algorithm used in this work is described below.
Algorithm 2. Abnormality detection using SVM.
Input: A list of features according to rank
Output: Classification Report, Confusion Matrix, Precision-Recall
curve
Process:

1. Standardize the selected features using StandardScaler()
function
2. Apply SVM using SVC() function having 'linear' kernel on the
selected features
3. Train the model using selected features
4. Predict result using test dataset
5. Evaluate the accuracy of the classifier using accuracy_score()
function
6. Use confusion_matrix() function to evaluate TP,TN,FP,FN
7. Use classification_report() function to calculate precision,
recall and F1-score.

LR

The LR is a predictive analysis similar to other regression analyses. LR describes the relation-

ship between one dependent binary variable and one/multiple independent variables. In LR,

the dependent variable is binary which is contrary to linear regression having continuous

dependent variable. LR model has been applied in a number of contexts; which includes: appli-

cations to adjust for bias, in comparing two groups in observational studies. LR analysis is part

Data-driven diagnosis of spinal abnormalities
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of a category of statistical linear models which consist of fitting a LR model to an observed pro-

portion. The classification process using LR algorithm is described by algorithm 3.
Algorithm 3. Abnormality detection using LR.
Input: A list of features according to rank
Output: Classification Report, Confusion Matrix, Precision-Recall
curve
Process:

1. Standardize the selected features using StandardScaler()
function
2. Apply LR using LogisticRegression() function on the selected
features
3. Train the model using selected features
4. Predict result using test dataset
5. Evaluate the accuracy of the classifier using accuracy_score()
function
6. Use confusion_matrix() function to evaluate TP,TN,FP,FN
7. Use classification_report() function to calculate precision,
recall and F1-score.

Bagging

Bagging, also termed as bootstrap aggregating, is essentially the combination of the results of

several models. In bagging, samples of observations and subsets of features are created from

the actual dataset, with replacement. A base model is created on each subset, where each

model is trained independently and in parallel with each other. The combination of the indi-

vidual models results in the final predictions. The classification process using bagging for the

experiments can be described by algorithm 4.
Algorithm 4. Abnormality detection using bagging.
Input: A list of features according to rank
Output: Classification Report, Confusion Matrix, Precision-Recall
curve
Process:

1. Standardize the selected features using StandardScaler()
function
2. Apply bagging using BaggingClassifier() function having a parame-
ter BaseEstimator on the selected features
3. Set the BaseEstimator to SVC for bagging SVM or

Set the BaseEstimator to LogistricRegression for bagging LR
4. Train the model using selected features
5. Predict result using test dataset
6. Evaluate the accuracy of the classifier using accuracy_score()
function
7. Use confusion_matrix() function to evaluate TP,TN,FP,FN
8. Use classification_report() function to calculate precision,
recall and F1-score.

Performance metric

For the case of biomedical data including spinal samples, total accuracy alone is not sufficient

to evaluate a machine learning algorithm. Correct diagnosis of patients is more important.

Furthermore, any incorrect prediction of an abnormal patient as a normal patient can be a

serious issue. Hence, this work considers a number of metrics for appropriate diagnosis of the

patients with spinal abnormalities. For the performance evaluation, true positive (TP) refers to

the spinal samples correctly classified as abnormal. True negative (TN) is the number of nor-

mal people who correctly get negative predictions that is they are classified as having normal

Data-driven diagnosis of spinal abnormalities
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spinal condition. False negative (FN) is the number of undetected patients who actually have

spinal abnormality. Furthermore, false positive (FP) refers to the number of samples without

spinal problem but wrongly classified as abnormal. With this consideration, true positive rate

(TPR), true negative rate (TNR), false positive rate (FPR), false negative rate (FNR) are mathe-

matically defined as follows.

TPR ¼
TP

TP þ FN
ð3Þ

TNR ¼
TN

TN þ FP
ð4Þ

FPR ¼
FP

TN þ FP
ð5Þ

FNR ¼
FN

TP þ FN
ð6Þ

The metrics used for performance evaluation are training accuracy, testing accuracy, preci-

sion, recall, F1-measure, FNR known as miss rate. In the following these metrics are defined.

The accuracy is the percentage of all normal and abnormal vectors that are correctly classified.

Accuracy, ac, can be expressed as follows.

ac ¼
TP þ TN

TPþ TN þ FPþ FN
ð7Þ

Training accuracy and testing accuracy are defined as the accuracy obtained for training

and testing samples, respectively. Precision also known as positive predictive rate is the num-

ber of predicted abnormal patients among positive results. Precision, pr, can be mathematically

written as follows.

pr ¼
TP

TP þ FP
ð8Þ

The term recall refers to the ratio of the number of correctly classified patients with abnor-

mal spine to the total number of patients. Recall indicates the accuracy of a model in predicting

the positive class for the case where the actual class is positive. Recall is also known as sensitiv-

ity, TPR and detection rate (DR). The term recall, re, can be given by

re ¼
TP

TP þ FN
ð9Þ

The F1-Measure, f1, is the weighted harmonic mean of the precision and recall and repre-

sents the overall performance given by

f1 ¼
2� pr � re
pr þ re

ð10Þ

Confusion matrix is a visualization table that helps to determine the performance of a classifi-

cation algorithm. Each row and each column in a confusion matrix represent the predicted

instances and the actual instances, respectively (vice versa). An important metric is the miss

Data-driven diagnosis of spinal abnormalities
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rate, m, or FNR given by

m ¼
FN

FN þ TP
ð11Þ

In addition to the aforementioned evaluation criteria, we use receiver operating characteris-

tic (ROC) curve and the area under curve (AUC) to evaluate the pros and cons of the classier.

The ROC curve shows the trade-off between the TPR and the FPR. If the ROC curve of a classi-

fication algorithm is closer to the upper left corner of the graph or (0,1) coordinate of the ROC

space, the classification model is a good one. The precision-recall curves summarize the trade-

off between the TPR and the positive predictive values for a predictive model using different

probability thresholds. Since the dataset used for this work is imbalance, the precision-recall

curves provide a precise view to understand [30].

Results and discussion

This section provides results and associated discussion on data-driven diagnosis of spinal

abnormalities. As mentioned earlier, the results are obtained using scikit-learn library of

Python. In the dataset used for the experiments, there were 310 samples where 210 (66.80%)

were abnormal and 100 (32.20%) were normal. The experiments were performed considering

241 samples which means 78% of the total samples were training data and 22% were testing

data. For the 241 training samples, 161 (66.8%) were abnormal and 80 (33.19%) were normal.

For the 69 testing samples, 49 (71%) were abnormal and 20 (29%) were normal. It will be

shown later in Section 6.1 that a testing dataset of 22% of the total samples provides excellent

fit and better accuracy compared to other proportion of test data. As mentioned earlier, the

most important features among the total of 12 attributes were selected using univariate feature

selection with the help of p value. The lower the value of p, the more important the feature was.

Table 2 shows the ranking of features based on the univariate feature selection algorithm. It

can be seen that degree spondylolisthesis has the lowest rank and thus is the most prominent

feature.

Results for SVM and Bagging SVM

This section describes the results for SVM and bagging SVM. In all the experiments of SVM,

the linear kernel was used except for the case where all the kernels were compared. Moreover,

Table 2. Feature name and associated ranking.

Ranked attribute Attribute name

1 Degree spondylolisthesis

2 Pelvic incidence

3 Pelvic tilt

4 Lumbar lordosis angle

5 Pelvic radius

6 Cervical tilt

7 Sacral slope

8 Direct tilt

9 Pelvic slope

10 Scoliosis slope

11 Thoracic slope

12 Sacrum angle

https://doi.org/10.1371/journal.pone.0228422.t002
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the value of random state variable was set to zero, and probability was set to ’True’. The linear

kernel parameter c was varied and the best testing accuracy was found at c = 0.7and at c = 1.

The values of parameters c and γ were varied for RBF kernel to obtain the optimum

performance.

Table 3 shows the classification accuracy of SVM obtained for different numbers of fea-

tures. In this case, the ‘first 2-features’ means the features ranked 1 and 2 from Table 2. It can

be seen from Table 3 that for the first 6 features, the highest testing accuracy of 86.96% is

obtained and the training accuracy is also close to the highest one being 86.30%. This ensures

excellent fit without overfitting or underfitting situations. In this work, the results of linear

SVM are shown for c = 1. The performance results for SVM using RBF kernel is presented in

Table 4. It can be seen that for c = 0.9 and γ = 1, the best testing accuracy, and the small differ-

ence between training and testing accuracies are obtained. The comparison of linear kernel

with other kernels is depicted in Table 5. It can be seen from Table 5 that the values for training

and testing accuracy for lineal kernel with 6 features are large and very close. This avoids over-

fitting or underfitting situations. Note that although RBF kernel has the highest training

Table 3. Accuracies of SVM for different feature numbers.

Number of features Testing accuracy (%) Training accuracy (%)

First 1 feature 82.60 78.00

First 2 features 81.15 77.17

First 3 features 84.05 82.98

First 4 features 79.71 83.40

First 5 features 85.50 86.30

First 6 features 86.96 86.30

First 7 features 86.96 86.30

First 8 features 86.96 86.30

First 9 features 85.50 86.30

First 10 features 85.50 85.47

First 11 features 86.96 85.47

First 12 features 85.50 85.89

https://doi.org/10.1371/journal.pone.0228422.t003

Table 4. SVM with RBF kernel using 6 features.

c–value Gamma γ Training accuracy (%) Testing accuracy (%)

0.5 0.1 85.89 81.16

0.7 87.13 81.15

0.9 87.55 82.60

1 87.96 82.60

2 89.21 82.60

5 89.62 81.15

7 90.04 82.60

0.9 0.1 87.55 82.60

0.2 88.38 81.15

0.3 89.62 81.15

0.5 90.87 78.26

0.6 91.28 76.81

0.9 93.36 76.81

https://doi.org/10.1371/journal.pone.0228422.t004
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accuracy, its testing accuracy has a much lower value. Hence, for the rest of the paper, linear

kernel is considered for SVM.

Next, the results for SVM will be evaluated using holdout method for different proportion

of test samples. Table 6 presents the training and testing accuracies for the case where 22%,

23%, 24%, 25% and 30% samples are used for testing. Furthermore, both 6 features and all 12

features are taken into consideration.

It can be seen that the best accuracy in classifying spinal abnormality is obtained when 22%

samples are used for testing and when 6 features are used instead of all 12. Note that for 22%

testing data, the testing accuracy is the highest being 86.96% and the training accuracy is

86.30% which is close to the testing accuracy. The difference between these two accuracy levels

is also low indicating excellent fit performance. SVM is also evaluated on the spinal samples

after feature extraction using PCA. It is shown in Table 7 that for the case of PAC, the highest

testing accuracy is obtained at n components of 11 having an accuracy of 85.50%. This value of

testing accuracy for PCA is lower than that of feature selection case which is 86.96%. Hence,

compared to SVM with feature selection, SVM with PCA method is less effective in classifying

spinal data. Next, the performance results for bagging SVM is evaluated.

Table 8 shows the training and testing accuracy of bagging SVM for different values of c. It

can be seen that the best training and testing accuracies are obtained for c = 1 and c = 7.

Table 9 shows the classification accuracies of bagging SVM when applied on different numbers

of features of the spinal data. However, it is shown in Table 10 that the precision, recall and

F1-score values are better in bagging SVM when c = 7. Therefore, for the rest of the paper, bag-

ging SVM with c = 7 is considered. It can be seen from Table 9 that for the case of first 6, 7 and

8 features, the values of testing accuracies are the highest, but the differences between the test-

ing and training accuracies are not low. So, this does not result in a good fit of the classifier

model. On the other hand, for the case of first 5 features, the testing and training accuracy val-

ues are high and close to each other ensuring better fit compared to the case of 6, 7 or 8 fea-

tures. Hence, for the rest of this work, the first 5 features will be considered for bagging SVM.

In the following section, performance evaluation is done for SVM algorithm while applied

on the first 6 features of spinal dataset. Moreover, ROC curves, ROC and precision-recall

curves are demonstrated. Table 10 presents the data of confusion matrix elements for SVM

with 6 and 12 features, and bagging SVM with 5 features. It can be seen that the TN value for

Table 5. SVM with different kernels using 6 features.

Different SVM kernels Training accuracy (%) Testing accuracy(%)

SVM (kernel = linear, c = 1) 86.30 86.96

SVM (kernel = RBF, c = 0.9, γ = 0.1) 87.55 82.60

SVM (kernel = poly, c = 1, degree = 8) 71.78 71.01

SVM (kernel = sigmoid, c = 1) 81.74 82.60

https://doi.org/10.1371/journal.pone.0228422.t005

Table 6. Results for different proportion of test samples for SVM.

% of test data 6 features 12 features

Training accuracy (%) Testing accuracy (%) Training accuracy (%) Testing accuracy (%)

22% 86.30 86.96 85.89 85.50

23% 85.29 86.11 85.29 86.11

24% 85.10 86.66 85.10 86.66

25% 84.91 87.17 84.91 87.17

30% 84.79 91.39 84.33 89.24

https://doi.org/10.1371/journal.pone.0228422.t006
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SVM with 6 features is 15, whereas that for 12 features is reduced to 14, the FP values for SVM

with 6 features is 5 which is increased to 6 for the case of 12 features. The precision, recall and

F1-score for SVM having 6 features are calculated as 90%, 91.84% and 91%, respectively. On

the other hand, the precision, recall and F1-score for SVM with 12 features are calculated as

88%, 92% and 90%, respectively. Therefore, for the case of SVM, the values of precision and

F1-score are lower for 12 features than 6 features indicating better performance for the case of

6 features. Furthermore, Table 10 shows that bagging SVM exhibits greater recall value of

95.92% at c = 7 compared to the value of 94% at c = 1. Therefore, c = 7 is a better choice for

bagging SVM. Fig 3 shows the precision recall plots for abnormal, normal samples and their

micro-average for the case of SVM and bagging SVM. Fig 3(A) is for SVM with 6 features,

whereas Fig 3(B) is for bagging SVM with 5 features. The micro-average value is higher for

bagging SVM is 0.955 which is higher than the value of SVM being 0.953. This indicates the

superiority of bagging SVM over SVM for this dataset.

Table 7. Result of SVM-PCA and LR-PCA.

PCA (n components) SVM-PCA LR-PCA

Training accuracy (%) Test accuracy (%) Training accuracy (%) Test accuracy (%)

1 70.12 72.46 69.71 73.91

2 70.53 72.46 68.87 72.46

3 67.63 76.81 68.87 72.46

4 70.53 75.36 69.29 73.91

5 71.36 75.36 69.29 73.91

6 70.12 73.91 69.70 75.36

7 75.51 71.01 75.10 72.46

8 76.34 66.66 73.02 68.11

9 75.10 72.46 75.93 73.91

10 84.23 75.36 83.40 78.26

11 85.89 85.50 86.30 85.50

12 85.89 85.50 86.30 85.50

https://doi.org/10.1371/journal.pone.0228422.t007

Table 8. Accuracy of bagging SVM with different values of c.

c value Training accuracy (%) Testing accuracy (%)

0.1 86.72 86.96

0.3 86.72 86.96

0.5 86.72 85.50

0.7 86.30 86.96

0.9 85.89 86.96

1 86.72 86.96

3 86.30 86.96

5 85.89 86.96

7 86.72 86.96

9 85.89 86.96

10 85.89 86.96

11 85.89 86.96

15 85.47 86.96

https://doi.org/10.1371/journal.pone.0228422.t008
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Results for LR and bagging LR

Next, the performance results for LR and bagging LR will be evaluated. First consider the case

where LR is applied on the spinal samples after feature extraction using PCA. Table 7 presents

the classification accuracies of LR with PCA. For comparison, values for SVM with PCA are

also shown. Table 7 shows that the highest testing accuracy is obtained at n components of 11

having an accuracy of 85.50%. Hence, compared to LR with feature selection, LR with PCA

method is less effective in classifying spinal data. Hence feature selection method is more suit-

able and will be considered for the rest of the paper. Table 11 presents the training and testing

accuracies of patient classification for the case where 22% patient samples are used for testing.

Both LR and bagging LR are considered in Table 11. Furthermore, both 5 features and all 12

features are taken into consideration. It can be seen that the best testing accuracy is obtained

in classification of spinal data when 5 features are used instead of all 12. In this case, LR yields

training accuracy of 85.47% and testing accuracy of 86.96%, while bagging LR exhibits training

accuracy of 85.06% and testing accuracy of 86.96%. The difference between these two accuracy

levels is not large indicating excellent fit performance.

Table 12 presents the elements for confusion matrix for samples for LR with 5 features and

12 features and bagging LR with 5 features. From Table 12 it can be seen that the TP value for

LR with 5 feature is 45, whereas that for 12 features is reduced to 44; the FN values for 5 fea-

tures is 4 which is increased to 5 for 12 features. From the values of Table 12, the precision,

recall and F1-score can be calculated which are presented later in Table 13.

Fig 4 shows the precision recall plots for abnormal, normal samples and their micro average

for LR and bagging LR. The micro-average value for bagging LR is 95.9% which is higher than

the 95.8% value of LR. This indicates the superiority of bagging LR over LR for this dataset.

Table 9. Training and testing accuracies for bagging SVM with different number of features.

No of features Training Accuracy Testing Accuracy

First 1 feature 80.49 79.71

First 2 features 79.66 79.71

First 3 features 82.98 84.05

First 4 features 82.98 79.71

First 5 features 86.72 86.96

First 6 features 85.47 88.40

First 7 features 85.06 88.40

First 8 features 85.47 88.40

First 9 features 85.89 85.50

First 10 features 85.06 84.05

First 11 features 85.89 84.05

First 12 features 84.65 84.06

https://doi.org/10.1371/journal.pone.0228422.t009

Table 10. Elements of confusion matrix for SVM and bagging SVM.

Model No. of Features TP FN FP TN Precision(%) Recall(%) F1-score (%)

SVM (c = 1) 6 45 4 5 15 90 92 91

12 45 4 6 14 88 92 90

Bagging SVM (c = 1) 5 46 3 6 14 88 94 91

Bagging SVM (c = 7) 5 47 2 7 13 87 95.92 91

https://doi.org/10.1371/journal.pone.0228422.t010
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Fig 3. Precision-Recall Curves for (a) SVM with 6 features (b) bagging SVM with 5 features.

https://doi.org/10.1371/journal.pone.0228422.g003

Data-driven diagnosis of spinal abnormalities

PLOS ONE | https://doi.org/10.1371/journal.pone.0228422 February 6, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0228422.g003
https://doi.org/10.1371/journal.pone.0228422


Comparison between SVM, LR and bagging

This section shows comparative results for SVM, LR, bagging SVM and bagging LR in realiz-

ing the classification of spinal data. First of all, we will compare the classifiers using ROC

curves. Note that ROC curve is a plot of the FPR (x-axis) versus the TPR (y-axis) for a number

of different candidate threshold values between 0 and 1.0. Fig 5 shows the ROC curves for dif-

ferent classifiers. It can be seen that bagging SVM has slightly less AUC value compared to

SVM and bagging LR.

Table 13 presents the comparative performance of SVM, LR, bagging SVM and bagging LR

in terms of precision, recall and F1-score, miss rate and testing accuracy. Both feature selection

and PCA techniques are applied to obtain the attributes to be processed by the classifiers.

Results show that for both SVM and LR, feature selection exhibits better classification accuracy

than the case of using all features. Moreover, feature selection shows better performance than

PCA feature extraction method for classifying the spinal samples. SVM with 6 features and LR

with 5 features can more accurately predict spinal abnormality compared to SVM and LR with

all 12 features. Furthermore, bagging SVM (c = 7) with 5 features has the same testing accuracy

(86.96%), but lowest miss rate (4.08%) than other classifiers. In addition, bagging SVM has

greater recall value (95.92%) than others at the cost of lower precision value. Hence, bagging

SVM having c = 7, is the most suitable classifier in predicting whether patients have spinal

abnormalities or not.

Table 11. Accuracies for LR and bagging LR.

Classifier % of test data 5 features 12 features

Training accuracy (%) Testing accuracy(%) Training accuracy(%) Testing accuracy(%)

LR 22 85.47 86.96 86.30 85.50

Bagging LR 85.06 86.96 83.82 84.06

https://doi.org/10.1371/journal.pone.0228422.t011

Table 12. Elements of confusion matrix for LR and bagging LR.

Model No. of Features TP FN FP TN

LR 5 45 4 5 15

LR 12 44 5 5 15

Bagging LR 5 45 4 5 15

https://doi.org/10.1371/journal.pone.0228422.t012

Table 13. Comparison of SVM, LR, bagging SVM and bagging LR.

Machine Learning model Feature selection /

extraction

No. of features/

dimension

Precision

(%)

Recall

(%)

Miss rate

(%)

F1-score

(%)

Testing accuracy

(%)

ROC-AUC

SVM No 12 88.24 91.84 8.16 90 85.50 93.26

Filter based feature 6 90 91.84 8.16 90.91 86.96 94.08

PCA 11 88.24 91.84 8.16 90 85.51

Bagging SVM (linear kernel

with c = 7)

Filter based feature 5 87.04 95.92 4.08 91.26 86.96 93.77

LR

No 12 89.80 89.80 10.20 89.80 85.51 93.67

Filter based feature 5 90 91.84 8.16 90.91 86.96 94.48

PCA 11 89.80 89.80 10.20 89.80 85.51

Bagging LR Filter based feature 5 90 91.84 8.16 90.91 86.96 94.79

https://doi.org/10.1371/journal.pone.0228422.t013
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Fig 4. Precision-Recall Curves for (a) LR with 5 features (b) bagging LR with 5 features.

https://doi.org/10.1371/journal.pone.0228422.g004
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Table 14 presents the performance results for bagging SVM using cross validation to sepa-

rate the training and testing samples. For k fold cross validation, the value of k is varied from 2

to 33. It can be seen that for k = 28, the testing accuracy is the highest being 86.94%. This value

of accuracy is approximately similar to the testing accuracy of 86.96% obtained with holdout

method (22% testing 78% training) shown in Table 13.

Table 15 shows the comparative overview of accuracy of the proposed bagging SVM

method with respect to the work reported in the literature. For the proposed bagging SVM

algorithm, the results are provided for the case of cross validation and for the case holdout

method. It can be seen that the testing accuracy for bagging SVM is almost the same, being

86.94% and 86.96% for cross validation and holdout, respectively. However, the F1-score and

recall values are lower for the case of cross validation than holdout. When applied on selected

features, the proposed bagging SVM shows a testing accuracy of 86.94% which is better than

that reported for k-NN having 85.32% [16], random forest having 81.93% [17], decision table

having 81.29% [17] and naive Bayes [17] having 83.87%, SVM linear kernel having 85% [3]

Fig 5. ROC curves with 5 features for SVM, LR, bagging SVM and bagging LR.

https://doi.org/10.1371/journal.pone.0228422.g005
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and SVM KMOD kernel having 85.9% [3]. Moreover, bagging SVM with or without using

cross validation has greater values of precision and recall than values obtained by the algo-

rithms reported in the literature of spinal disorder [16,17, 3].

7. Conclusion

This paper diagnoses spinal abnormalities using the concepts of feature selection, feature

extraction and machine learning algorithms. For this, investigation is carried by the use of sci-

kit-learn library of Python on a dataset of 310 patients available in Kaggle repository. Using

univariate feature selection technique, the degree spondylolisthesis is found to be the most sig-

nificant attribute of spinal abnormality. A number of machine learning classifiers known as

SVM, LR, bagging SVM and bagging LR technique are used to diagnose the spinal abnormality

samples. For the SVM algorithm, six features namely degree spondylolisthesis, pelvic inci-

dence, pelvic tilt, lumbar lordosis angle, pelvic radius and cervical tilt are considered. LR,

Table 14. Performance results of bagging SVM using cross validation.

Fold Precision (%) Recall (%) Miss rate (%) F1-score (%) Testing Accuracy (%) ROC_AUC (%)

2 84.70 68.57 31.42 75.78 70.32 82.46

3 85.47 70.00 30.00 76.96 71.71 86.85

4 87.85 75.71 24.29 81.33 76.54 90.41

5 87.32 85.24 14.76 86.27 81.61 90.98

6 88.27 82.38 17.62 85.22 80.71 92.38

7 87.80 85.71 14.29 86.75 82.38 91.64

8 89.16 86.19 13.81 87.65 83.75 93.68

9 89.55 85.71 14.29 87.59 83.76 92.68

10 89.16 86.19 13.81 87.65 83.55 93.00

11 89.42 88.57 11.43 89.00 85.26 90.98

12 88.63 89.05 10.95 88.84 85.13 92.96

13 88.29 86.19 13.81 87.23 83.17 92.53

14 88.78 86.67 13.33 87.71 83.72 92.18

15 89.00 88.57 11.43 88.78 84.94 92.55

16 89.47 89.05 10.95 89.26 85.75 93.08

17 89.76 87.62 12.38 88.67 85.08 94.42

18 88.29 86.19 13.81 87.23 83.26 92.92

19 89.37 88.10 11.90 88.73 85.09 92.95

20 88.52 88.10 11.90 88.31 84.40 93.75

21 89.10 89.52 10.48 89.31 85.53 93.17

22 89.15 90.00 10.00 89.57 86.15 93.15

23 88.63 89.05 10.95 88.84 85.33 92.81

24 89.47 89.05 10.95 89.26 85.73 93.37

25 89.47 89.05 10.95 89.26 85.79 92.69

26 88.89 91.43 8.57 90.14 86.60 92.90

27 88.84 90.95 9.05 89.88 86.34 93.40

28 88.89 91.43 8.57 90.14 86.94 93.59

29 88.79 90.48 9.52 89.62 86.38 93.71

30 89.27 87.14 12.86 88.19 84.70 92.50

31 89.22 86.67 13.33 87.92 84.35 92.60

32 89.27 87.14 12.86 88.19 84.75 93.23

33 88.89 87.62 12.38 88.25 84.66 93.47

https://doi.org/10.1371/journal.pone.0228422.t014
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bagging SVM and bagging LR use only five features which are the ones used by SVM except

for the cervical tilt feature. In order to obtain the best performance from SVM, the parameter c
is varied for linear kernel, while the parameters c and γ are varied for RBF kernel. For the SVM

algorithm, the linear kernel is shown to provide better training and testing accuracy than other

kernels. Furthermore, for bagging SVM, the parameter c of linear kernel is varied to obtain the

optimum value. The classifiers perform well when 22% of the spinal abnormality data are used

for testing and the remaining 78% as training. Experimental results demonstrate that SVM

with 6 features or LR with 5 features have an acceptable recall or detection rate of 91.84% and

precision of 90%. The classification accuracies of selected features of spinal samples using

SVM, LR, bagging SVM and bagging LR are 86.96%. Precision versus recall, and ROC curves

validate the reliability of these classifiers. However, bagging SVM with a parameter value of

c = 7, has the best miss rate of 4.08% and the best recall value of 95.92% when applied on 5 fea-

tures for the case of holdout method. When cross validation is used to split the dataset, bagging

SVM exhibits a recall value of 91.43% and miss rate of 8.57%. Results indicate that irrespective

of cross validation or holdout method, bagging SVM is the most suitable method for data-

driven diagnosis of spinal abnormalities compared to other methods described in this paper

and in the literature.

One limitation of this research is that the computation time of the classifiers is not studied.

Furthermore, several other less popular classifiers have not been investigated in predicting the

spinal disorders. As a future work, data may be collected from a larger sample of patients with

and without having spinal problem. New classification algorithms can be developed to increase

the prediction accuracy of spinal abnormalities.
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