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Abstract The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic

particles, and food granules. The structure of this particulate suspension could impact uptake of

drugs and nutrients and the function of microorganisms; however, little is understood about how

this suspension is re-structured as it transits the gut. Here, we demonstrate that particles

spontaneously aggregate in SI luminal fluid ex vivo. We find that mucins and immunoglobulins are

not required for aggregation. Instead, aggregation can be controlled using polymers from dietary

fiber in a manner that is qualitatively consistent with polymer-induced depletion interactions, which

do not require specific chemical interactions. Furthermore, we find that aggregation is tunable; by

feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal

fluid. This work suggests that the molecular weight and concentration of dietary polymers play an

underappreciated role in shaping the physicochemical environment of the gut.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40387.001

Introduction
The small intestine (SI) contains numerous types of solid particles. Some of these particles include

microbes, viruses, cell debris, particles for drug delivery, and food granules (Donaldson et al., 2016;

McGuckin et al., 2011; Maisel et al., 2015a; Goldberg and Gomez-Orellana, 2003; Faisant et al.,

1995). Little is understood about the state of these particles in the small intestine; do these particles

exist as a disperse solution or as aggregates? An understanding of how particulate matter is struc-

tured as it moves through the SI would contribute to fundamental knowledge on a host of topics,

such as how microbes, including probiotics and pathogens, function in the SI (Millet et al., 2014;

Lukic et al., 2014; Del Re et al., 1998; Kos et al., 2003; Tzipori et al., 1992). Knowledge of how

particle suspensions change during transit would also provide insight into how the uptake of drugs

and nutrients are affected by the physicochemical properties of the SI environment (Maisel et al.,

2015a; Goldberg and Gomez-Orellana, 2003). It would also give us better comprehension of how

the SI acts to clear potential invaders and harmful debris (McGuckin et al., 2011; Howe et al.,

2014).

Polymers abound in the gut in the form of secretions (e.g. mucins and immunoglobulins) and die-

tary polymers (e.g. dietary fibers and synthetic polymers). It is well known that host-secreted poly-

mers can cause aggregation of particles via chemical interactions; for example, mucins (Puri et al.,
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2015; Laux et al., 1986; Sajjan and Forstner, 1990; Wanke et al., 1990; Sun et al., 2007), immu-

noglobulins (Doe, 1989; Peterson et al., 2007; Levinson et al., 2015; Hendrickx et al., 2015;

Endt et al., 2010; Bunker et al., 2017; Moor et al., 2017; Mantis et al., 2011; Donaldson et al.,

2018), and proteins (Bergström et al., 2016) can cause bacteria to aggregate via an agglutination

mechanism. However, non-adsorbing polymers can also cause aggregation via purely physical inter-

actions that are dependent on the physical properties of the polymers, such as their molecular

weight (MW) and concentration (Asakura and Oosawa, 1954; Asakura and Oosawa, 1958;

Vrij, 1976; Gast et al., 1983; Prasad, 2002; Lu et al., 2006; Ilett et al., 1995). Here, we investigate

whether these physical interactions play a role in structuring particles in the SI. For this work, we

study the interactions between polystyrene particles densely coated with polyethylene glycol (PEG)

and the luminal contents of the SI. It has been demonstrated previously that PEG-coated particles

have little or no chemical interactions with biopolymers (Valentine et al., 2004; Wang et al., 2008),

so using PEG-coated particles allows us to isolate and investigate only the interactions dominated

by physical effects.

Results

PEG-coated particles aggregate in fluid from the murine small intestine
It has been observed that both bacteria (Levinson et al., 2015; Hendrickx et al., 2015; Endt et al.,

2010; Moor et al., 2017; Donaldson et al., 2018; Bergström et al., 2016) and particles

(Maisel et al., 2015a; Ensign et al., 2012; Tirosh and Rubinstein, 1998; Maisel et al., 2015b)

aggregate in the gut. Experiments have been performed in which mice are orally co-administered

carboxylate-coated nanoparticles, which are mucoadhesive, and PEG-coated nanoparticles, which

are mucus-penetrating (Maisel et al., 2015a). The carboxylate-coated particles formed large aggre-

gates in the center of the gut lumen. In contrast, PEG-coated particles were sometimes found co-

localized with carboxylate-coated particles and also penetrated mucus, distributing across the

underlying epithelium of the SI as aggregates and single particles.

To evaluate the distribution of particulate suspensions in the SI, we suspended 1-mm-diameter

fluorescent PEG-coated particles (see Materials and methods for synthesis) in buffers isotonic to the

SI and orally administered them to mice. We chose 1-mm-diameter particles because of their similar-

ity in size to bacteria. We collected luminal contents after 3 hr and confirmed using confocal fluores-

cence and reflectance microscopy that these particles aggregated with each other and co-

aggregated with what appeared to be digesta (Figure 1C and D; Materials and methods). On sepa-

rate mice, fluorescent scanning was used to verify that particles do transit the SI after 3 hr

(Figure 1A and B; Materials and methods).

Given the rich complexity of the SI, wherein particles co-aggregate with digesta and bacteria,

and are subjected to the mechanical forces of digestion and transit (Hasler et al., 2009), and other

phenomena, we next developed an ex vivo assay to characterize the structure of particles in luminal

fluid from the SI of mice. As a simple starting point, we sought to understand interactions among

particles of known chemistry and the luminal fluid of the SI. To minimize chemical interactions with

the biopolymers of the SI, we again chose PEG-coated polystyrene particles. PEG coatings have

been shown to minimize biochemical interactions between polystyrene particles and biopolymers in

a variety of contexts (Valentine et al., 2004; Wang et al., 2008), and thus PEG-coated particles are

commonly used in drug delivery (Maisel et al., 2015a; Maisel et al., 2015b; Lai et al., 2009).

To create PEG-coated polystyrene particles for the ex vivo experiments, we took 1-mm-diameter

carboxylate-coated polystyrene particles and conjugated PEG to the surface (Materials and meth-

ods). We used nuclear magnetic resonance (NMR) to verify that PEG coated the surface of the par-

ticles (see Materials and methods and Table 1). We found that by coating with PEG 5 kDa and then

coating again with PEG 1 kDa to backfill the remaining surface sites on the particle allowed us to

achieve a lower zeta potential than applying a single coat of PEG 5 kDa (Table 1). We chose these

particles for use in our assay. It has been suggested in the literature that a near-zero zeta potential

minimizes the interactions particles have in biological environments (Wang et al., 2008).

To collect luminal fluid from the SI of mice, we excised the SI of adult mice (8–16 weeks old),

divided it into an upper and lower section, and gently collected the luminal contents on ice. To sepa-

rate the liquid and solid phase, we centrifuged the contents and collected the supernatant. To
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further ensure that any remaining solid material was removed from the fluid phase, we filtered the

supernatant through a 30-mm pore size spin column and collected the filtrate (see Materials and

methods for more details). We then placed the PEG-coated particles in the SI luminal fluid at a

Stm
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LSICec

Col

A

D

LSI

C

USI

B

Figure 1. PEG-coated particles aggregate in the murine small intestine (SI). (A and B) Fluorescent scanner image

of gastrointestinal tract (GIT) from a mouse orally administered a suspension of 1 mm diameter PEG-coated

particles (green). Scale bar is 0.5 cm. (see Figure 1—figure supplement 1 for image processing steps and how

contours of gut were outlined). (C and D) Confocal micrographs of luminal contents from the upper (C) and lower

(D) SI of a mouse orally gavaged with PEG-coated particles (green) showing scattering from luminal contents

(purple). Scale bars are 10 mm. Stm = Stomach; USI = upper SI; LSI = lower SI; Col = colon.

DOI: https://doi.org/10.7554/eLife.40387.002

The following figure supplement is available for figure 1:

Figure supplement 1. Overview of image processing for fluorescent scanner images appearing in Figure 1.

DOI: https://doi.org/10.7554/eLife.40387.003

Table 1 Zeta potential and NMR measurements of PEG-coated particles.

For the zeta potential measurements, each particle solution was 0.1 mg/ml of particles in 1 mM KCl.

Measurements were done on a Brookhaven NanoBrook ZetaPALS Potential Analyzer. Three trials

were done where each trial was 10 runs and each run was 10 cycles. Values reported are the average

zeta potential for the 30 runs. NMR measurements were performed as described in Materials and

methods. Values are estimates of the nanomoles of polyethylene glycol (PEG) per milligrams of par-

ticles. To calculate this, we have to assume all the PEG on the surface is a single MW. It is therefore

assumed all the PEG on the surface is PEG 5 kDa.

Surface modification of PS particles Zeta potential (mV) Nanomoles PEG/mg particles

PEG 5 kDa �18.87 ± 1.78 5.5

PEG 5 kDa w/ mPEG 1 kDa backfill �7.66 ± 2.12 4.6

PEG 5 kDa w/ mPEG 350 Da backfill �9.99 ± 1.65 4.3

PEG 5 kDa w/ mPEG 5 kDa backfill �14.56 ± 1.78 4.0

PEG 2 kDa �39.59 ± 2.41 9.4

Carboxylate-coated (no PEG) �61.36 ± 12.40 0.0

DOI: https://doi.org/10.7554/eLife.40387.004
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volume fraction of » 0.001. A low-volume fraction was chosen because bacteria in the healthy SI are

found at similarly low-volume fractions (Rubio-Tapia et al., 2009; O’Hara and Shanahan, 2006;

Simon and Gorbach, 1984). We found that, despite the PEG coating and low-volume fraction,

aggregates of particles formed in 5–10 min (Figure 2A–D), a timescale much shorter than the transit

time for food through the SI, which can be as short as ~80 min in healthy humans (Hasler et al.,

2009) and ~60 min in mice (Padmanabhan et al., 2013). On longer timescales, peristaltic mixing

could also play a role (Hasler et al., 2009); during fasting, the migrating motor complex (MMC)

cycle first consists of a period of quiescence for ~30–70 min, followed by a period of random con-

tractions, then by 5 to 10 min in which contractions occur at 11–12 counts per minute (cpm) in the

duodenum and 7–8 cpm in the ileum. After eating, MMC is substituted with intermittent contractions

in the SI and waves can occur at a frequency of 19–24 cpm in the distal ileum 1–4 hr later. We there-

fore chose to focus on aggregation at short timescales (~10 min) because we sought to understand
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Figure 2. PEG-coated particles aggregate in fluid from the murine small intestine (SI) ex vivo. The 1-mm-diameter PEG-coated particles form

aggregates in fluid collected from the upper (A-C) and lower (D) SI in ~10 min. (A and D) Maximum z-projections of 10 optical slices taken on a confocal

microscope. (B and C) 3D renderings of aggregates found in panel A. (E) Maximum z-projection of the same particles in Hanks’ balanced salt solution

(HBSS). Scale bars are 10 mm in 2D images and 2 mm in 3D images. (F and H) Volume-weighted empirical cumulative distribution functions (ECDFs)

comparing aggregation of the particles in pooled samples from the upper (F) and lower (H) SI of three separate groups of male chow-fed mice (each

group consisted of three mice) and a control (particles suspended in HBSS). The vertical axis is the cumulative volume fraction of the total number of

particles in solution in an aggregate of a given size. The horizontal axis (aggregate size) is given as the number of particles per aggregate (N). (G and I)

Box plots depicting the 95% empirical bootstrap CI of the volume-weighted average aggregate size (given in number of particles per aggregate, N) in

samples from the upper (G) and lower (I) SI (the samples are the same as those from panels F and H). The line bisecting the box is the 50th percentile,

the upper and lower edges of the box are the 25th and 75th percentile respectively, and the whiskers are the 2.5th and 97.5th percentiles. USI = upper SI;

LSI = lower SI. See Materials and methods for bootstrapping procedure.

DOI: https://doi.org/10.7554/eLife.40387.005
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the initial formation of aggregates before aggregation is influenced by mechanical forces such as

shear due to peristaltic mixing and the transit of food.

To quantify the amount of aggregation in samples of luminal fluid, we developed a method to

measure the sizes of all aggregates in solution using confocal microscopy (see Materials and meth-

ods). From these datasets, we created volume-weighted empirical cumulative distribution functions

(ECDFs) of all the aggregate sizes in a given solution. We used these volume-weighted ECDFs to

compare the extent of aggregation in a given sample (Figure 2F and H). To test the variability of

aggregation in samples collected from groups of mice treated under the same conditions, we com-

pared the extent of aggregation in pooled samples taken from three groups, each consisting of

three male mice on a standard chow diet. We plotted the volume-weighted ECDFs of each sample

(Figure 2F and H) and observed that the variation among the groups under the same conditions

appeared to be small compared with the differences between the samples and the control.

To quantify the variability of aggregation among groups using an additional method, we boot-

strapped our datasets to create 95% bootstrap confidence intervals (CI) of the volume-weighted

average aggregate size of each of the three groups and the control in Hanks’ balanced salt solution

(HBSS) (Figure 2G and I; see Materials and methods for complete details of the bootstrapping pro-

cedure). All 95% bootstrap CI either overlapped or came close to overlapping, again suggesting

there was little variability among pooled samples treated under the same conditions (male mice on a

standard chow diet).

Fractionation of SI fluids suggests polymers play a role in aggregation
of PEG-coated particles
Given that polymers can aggregate particles and bacteria via several mechanisms (Puri et al., 2015;

Laux et al., 1986; Sajjan and Forstner, 1990; Wanke et al., 1990; Sun et al., 2007; Doe, 1989;

Peterson et al., 2007; Levinson et al., 2015; Hendrickx et al., 2015; Endt et al., 2010;

Bunker et al., 2017; Moor et al., 2017; Mantis et al., 2011; Donaldson et al., 2018;

Bergström et al., 2016; Asakura and Oosawa, 1954; Asakura and Oosawa, 1958; Vrij, 1976;

Gast et al., 1983; Prasad, 2002; Lu et al., 2006; Ilett et al., 1995), we hypothesized that biopoly-

mers in SI luminal fluid are involved in the aggregation of the PEG-coated particles. We therefore

sought to first quantify the physical properties of the polymers in the luminal fluid of the SI. To do

this, we used a 0.45 mm filter to remove additional debris and ran samples from a group of three

chow-fed mice on a gel permeation chromatography (GPC) instrument coupled to a refractometer, a

dual-angle light scattering (LS) detector, and a viscometer (details in Materials and methods). Chro-

matography confirmed that polymers were indeed present in the SI fluid (Figure 3A and D). Because

we do not know the refractive index increment (dn/dc) of the polymers present in these samples and

the polymers are extremely polydisperse, we cannot make exact calculations of the physical parame-

ters of these polymers. We can, however, calculate estimated values by assuming the range of the

dn/dc values to be about 0.147 for polysaccharides and about 0.185 for proteins and then dividing

the sample into different fractions based on retention volume (estimates of concentration and MW

of polymers are displayed on Figure 3A and D). The estimates suggest that the SI is abundant in

polymers with a range of MWs.

To qualitatively test our hypothesis that biopolymers in the SI were involved in the aggregation of

our PEG-coated particles, we collected SI luminal fluid from a different group of three male, chow-

fed mice. We performed an additional filtration step (0.45 mm) to further ensure the removal of any

solid materials. This filtrate was then separated into aliquots and each aliquot was run through a dif-

ferent MW cut-off (MWCO) filter (see Materials and methods). We then collected the eluent of each

aliquot and compared the aggregation of our PEG-coated particles in each (Figure 3B,C,E and F).

We generally found less aggregation in the fractionated samples compared with the 30- and 0.45

mm filtered samples. When the MWCO was decreased to 3 kDa, the observed aggregation in the

eluent matched the extent of aggregation observed for particles in HBSS. Overall, these data sup-

ported our hypothesis that polymers were involved in the aggregation of these particles.

Interestingly, in the lower SI, we observed more aggregation in the 0.45 mm filtered sample com-

pared with the 30 mm filtered sample. From handling the samples, we observed that the 30 mm fil-

tered samples appeared to be more viscous than the 0.45 mm filtered samples. We postulate that

this increase in viscosity was due to the formation of self-associating polymeric structures, although

we did not test this assumption. We attribute this decrease in aggregation in the 30 mm filtered
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samples to slower aggregation kinetics due to decreased diffusivity of particles in this viscous

medium. This decrease in aggregation at high polymer concentrations or viscosities is also observed

in solutions of model polymers, as discussed in the next section.
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Figure 3. Gel permeation chromatography (GPC) of fluid from the small intestine (SI) and aggregation of PEG-coated particles in fractionated fluid

from SI. (A and D) Chromatograms of samples from the upper (A) and lower (D) SI from a group of three chow-fed mice. Dashed lines indicate the

three retention volumes the chromatograms were divided into for analysis: 11–16 mL, 16–20 mL, and >20 mL. Estimated concentrations and molecular

weight (MW) are reported in green on the chromatograms for each retention volume. (B and E) Volume-weighted empirical cumulative distribution

functions (ECDFs) of aggregate sizes in the upper (B) and lower (E) SI liquid fractions of chow-fed mice which have been run through MW cut-off

(MWCO) filters with different MWCOs. As a control, aggregate sizes were also measured for particles placed in HBSS. The vertical axis is the cumulative

volume fraction of the total number of particles in solution in an aggregate of a given size. The horizontal axis is aggregate size (number of particles

per aggregate, N). (C and F) Box plots depict the 95% empirical bootstrap CI of the volume-weighted average aggregate size (given in number of

particles per aggregate, N) in the samples from panels B and E, respectively (see Materials and methods for bootstrapping procedure). The line

bisecting the box is the 50th percentile, the upper and lower edges of the box are the 25th and 75th percentile respectively, and the whiskers are the

2.5th and 97.5th percentiles.
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Aggregation of PEG-coated particles in model polymer solutions shows
complex dependence on the concentration and MW of polymers
Before exploring the complex environment of the SI further, we sought to first understand how our

PEG-coated particles behaved in simple, well-characterized polymer solutions with similar MW and

concentrations to those polymers we found in the SI in the previous experiments (Figure 3A and D).

It has been demonstrated that the aggregation of colloids and bacteria can be controlled by altering

the concentration and size of the non-adsorbing polymers to which particles are exposed

(Asakura and Oosawa, 1954; Asakura and Oosawa, 1958; Vrij, 1976; Gast et al., 1983; Pra-

sad, 2002; Lu et al., 2006; Ilett et al., 1995). In these controlled settings, particles aggregate due

to what are known as depletion interactions (Asakura and Oosawa, 1954; Asakura and Oosawa,

1958; Vrij, 1976). Many groups have focused on depletion interactions with hard-sphere-like col-

loids; they often use polymethylmethacrylate particles sterically stabilized with polyhydroxystearic

acid, because these particles closely approximate hard-sphere-like behavior (Royall et al., 2013;

Pusey and van Megen, 1986). In these scenarios, depletion interactions are often described as

forces that arise when particles get close enough to exclude polymers from the space between

them, resulting in a difference in osmotic pressure between the solution and the exclusion region,

leading to a net attractive force (Asakura and Oosawa, 1954; Asakura and Oosawa, 1958;

Vrij, 1976; Gast et al., 1983; Prasad, 2002). Others have instead chosen to describe the phase

behavior of the colloid/polymer mixture in terms of the free energy of the entire system (Ilett et al.,

1995; Lekkerkerker et al., 1992). Short-range attractions (polymer radius is ten-fold less than parti-

cle radius) between hard-sphere colloids induced by polymers have been described successfully in

the language of equilibrium liquid–gas phase separation (Lu et al., 2008; Zaccarelli et al., 2008).

Some groups have explicitly accounted for the effects of the grafted polymer layer used to steri-

cally stabilize colloids when studying interactions between polymer solutions and colloids

(Vincent et al., 1986a; Cowell et al., 1978; Vincent et al., 1980; Clarke and Vincent, 1981;

Feigin and Napper, 1980; Vincent et al., 1986b; Gast and Leibler, 1986; Jones and Vincent,

1989; Napper, 1983); this includes groups studying mixtures of polystyrene particles sterically stabi-

lized with grafted layers of PEG (MWs of 750 Da and 2 kDa) and aqueous solutions of free PEG poly-

mer (MW from 200 Da to 300 kDa) (Cowell et al., 1978; Vincent et al., 1980). It has been found

experimentally that in mixtures of polymers and sterically stabilized colloids, the colloids form aggre-

gates above a threshold polymer concentration. At even higher concentrations, as the characteristic

polymer size shrinks, the colloids cease to aggregate, a phenomenon referred to as ‘depletion

stabilization.’

To test whether our PEG-coated particles behave similarly to what has been previously found in

mixtures of polymers and sterically stabilized particles, we created polymer solutions with PEG at a

range of polymer concentrations and MWs and measured the extent of aggregation in these poly-

mer/particle mixtures (Figure 4A–D). We chose PEGs that have MWs similar to the MW of polymers

we found naturally occurring in the SI (Figure 3A,D): 1 MDa, 100 kDa, and 3350 Da. Using PEGs

with similar physical properties (i.e. MW, concentration) as a simple model of polymers found in the

SI allows us to focus solely on physical interactions between the particles and polymers. We created

PEG solutions in HBSS at mass concentrations similar to those measured for polymers in the SI

(Figure 3A and D) and imaged the polymer/particle mixtures after ~10 min. HBSS was chosen

because it has a similar pH and ionic strength to that of the SI (Lindahl et al., 1997; Fuchs and

Dressman, 2014). At the high ionic strengths of these buffered aqueous solutions (~170 mM), any

electrostatic repulsions that can occur between particles should be screened to length scales on the

order of the Debye screening length ~0.7 nm (Yethiraj and van Blaaderen, 2003; Jones, 2002),

nearly an order of magnitude smaller than the estimated length of the surface PEG brush (~6.4 nm;

see Materials and methods for more details). We again chose to look at aggregation on short time-

scales (after ~10 min) because we sought to understand the initial formation of aggregates; in the SI,

on longer timescales, aggregation will likely also be influenced by mechanical forces such as shear

due to peristaltic mixing and the transit of food.

For PEG 1 MDa and 100 kDa solutions we found aggregates of similar sizes to those observed in

the SI luminal fluid (Figure 4A-D). We did not detect any aggregation for the PEG 3350 Da solutions

(Figure 4D). Because the pH is known to vary across different sections of the gastrointestinal tract

and this could affect the observed aggregation behavior, we measured the pH in luminal fluid from
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Figure 4. Aggregation of PEG-coated particles in model polymer solutions shows complex dependence on molecular weight (MW) and concentration

of PEG. (A) Aggregates of 1 mm diameter PEG-coated particles in a 1 MDa PEG solution with a polymer concentration (c) of 1.6 mg/mL. Image is a

maximum z-projection of 10 optical slices taken on a confocal microscope. Scale bar is 10 mm. (B and C) 3D renders of aggregates found in panel A.

Scale bars are 2 mm. (D) Volume-weighted average sizes for serial dilutions of PEG solutions of three MWs (1 MDa, 100 kDa, and 3350 Da). Volume-

weighted average sizes are plotted on the vertical axis in terms of number of particles per aggregate (N) against polymer mass concentration (cp) in

mg/mL. The vertical error bars are 95% empirical bootstrap CI (see Materials and methods for bootstrapping procedure). Shaded regions indicate the

concentration ranges of detected intestinal polymers of similar MW. (E) Schematic depicting depletion interactions induced by ‘long polymers’

(polymer radius (RP) >length of the brush, L). Free polymers are depicted as purple spheres. Colloids are depicted in green with the grafted brush layer

in purple. The depletion layer around each colloid is depicted by dashed lines. The overlap region between the two depletion layers is indicated in

grey. (F) Schematic depicting depletion interactions induced by ‘short polymers’ (Rp <L). The depletion zone does not extend past the length of the

brush and there is effectively no overlap in the depletion layers; the depletion attractions are ‘buried’ within the steric layer. (G) Schematic depicting the

different contributions to the inter-particle potential (U(r)) against inter-particle separation distance (r). The hard surfaces of the particles are in contact

at r = 0. Udep depicts the depletion potential for a short polymer (RP,short) and a long polymer (RP,long). Us,mix shows the contribution to the steric

Figure 4 continued on next page
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the upper and lower small intestine (see Figure 4—figure supplement 1 and Materials and meth-

ods). We found that the upper small intestine (USI) luminal fluid was pH = 6.0 ± 0.1 and for the lower

small intestine (LSI) pH = 7.5 ± 0.3. For the HBSS used, pH = 7.6 ± 0.1 (See Materials and methods),

which matches that of the LSI but not the USI. We therefore conducted the same in vitro experiment

for PEG 1 MDa in phosphate buffered saline with pH = 6.0 ± 0.1 (Materials and methods and Fig-

ure 4—figure supplement 2). We found some differences in the aggregation, but the overall trends

were similar to before.

Overall, although our system is not at equilibrium at these short timescales, we found trends con-

sistent with what has been observed in the literature for depletion interactions with sterically stabi-

lized particles (Vincent et al., 1986a; Cowell et al., 1978; Vincent et al., 1980; Clarke and

Vincent, 1981; Feigin and Napper, 1980; Vincent et al., 1986b; Gast and Leibler, 1986;

Jones and Vincent, 1989; Napper, 1983). At dilute polymer concentrations, the extent of aggrega-

tion increased with concentration. At higher polymer concentrations, the extent of aggregation

began to decrease as the solutions begin to ‘re-stabilize.’ Additionally, the extent of aggregation

was greater for longer polymers. Interestingly, we found that the curves for the long polymers in

Figure 4D could be collapsed by normalizing the polymer concentration by the overlap concentra-

tion (which denotes the transition between the dilute to semi-dilute polymer concentration regimes)

for each respective polymer solution (Figure 4—figure supplement 3). We next sought to describe

the inter-particle potential using theory that combines depletion interactions with steric interactions.

We applied previously established theoretical frameworks that combine depletion interactions

with steric interactions to better understand our system (Vincent et al., 1986a; Feigin and Napper,

1980; Napper, 1983). To account for the depletion attractions between colloids we used the Asa-

kura–Oosawa (AO) potential (Udep) (Asakura and Oosawa, 1954; Asakura and Oosawa, 1958;

Vrij, 1976):

Udep rð Þ ¼

þ¥ for r � 0

�2pPPa RP�
r
2

� �2
for 0< r<2RP

0 for r>2RP

8

>

<

>

:

(1)

Where Udep is given in joules, Pp is the polymer osmotic pressure (in Pa), a is the radius of the col-

loid (in m), Rp is the characteristic polymer size (in m), and r is the separation distance between bare

particle surfaces (in m). This form of the depletion potential equation assumes that a� Rp, a condi-

tion satisfied for 1 mm particles we used. For the polymer osmotic pressure, we used the following

crossover equation for a polymer in a good solvent (Rubinstein and Colby, 2003; Cai, 2012):

PP ¼
NAvokT
MW

cP 1þ cP
c�
P

� �1:3
� �

(2)

Where PP is given in pascals, NAvo is Avogadro’s number, k is the Boltzmann constant, T is the

temperature (in kelvins), MW is the molecular weight of the polymer (in Da), cp is the polymer mass

concentration (in kg/m3), and c�P is the polymer overlap concentration (in kg/m3). This equation

describes the polymer osmotic pressure well in both the dilute and semi-dilute regime.

Figure 4 continued

potential due to mixing. Us,el + Us,mix shows the contribution due to elastic deformations and mixing at close inter-particle separations. (H) The

magnitude of the minima of the inter-particle potential (Umin/kT) plotted against polymer concentration for the three PEG solutions in (D). (I) Diffusion

coefficients estimated from the Stokes–Einstein–Sutherland equation for 1 mm particles in the PEG solutions used in (D). Diffusion coefficients of

particles in polymer solutions (DP) are normalized by the diffusion coefficients in water (DW) and plotted against polymer concentration.

DOI: https://doi.org/10.7554/eLife.40387.007

The following figure supplements are available for figure 4:

Figure supplement 1. pH measurements of luminal fluid from different sections of the gastrointestinal tract.

DOI: https://doi.org/10.7554/eLife.40387.008

Figure supplement 2. Aggregation of PEG-coated particles in model polymer solutions with different pH.

DOI: https://doi.org/10.7554/eLife.40387.009

Figure supplement 3. Aggregation of PEG-coated particles in model polymer solutions from Figure 4D normalized by polymer overlap concentration.

DOI: https://doi.org/10.7554/eLife.40387.010
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For the characteristic polymer size, we used the concentration-dependent radius of gyration (Pra-

sad, 2002; Burchard, 2001). This can be written as:

RP cPð Þ ¼ Rg 0ð Þ Mw
NAvokT

dPP

dcP

� ��1

2 (3)

Where RP cPð Þ is the concentration-dependent radius of gyration or the characteristic polymer size

given in meters, Rgð0Þ is the radius of gyration (in m) at dilute concentrations and PP is given by

equation 2. The characteristic polymer size is given by the dilute radius of gyration at low concentra-

tion and is close to the correlation length of the polymer solution, or the average distance between

monomers, in the semi-dilute regime. Therefore, using equation 2 and 3, we acquire the correct lim-

its for the depletion potential; the Asakura–Oosawa potential in the dilute regime and the depletion

potential described by Joanny, Liebler, and de Gennes in the semi-dilute regime (Joanny et al.,

1979). Similar crossover equations have been found to adequately describe experimentally observed

depletion aggregation in polymer-colloid mixtures where the polymer concentration spans the dilute

and semi-dilute regimes (Verma et al., 1998). Using literature values for the hydrodynamic radii of

the PEGs (Armstrong et al., 2004) and the Kirkwood-Riseman relation, which relates the hydrody-

namic radius to the radius of gyration (Armstrong et al., 2004; Tanford, 1961; Lee et al., 2008),

we estimated Rgð0Þ for each polymer. We estimated Rgð0Þ » 62.6, 16.7, 2.9 nm for PEG 1 MDa, 100

kDa, and 3350 Da, respectively. Using both the estimates of Rgð0Þ and the MW of each polymer, we

then estimated c�p for each polymer (Rubinstein and Colby, 2003; Flory, 1953). We estimated c�p =

1.6, 8.6, and 52.6 mg/mL for PEG 1 MDa, 100 kDa, and 3350 Da, respectively.

To account for steric interactions between the two grafted layers upon close inter-particle separa-

tions, we used equation 4 (Vincent et al., 1986a; Vincent et al., 1980). For inter-particle separation

distances between L and 2L, where L is the length of the grafted layer, the steric interactions

between the two grafted layers can be described using the Flory–Huggins free energy of mixing:

Us;mix rð Þ ¼ 4pakT
�1

fa
2

�� �2
1

2
��

� �

L� r
2

� �2 (4)

Where Us;mix is the steric interaction energy due to mixing (given in joules), a is the particle radius

(in m), �1 is the volume of a water molecule (in m3), fa
2

�

is the average volume fraction of the grafted

polymer (unitless), � is the Flory–Huggins interaction parameter for the grafted polymer and the sol-

vent (unitless), and L is the length of the grafted layer (in m). For PEG in aqueous solvents, � = 0.45

(Brandrup et al., 1975). Our NMR measurements (see Materials and methods for details) suggest

that the grafting density of PEG is within the brush regime. We therefore use the Alexander–de Gen-

nes approximation (Rubinstein and Colby, 2003) and our NMR measurements to estimate the

length of the grafted layer (L) as L ~ 6.4 nm and the average volume fraction to be fa
2

�

~ 0.43.

For inter-particle separations closer than L, one needs to account for elastic deformations of the

grafted layers (Vincent et al., 1986a; Jones and Vincent, 1989). This is far greater in magnitude

than Udep, so one can simply assume that at this point the potential is extremely repulsive. For inter-

particle separations greater than L:

U rð Þ ¼
Us; mix þUdep for L< r<2L

Udep for r � 2L

�

(5)

Using this theoretical framework, we can build a physical intuition for the system (Figure 4E–G).

Long polymers have depletion layers that extend out past the brush layer and overlap, inducing

attractions between the particles (Figure 4E). For short polymers (Rp<L), the depletion attractions

are buried within the steric repulsions induced by the brush and there are effectively no attractions

among the particles (Figure 4F). We can use this crossover to estimate the magnitudes of the min-

ima in the inter-particle potentials for the three PEG solutions (Figure 4H). It should be noted that

we have made several simplifications; for example, we do not consider interactions between free

polymers and the grafted layer, which could lead to partial penetration of free polymers into the

grafted layer or possible compression of the grafted layer by the free polymers (Vincent et al.,

1986a; Gast and Leibler, 1986; Jones and Vincent, 1989). Despite such simplifications, we find

that the calculated minima display similar concentration trends to the trends seen in the average
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aggregate sizes (Figure 4D). These calculations offer an explanation for why there is no aggregation

of PEG-coated particles in solutions of PEG 3350.

Another factor that needs to be considered at the short timescales and low-volume fractions we

are working at is aggregation kinetics (Weitz et al., 1984; Ball et al., 1987; Smoluchowski, 1916).

The probability that particles collide in solution is directly related to the diffusion coefficient and the

volume fraction of the particles. As we increase the polymer concentration we increase the viscosity

of the solution and decrease the diffusivity of the particles. In Figure 4I, we plot theoretical esti-

mates of the diffusion coefficients of the particles against the concentrations of the PEG solutions.

These diffusion coefficients were estimated using literature measurements, the Stokes–Einstein–

Sutherland equation, and the Huggins equation for viscosity (Rubinstein and Colby, 2003;

Armstrong et al., 2004).

Because our system would not have reached equilibrium, in this case the non-monotonic depen-

dence of aggregation on polymer concentration for long polymers is due to a complex interplay

between thermodynamics and kinetics (which we have not untangled). However, both the depen-

dence of diffusivity (Figure 4I) and the equilibrium prediction of inter-particle minima (Figure 4H) on

polymer concentration suggest that we should expect a decrease in aggregation at high polymer

concentrations. The inter-particle minima also suggest that we should not expect short polymers to

induce aggregation. Both trends are consistent with what we observe. Understanding how our PEG-

coated particles behave in these so-called ‘simple’ polymer solutions with similar physical properties

to the intestinal polymers we detected (Figure 3A and D) informs the interpretation of the results of

the next sections.

MUC2 may play a role in the aggregation of PEG-coated particles, but
is not required for aggregation to occur
It has been demonstrated that mucins can aggregate and bind to bacteria in vitro (Puri et al., 2015;

Laux et al., 1986; Sajjan and Forstner, 1990; Wanke et al., 1990; Sun et al., 2007); thus, we

wanted to test whether mucins, such as Mucin 2 (MUC2), which is the primary mucin secreted in the

SI (Ermund et al., 2013; Johansson et al., 2011), drive the aggregation of PEG-coated particles in

SI fluid. It is known that in the presence of Ca2+ and at pH � 6:2, MUC2 can form aggregates or pre-

cipitate out, but it is soluble without Ca2+ or at higher pH (Ambort et al., 2012). Our measurements

of the pH throughout the SI suggest that it is possible that MUC2 precipitates out in the upper small

intestine; however, because it is unclear how much Ca2+ is in the lumen of the upper small intestine,

there could be soluble MUC2 in the upper small intestine. Additionally, the literature suggests that,

based on the pH, there should be soluble MUC2 in the lower small intestine. We therefore tested if

MUC2 drives aggregation in both the upper and lower small intestine. To do this, we compared the

aggregation of our PEG-coated particles in samples from MUC2 knockout (MUC2KO) mice to sam-

ples from wild-type (WT) mice. To carefully preserve the native composition of the SI fluid, we used

a protease-inhibitor cocktail when collecting the samples (see Materials and methods). We con-

firmed mouse MUC2KO status via genotyping and Western blot (Figure 5E; Materials and methods).

The Western blot detected MUC2 in the colons of WT mice and not MUC2KO mice, as expected,

however it did not detect a signal for MUC2 in the SI of either the WT or MUC2KO mice. We specu-

late that the lack of MUC2 signal in the SI of WT mice may be due to low levels of MUC2 present in

the luminal contents of the SI.

We observed aggregation in samples from both the MUC2KO and WT mice (Figure 5A–B). To

test the strength of the aggregation effect in the different samples, we serially diluted the samples

and measured the average aggregate size to see when the effect disappeared (Figure 5C–D). As

explained in the previous section, we do not necessarily expect to see a linear decrease in aggrega-

tion with dilution. For simplicity, we will refer to the dilution factor at which aggregation begins to

disappear as the ‘aggregation threshold.’ We found differences in the aggregation threshold in the

samples from MUC2KO and WT mice (Figure 5C–D), suggesting that although MUC2 is not

required for aggregation to occur, it could play a role in the aggregation of PEG-coated particles.

We wanted to test differences in the MW distribution of the polymers found in these samples, so

we 0.45-mm-filtered our samples and analyzed them by GPC (see Materials and methods). The chro-

matograms from the refractometer (Figure 5F–G) suggest that the polymer composition of

MUC2KO and WT samples were qualitatively similar. Following the same methods in Figure 3, we

made estimates of the physical parameters of the detected polymers. These estimates are

Preska Steinberg et al. eLife 2019;8:e40387. DOI: https://doi.org/10.7554/eLife.40387 11 of 33

Research Communication Physics of Living Systems

https://doi.org/10.7554/eLife.40387


Figure 5. Quantification of the aggregation of particles in the small intestine (SI) in MUC2 knockout (MUC2KO) and wild-type (WT) mice. (A and B)

Volume-weighted empirical cumulative distribution functions (ECDFs) comparing aggregation of the particles in undiluted, 30 mm filtered samples from

the upper (A) and lower (B) SI of two separate groups of wild-type (WT) and MUC2-knockout (MUC2KO) mice to the control (particles suspended in

HBSS). The vertical axis is the cumulative volume fraction of the total number of particles in solution in an aggregate of a given size; the horizontal axis

is aggregate size in number of particles per aggregate (N). (C and D). Volume-weighted average aggregate sizes (Vol Wt Avg Size) for serial dilutions of

30-mm-filtered samples from the upper (C) and lower (D) SI of two separate groups of WT and MUC2KO mice. The dilution factor is plotted on the

horizontal axis; a dilution factor of 1 is undiluted, ½ is a two-fold dilution. The vertical error bars are 95% empirical bootstrap CI (see Materials and

methods). (E) Western blots of 30 mm filtered samples from the SI and the colon of WT and MUC2KO mice. WT USI = WT upper SI; KO USI = KO lower

SI; WT LSI = WT lower SI; KO USI = KO upper SI; WT Col = WT colon; KO Col = KO colon (F and G). Chromatograms of samples from the upper (F)

and lower (G) SI of groups of WT and MUC2KO mice.

DOI: https://doi.org/10.7554/eLife.40387.011

The following figure supplement is available for figure 5:

Figure supplement 1. Ex vivo aggregation in 0.45 mm-filtered luminal fluid from the small intestines (SI) of wild-type (WT) and MUC2 knockout

(MUC2KO) mice.

DOI: https://doi.org/10.7554/eLife.40387.012
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summarized in Tables 2,3 for both the upper and lower SI of MUC2KO and WT mice. We find that

these estimates suggest there are some differences in the polymeric composition of the SI of these

two groups.

To test whether these measured differences in polymeric composition are reflected in differences

in aggregation, we looked at aggregation in the 0.45-mm-filtered samples. We found that the undi-

luted samples from both groups displayed aggregation (Figure 5—figure supplement 1A–B). We

then created serial dilutions of the samples and found different aggregation thresholds for the sam-

ples (Figure 5—figure supplement 1C–D). These results further confirm our conclusion that

although MUC2 may play a role in particle aggregation, it is not required for aggregation to occur.

Immunoglobulins may play a role in aggregation, but are not required
for aggregation to occur
It has also been demonstrated that immunoglobulins can bind to bacteria and induce them to aggre-

gate (Doe, 1989; Peterson et al., 2007; Levinson et al., 2015; Hendrickx et al., 2015; Endt et al.,

2010; Bunker et al., 2017; Moor et al., 2017; Mantis et al., 2011; Donaldson et al., 2018). We

therefore wanted to test the hypothesis that immunoglobulins drive the aggregation of PEG-coated

particles in the SI. To do this, we compared the aggregation of our PEG-coated particles in samples

from groups of mutant mice that do not produce immunoglobulins (Rag1KO), to samples from

groups of WT mice. Again, to carefully preserve the native composition of the SI fluid, we used a

protease-inhibitor cocktail when collecting the samples (see Materials and methods). Because

Rag1KO mice are immunocompromised, they need be fed an autoclaved chow diet. To control any

potential differences in diet, both the Rag1KO and WT mice were fed an autoclaved chow diet for

48 hr before samples were collected.

The mice were confirmed to be Rag1KO via genotyping and Western blot (Figure 6E). According

to the literature, IgA is abundant in the SI (Murphy et al., 2004). As expected, we saw a signal for

IgA in the upper and lower SI of WT mice. We also tested for less abundant immunoglobulins such

as IgG and IgM (Figure 6—figure supplements 1 and 2, respectively), but did not detect their pres-

ence in the luminal contents of either WT or KO mice.

We observed aggregation in 30-mm-filtered samples from Rag1KO and WT mice (Figure 6A and

B). To test the strength of the aggregation effect in the different samples, we serially diluted the

samples and compared the volume-weighted average aggregate sizes at each dilution (Figure 6C

and D). We found differences in the amount of aggregation between the Rag1KO and WT samples

at different dilutions, suggesting that although immunoglobulins are not required for aggregation to

occur, they could play a role in the aggregation of PEG-coated particles.

We next wanted to test differences in the MW distribution of the polymers found in these sam-

ples, so we 0.45-mm-filtered our samples and analyzed them by GPC (see Materials and methods).

The chromatograms from the refractometer (Figure 6F and G) suggested that the Rag1KO and WT

samples were visually similar. We again made estimates of the physical parameters of the polymers

in these samples (summarized in Tables 4,5). These estimates suggest that there are some differen-

ces in the polymeric composition of the SI of these two groups of mice.

Table 2 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small

intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice.

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type WT MUC2KO WT MUC2KO WT MUC2KO

Mw (kDa) 3,560 ± 410 5,420 ± 620 162 ± 20 147 ± 17 4.05 ± 0.46 2.96 ± 0.34

Mw/Mn 1.36 1.59 2.16 2.43 3.59 10.9

Rh (nm) 49.1 45.5 6.31 5.95 1.18 1.02

Fract. Conc. (mg/mL) 2.52 ± 0.29 1.18 ± 0.13 24.6 ± 2.8 21.9 ± 2.5 88.7 ± 10.1 86.0 ± 9.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.

DOI: https://doi.org/10.7554/eLife.40387.013
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To test whether these measured differences in polymeric composition correspond with differen-

ces in aggregation, we quantified aggregation in the 0.45-mm-filtered samples. We found that the

undiluted samples for both groups displayed aggregation (Figure 6—figure supplement 3A and B).

When we created serial dilutions of the samples we found that the levels of aggregation were similar

(Figure 6—figure supplement 3C and D). Taken together, the results suggest that immunoglobulins

may play some role in aggregation, but the presence of immunoglobulins are not required for

aggregation to occur.

Interestingly, there are some differences in the levels of aggregation in WT mice fed the auto-

claved diet compared with the standard chow diet. The two diets are nutritionally the same, only the

processing is different. When samples from the WT mice in the MUC2KO experiments are compared

with samples from the WT mice in the Rag1KO experiments are compared, it is apparent that, com-

pared with WT mice fed the normal chow diet, samples from WT mice fed the autoclaved diet had

(i) a lower average concentration of polymers and (ii) polymers of lower overall MW (see ‘WT’ sam-

ples in Tables 1–4). These observations suggested two hypotheses: (Donaldson et al., 2016) dietary

polymers may play a role in aggregation and (McGuckin et al., 2011) aggregation may be con-

trolled by changing the polymer composition of the diet. We tested these hypotheses next.

Polymers in the diet control aggregation of PEG-coated particles in a
manner consistent with depletion-type interactions
As described in Figure 4, the extent of aggregation can be controlled by altering the polymer size

and concentration of the polymer solution. Furthermore, as pointed out above, SI fluid from mice

fed autoclaved and non-autoclaved diets induced different levels of aggregation. We hypothesized

that aggregation behavior would differ between mice fed polymers of different sizes—even if the

polymers were composed of similar chemical monomers and were present at the same polymer

mass concentration. We hypothesized that mice fed short polymers would exhibit less aggregation

in the SI (i.e. short polymers reduce the strength of the effect because depletion attractions are

reduced). We predicted that the converse would be true for long polymers (i.e. long polymers

increase the strength of the effect because depletion attractions are increased).

We first identified two candidate dietary carbohydrate polymers; Fibersol-2, a ‘resistant malto-

dextrin’ composed of D-glucose monomers (Kishimoto et al., 2013; Fibersol, 2018), with a MW

of ~3500 Da (see Table 6) and apple pectin, composed of D-galacturonic acid and D-galacturonic

acid methyl ester monomers (Dongowski et al., 2000; Thakur et al., 1997), with a MW of ~230 kDa

(Table 6). Before feeding mice these polymers, we first tested their effects on aggregation in vitro at

various concentrations in buffer (Figure 7A). We found similar trends to the PEG solutions in Fig-

ure 4. Pectin at low (~0.05 to ~1 mg/mL) and very high mass concentrations showed little aggrega-

tion (~7 mg/mL) and showed the most aggregation at an intermediate concentration (~1.5 to ~3 mg/

mL). Fibersol-2 did not induce much aggregation up to a mass concentration of ~240 mg/mL.

To test our hypothesis that we could use polymer size to control aggregation, we devised a sim-

ple experiment. One group of mice was fed a solution of Fibersol-2 and a second group was fed a

solution of apple pectin for 24 hr. The mass concentrations of the fibers in the two solutions were

Table 3 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small

intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type WT MUC2KO WT MUC2KO WT MUC2KO

Mw (kDa) 4,730 ± 540 5,180 ± 590 219 ± 25 155 ± 18 13.7 ± 1.6 5.93 ± 0.68

Mw/Mn 1.24 1.80 1.91 1.84 1.88 2.03

Rh (nm) 57.0 49.2 8.45 7.58 1.89 1.35

Fract. Conc. (mg/mL) 3.42 ± 0.39 2.36 ± 0.27 23.0 ± 2.6 22.8 ± 2.6 54.8 ± 6.3 63.3 ± 7.2

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.

DOI: https://doi.org/10.7554/eLife.40387.014
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matched at 2% w/v, and 5% w/v sucrose was added to each to ensure the mice consumed the solu-

tions. Mesh-bottom cages were used to ensure that the mice did not re-ingest polymers from fecal

matter via coprophagy. According to the literature, neither of these two polymers should be broken
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Figure 6. Quantification of the aggregation of particles in the small intestine (SI) in immunoglobulin-deficient

(Rag1KO) and wild-type (WT) mice. (A and B) Volume-weighted empirical cumulative distribution functions (ECDFs)

comparing aggregation of the particles in undiluted, 30 mm filtered samples from the upper (A) and lower (B) SI of

two separate groups of wild-type (WT) and immunoglobulin-deficient (Rag1KO) mice to the control (particles

suspended in HBSS). Plotted on the vertical axis is the cumulative volume fraction of the total number of particles

in solution in an aggregate of a given size. Plotted on the horizontal axis are aggregate sizes in number of

particles. (C and D). Volume-weighted average aggregate sizes (Vol Wt Avg Size) for serial dilutions of 30 mm

filtered samples from the upper (C) and lower (D) SI of two separate groups of WT and Rag1KO mice. The dilution

factor is plotted on the horizontal axis, where a dilution factor of 1 is undiluted, ½ is a two-fold dilution, and so on.

The vertical error bars are 95% empirical bootstrap CI using the bootstrapping procedure described in Materials

and methods. (E) Western blots of 30 mm filtered samples from the SI of WT and Rag1KO mice. WT USI = WT

upper SI; KO USI = KO lower SI; WT LSI = WT lower SI; KO USI = KO upper SI. (F and G) Chromatograms of

samples from the upper (F) and lower (G) SI of groups of WT and Rag1KO mice.

DOI: https://doi.org/10.7554/eLife.40387.015

The following figure supplements are available for figure 6:

Figure supplement 1. Western blots of 30 mm-filtered samples from the small intestine (SI) of wild-type (WT) and

Rag1 knockout (Rag1KO) mice.

DOI: https://doi.org/10.7554/eLife.40387.016

Figure supplement 2. Western blots of 30 mm-filtered samples from the small intestine (SI) of wild-type (WT) and

Rag1 knockout (Rag1KO) mice.

DOI: https://doi.org/10.7554/eLife.40387.017

Figure supplement 3. Ex vivo aggregation in 0.45-mm-filtered luminal fluid from the small intestines (SI) of wild-

type (WT) and Rag1 knockout (Rag1KO) mice.

DOI: https://doi.org/10.7554/eLife.40387.018
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down in the SI (Fibersol, 2018; Holloway et al., 1983; Coenen et al., 2006). As before, all samples

were collected with a protease-inhibitor cocktail.

We created serial dilutions of the small intestinal luminal fluid and looked at the extent of aggre-

gation in each sample. In the 30-mm-filtered samples from the upper SI we observed more aggrega-

tion in the pectin-fed mice compared with the Fibersol-2 fed mice (Figure 7E). For the undiluted 30-

mm-filtered lower SI sample, the pectin-fed mice samples formed a gel-like material which we were

unable to pipette and therefore could not use for aggregation experiments. This gelation is not too

surprising considering that pectin can form a gel in certain contexts (Thakur et al., 1997; Saha and

Bhattacharya, 2010). We were able to dilute this gel four-fold and then compare the aggregation in

serial dilutions of the pectin-fed LSI to the Fibersol-2-fed LSI. We found, again, more aggregation in

the pectin-fed mice than the Fibersol-2-fed mice (Figure 7G).

We again 0.45-mm-filtered these samples and ran them on GPC to test differences in the MW and

size distributions of the polymers in these samples. The chromatograms from the refractometer

(Figure 7C and D) suggest that there are differences in the polymeric distribution in the two groups

of mice. Figure 7B shows chromatograms of just Fibersol-2 and pectin in buffer. We see that pectin

elutes between 14–18 min, which is where we see an enhancement of the concentration of high-MW

polymers in the samples from the SIs of the group fed pectin. We also see that Fibersol-2 elutes

between 18–22 min, which is where we see an enhancement in the concentration of low-MW poly-

mers in the samples from the SI of the group fed Fibersol-2. We again made estimates of the physi-

cal parameters of the polymers in these samples which are summarized in Tables 7,8. The estimates

also suggest that there are differences in the polymeric composition of the SI of the two groups.

Overall, the data from GPC suggests that the pectin-fed mice have more high-MW polymers than

the Fibersol-2-fed mice. Low-MW polymers appear to be more abundant in Fibersol-2 fed mice com-

pared with pectin-fed mice. We observed visually that the SI contents of the pectin-fed mice formed

a gel and pectin is also known to self-associate to form a gel or aggregates in solution

Table 4 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small

intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type WT Rag1KO WT Rag1KO WT Rag1KO

Mw (kDa) 1,480 ± 170 2,140 ± 250 108 ± 12 74.2 ± 8.5 2.84 ± 0.32 1.91 ± 0.22

Mw/Mn 1.09 1.14 2.62 2.42 1.59 1.54

Rh (nm) 31.8 39.8 4.77 2.51 1.078 0.936

Fract. Conc. (mg/mL) 1.07 ± 0.12 1.13 ± 0.13 14.3 ± 1.6 13.9 ± 1.6 66.1 ± 7.6 70.5 ± 8.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range value ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.

DOI: https://doi.org/10.7554/eLife.40387.019

Table 5 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small

intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type WT Rag1KO WT Rag1KO WT Rag1KO

Mw (kDa) 1,080 ± 120 2,490 ± 290 66.9 ± 7.7 91.6 ± 10.5 3.64 ± 0.42 3.72 ± 0.43

Mw/Mn 1.18 1.05 1.71 1.98 2.09 1.98

Rh (nm) 34.6 47.1 4.67 4.85 1.116 1.09

Fract. Conc. (mg/mL) 1.52 ± 0.17 1.89 ± 0.22 15.8 ± 1.8 14.1 ± 1.6 49.5 ± 5.7 55.1 ± 6.3

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.

DOI: https://doi.org/10.7554/eLife.40387.020
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(Thakur et al., 1997; Saha and Bhattacharya, 2010). We note, therefore that by 0.45-mm-filtering

these samples we may be removing these structures and decreasing the concentration of pectin in

our samples.

To test that these measured differences in polymeric composition are reflected in differences in

aggregation, we tested aggregation in the 0.45-mm-filtered samples. We found that in both the

upper and lower SI samples, the samples from the pectin-fed group showed more aggregation than

the samples from the group fed Fibersol-2 (Figure 7F and H). When we created serial dilutions of

these samples, we found that the samples from the mice fed Fibersol-2 showed almost no aggrega-

tion at any concentration whereas the samples from pectin-fed mice showed aggregation. We also

observed that we needed to dilute the 30-mm-filtered samples more to achieve the greatest extent

of aggregation (Figure 7E and G). We speculate that this shift in the aggregation behavior between

the 30-mm-filtered and 0.45-mm-filtered samples is due to some of the polymers being lost when

0.45-mm-filtering the samples as a result of the aforementioned self-association of pectin.

These data taken together lead us to conclude that polymers in the diet can be used to control

the aggregation of PEG-coated particles. This data further suggests that feeding higher MW poly-

mers at the same mass concentration as lower MW polymers leads to an enhancement in aggrega-

tion. Due to the high polydispersity and complex chemical composition of SI luminal fluid as

measured by GPC, it is unfeasible to apply the same theoretical analysis as was done in Figure 4 to

these data. We can, however, note that visually the behavior is qualitatively consistent with the

depletion-type interactions found in simple PEG solutions in Figure 4.

Discussion
This work shows that even PEG-coated particles, which have minimal biochemical interactions, form

aggregates in the luminal fluid of the SI. It reveals a previously unknown way in which dietary poly-

mers can impact, and be used to control, the structure of particles in the SI. We speculate that this

phenomenon may play a role in the aggregation of other particles in the SI such as microbes, viruses,

nanoparticles for drug delivery, and food granules. For these types of particles, other factors will

also inevitably affect the formation of aggregates (e.g. interactions with mucins and immunoglobu-

lins); thus, it will be important to explore the interplay among all these factors. Another important

next step is to investigate how mixing in the SI and the co-aggregation of different types of particles

may affect aggregation. We speculate that the aggregation of particles in the SI could also have

functional consequences, such as promoting colonization by microbes, affecting infection by patho-

gens, and altering clearance of microbes (McGuckin et al., 2011; Millet et al., 2014; Lukic et al.,

2014; Del Re et al., 1998; Tzipori et al., 1992; Howe et al., 2014). Aggregation will also need to

be considered when designing nanoparticles for drug delivery (Maisel et al., 2015a; Goldberg and

Gomez-Orellana, 2003).

We found that MUC2 and immunoglobulins, which have been found to aggregate microbes both

in vivo and in vitro (Puri et al., 2015; Laux et al., 1986; Sajjan and Forstner, 1990; Wanke et al.,

1990; Sun et al., 2007; Doe, 1989; Peterson et al., 2007; Levinson et al., 2015; Hendrickx et al.,

2015; Endt et al., 2010; Bunker et al., 2017; Moor et al., 2017; Mantis et al., 2011;

Donaldson et al., 2018 ), are not required for the aggregation of PEG-coated particles. Instead, we

found that by feeding mice dietary polymers with similar chemistry but very different sizes we could

tune the extent of aggregation in the SI. These polymers (pectin and Fibersol-2) are forms of fiber

commonly found in the human diet. We found that feeding long polymers induced aggregation,

Table 6 Gel permeation chromatography of Fibersol-2 and pectin in phosphate-buffered saline

Sample Fibersol-2 Pectin

Mw (kDa) 3.48 232

Mw/Mn 10.5 1.97

Rh (nm) 1.24 25.4

Both fiber types were analyzed with dn/dc = 0.147 for polysaccharides. Mw = weight-average molecular weight; Mw/

Mn = the dispersity; Rh = hydrodynamic radius

DOI: https://doi.org/10.7554/eLife.40387.022
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Figure 7. Quantification of aggregation of PEG-coated particles in the small intestine (SI) of mice fed different

polymers from dietary fiber. (A) Volume-weighted average aggregate sizes (Vol Wt Avg Size) for serial dilutions of

apple pectin and Fibersol-2. Volume-weighted average sizes are plotted on the vertical axis in terms of number of

particles per aggregate (N) against polymer concentration (mg/mL). The vertical error bars are 95% empirical

bootstrap CI using the bootstrapping procedure described in Materials and methods. (B) Chromatograms of

apple pectin and Fibersol-2 in buffer. (C and D) Chromatograms of samples from the upper (E) and lower (F) SI of

two separate groups of mice (fed pectin or Fibersol-2). (E-H) Volume-weighted average aggregate sizes (Vol Wt

Avg Size) for serial dilutions of 30-mm-filtered samples from the upper (E) and lower (G) SI of two separate groups

of mice (fed pectin or Fibersol-2) to the control (particles suspended in HBSS). (F and H) Serial dilutions of

0.45-mm-filtered samples from the same groups. The dilution factor is plotted on the horizontal axis, where a

dilution factor of 1 is undiluted, and ½ is a two-fold dilution. The vertical error bars are 95% empirical bootstrap CI

using the bootstrapping procedure described in Materials and methods.
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whereas short polymers did not. More work needs to be done to understand the underlying mecha-

nism, but surprisingly the observed aggregation behavior in the SI luminal fluid from mice fed dietary

polymers of different sizes is qualitatively consistent with the aggregation behavior in simple PEG

solutions, where aggregation is driven by depletion interactions. Overall, this suggests a simple die-

tary method for controlling aggregation in the gut. It will be important to extend this work to

microbes and other particles commonly found in the gut and to measure the relative contributions

of polymer-driven aggregation and chemical-driven aggregation. We note that mucins and immuno-

globulins are polymers that can also self-associate into structures of very high MW (Ambort et al.,

2012; Grey et al., 1971; Kerr, 1990), suggesting that they could cause aggregation via both physi-

cal and chemical mechanisms. Interestingly, during the review of this manuscript, a study was pub-

lished with in vitro work done using model buffer solutions of mucins, DNA, and other biopolymers

further implying that aggregation of bacteria by host-polymers can be depletion-mediated

(Secor et al., 2018). In vivo, it will also be important to consider the effects of flow, as it has been

shown that flow in non-Newtonian fluids can induce particle aggregation

(Highgate, 1966; Michele et al., 1977; Kim and Helgeson, 2016). In particular, studies have sug-

gested that the combination of flow and polymer elasticity can lead to aggregation (Highgate and

Whorlow, 1970) and that shear thinning viscosity can influence aggregation as well (Snijkers et al.,

2013). In our work, we neglected flow effects for simplicity and thus our findings are most applicable

to the initial formation of aggregates before aggregation is influenced by mechanical forces due to

peristaltic mixing and the transit of food. A rudimentary estimate of the Weissenberg number (see

Materials and methods), which weighs the contributions of elastic and viscous forces,

yields Wi ~ 0:3 to 10, suggesting that elasticity-induced effects may play a role in the SI and will be

an important direction to pursue in follow-up studies. If flow-induced clustering does occur in vivo,

the literature suggests it would aid in the process, perhaps enhancing particle aggregation.

Table 7 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from upper small

intestine of pectin and Fibersol-2 fed mice.

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type Pectin Fibersol-2 Pectin Fibersol-2 Pectin Fibersol-2

Mw (kDa) 267 ± 31 686 ± 79 40.0 ± 4.5 35.3 ± 4.0 1.39 ± 0.16 1.67 ± 0.19

Mw/Mn 1.50 1.08 2.15 2.64 2.45 1.48

Rh (nm) 31.8 N/C** 5.52 2.88 0.819 N/C**

Fract. Conc. (mg/mL) 1.62 ± 0.19 0.516 ± 0.059 9.00 ± 1.03 23.3 ± 2.7 53.7 ± 6.1 77.0 ± 8.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh= hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction. N/C** denotes values for which the concentration was too

low to calculate.

DOI: https://doi.org/10.7554/eLife.40387.023

Table 8 Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from lower small

intestine of pectin and Fibersol-2-fed mice.

Retention volume (mL) 11 to 16 16 to 20 >20

Mouse type Pectin Fibersol-2 Pectin Fibersol-2 Pectin Fibersol-2

Mw (kDa) 282 ± 32 1680 ± 190 30.2 ± 3.5 18.8 ± 2.2 1.12 ± 0.13 2.32 ± 0.27

Mw/Mn 7.37 1.64 1.70 2.78 2.89 1.14

Rh (nm) 29.0 26.4 5.28 2.16 0.724 1.06

Fract. Conc. (mg/mL) 2.48 ± 0.28 0.839 ± 0.096 9.43 ± 1.1 53.6 ± 6.1 42.7 ± 4.9 88.3 ± 10.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as

the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity;

Rh = hydrodynamic radius; Fract. Conc. = concentration of a given molecular weight fraction.

DOI: https://doi.org/10.7554/eLife.40387.024
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We note that current dietary guidelines do not differentiate between fibers of low and high MW

(USDA, 2007; USDA, 2015). Our work implies that the MW of fiber, and the subsequent degrada-

tion of a high-MW fiber into a low-MW component (Datta et al., 2016), which we have discussed

previously in the context of mucus compression, is important in defining the physicochemical envi-

ronment of the gut. Further studies will be required to understand the effects of industrial food proc-

essing on MW of the dietary polymers present in foods, and which processing methods preserve or

produce high-MW polymers that impact mucus compression (Datta et al., 2016) and particle aggre-

gation in the gut.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

MUC2KO,
C57BL/6 mice
(female)

MUC2KO Eugene Chang Lab
(University of Chicago)
provided initial
breeding pairs which
were provided to
them
from Leonard
H. Augenlicht at the
Department of
Oncology
of Albert Einstein
Cancer Center

Genotyping was
performed by
Transnetyx Inc.;
Western blot was
done to confirm
lack of MUC2
(See Figure 5E)

Rag1KO,
C57BL/6
mice (male)

Rag1KO Provided by
Mazmanian
Lab at Caltech

RRID:IMSR_
JAX:002216

Western blot was
done to confirm
lack of IgA as
explained
in the text
(See Figure 6E)

C57BL/6 mice
(all male except for
WT controls in MUC2KO
experiments in Figure 5)

WT The Jackson
Laboratory

RRID:IMSR_
JAX:000664

Antibody MUC2 polyclonal
antibody
(rabbit host)

Biomatik Cat No:
CAU27315

Antibody Li-Cor IRDye
800 CW Goat Anti
-Rabbit IgG

Li-Cor P/N 925–32211;
RRID:AB_2651127

Antibody Li-Cor IRDye
800 CW Goat Anti
-Mouse IgG

Li-Cor P/N 925–32210;
RRID:AB_2687825

Antibody Li-Cor IRDye
800 CW Goat Anti
-Mouse IgM

Li-Cor P/N 925–32280

Antibody Goat Anti-Mouse
IgA-unlabeled

Southern
Biotech

Cat No: 1040–01

Antibody Li-Cor IRDye 800
CW Donkey
Anti-Goat IgG

Li-Cor P/N 925–32214;
RRID:AB_2687553

Chemical
compound, drug

apple pectin Solgar Inc. ‘Apple pectin
powder’;
SOLGB70120 00B

Chemical
compound, drug

Fibersol-2 Archer Daniels
Midland/
Matsutani
LLC

Product code:
013100, Lot #:
CY4P28540

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

USP grade
sucrose

Sigma-Aldrich

Chemical
compound, drug

Protease
inhibitor
cocktail

Roche cOmplete,
Mini, EDTA-free
Protease-Inhibitor
cocktail, Roche

Chemical
compound, drug

PEG 100 kDa Dow POLYOX
WSR N-10

Chemical
compound, drug

PEG 1 MDa Dow POLYOX
WSR N-12K

Chemical
compound, drug

PEG 3350 Bayer MiraLAX

Chemical
compound, drug

Hanks’ Balanced
Salt Solution
(without calcium,
magnesium,
phenol red)

GE Healthcare
Life Sciences

Product code:
SH30588.02

Software,
algorithm

3D aggregate
analysis pipeline

This paper;
source code
available
through Dryad

Description in
Materials and
methods;
source
code provided
on Dryad

Other mesh-bottom
(or wire-bottom)
floors

Lab Products,
Inc.

P/N: 75016

Other 1 mm diameter
PEG 5 kDa-coated
polysytrene beads

This paper Description of
synthesis in
Materials
and methods

Other 1 mm diameter
PEG 5 kDa-coated
polysytrene beads
with PEG 1 kDa
‘back-filling’

This paper Description of
synthesis in
Materials
and methods

Other standard
chow diet

PicoLab PicoLab Rodent
Diet 20;
Product #5053

Other autoclaved
chow diet

PicoLab Laboratory
Autoclavable
Rodent
Diet 5010

Details of animals used
All mice were male or female specific pathogen free (SPF) C57BL/6 mice between 8–16 weeks old.

Mice on a standard, solid chow diet were given food and water ad libitum. Immunoglobulin-deficient

(Rag1KO) mice were maintained on an autoclaved chow diet due to their immunocompromised sta-

tus. The control group of WT mice used as a comparison to this group was maintained on the same

autoclaved chow diet for 48 hr before euthanasia. Genotyping of MUC2 deficient (MUC2KO) and

Rag1KO mice was done by Transnetyx (Transnetyx, Inc., Cordova, TN, USA). Mice given only apple

pectin (Solgar, Inc., Leonia, NJ, USA) with sucrose (USP grade, Sigma-Aldrich, St. Louis, MO, USA)

or Fibersol-2 (Archer Daniels Midland/Matsutani LLC, Chicago, IL, USA) with sucrose were first raised

on a standard chow diet and given water ad libitum, then were maintained on a restricted diet con-

sisting of only 2% apple pectin +5% sucrose or 2% Fibersol-2 +5% sucrose for 24 hr. For those 24

hr, these mice were kept on mesh-bottom cages to prevent the re-ingestion of polymers from the

standard chow diet via coprophagy. The MUC2KO colony was raised and maintained by the
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Ismagilov Lab. The Rag1KO mice were provided by the Mazmanian lab (Caltech). All other mice

were from Jackson Labs (The Jackson Laboratory, Bar Harbor, ME, USA). All animal experiments

were approved by the California Institute of Technology (Caltech) Institutional Animal Care and Use

Committee (IACUC) and the U.S. Army’s Animal Care and Use Review Office (ACURO). Mice were

euthanized via CO2 inhalation as approved by the Caltech IACUC in accordance with the American

Veterinary Medical Association Guidelines on Euthanasia (Leary et al., 2013).

Oral administration of particles
Particles were gavaged at a concentration of 0.1–2% w/v in either 1x HBSS or 1x PBS. We used small

fluid volumes (50 mL) to minimize volume-related artifacts (Maisel et al., 2015a). We chose buffers

isotonic to the SI because it has been shown that the isotonicity of the delivery medium can greatly

affect the in vivo particle distribution (Maisel et al., 2015b). In some experiments, animals were

food-restricted for 4 hr prior to administration of particles. It has been previously demonstrated

though that food-restriction has minimal effects on the in vivo distribution of PEG-coated particles

(Maisel et al., 2015a). In all experiments animals were euthanized 3 hr after administration of

particles.

Fluorescent scanner experiments
Gastrointestinal tracts (GIT) were excised and laid out flat on petri dishes on ice. Drops of saline

were then placed around the GIT and the petri dishes were sealed with parafilm. Samples were then

immediately brought to the fluorescent laser scanner (Typhoon FLA 9000) for imaging. Samples

were scanned with an excitation wavelength of 473 nm and a 530 nm bandpass filter.

Imaging of luminal contents from mice orally administered particles
Immediately after euthanization the small intestines of the mice were excised and divided into an

upper and lower section. The luminal contents were collected by gently squeezing the intestines

with tweezers. They were placed directly onto a glass slide and encircled by a ring of vacuum grease

that did not touch the contents. A coverslip was then immediately placed on top to create an air-

tight chamber. Samples were kept on ice during the collection process. The samples were then

immediately taken for imaging. All imaging was performed using a Zeiss LSM 800 or a Leica

DMI6000, using either bright-field microscopy, epifluorescence microscopy (GFP, L5 Nomarski

prism), confocal fluorescence microscopy (488 nm excitation and 490–540 nm detection), or confocal

reflectance microscopy (561 nm excitation and 540–700 nm detection).

Collection of intestinal luminal fluid
Immediately after euthanasia, the SI of each mouse was excised and divided into an upper and lower

section. If luminal fluid was collected from the colon, then the colon was also excised. The luminal

contents were then collected from each section in separate tubes and kept on ice. The luminal con-

tents from an individual mouse were insufficient in volume to perform all the required analyses (i.e.

ex vivo aggregation, GPC, and sometimes Western blot), so contents were pooled from a group of

three mice of the same age that were co-housed. These pooled samples, kept divided by section,

were then spun down at 17 kG at 4˚C for 1 hr to separate the liquid and solid portions of the con-

tents. The supernatant of each sample was collected and then placed on 30 mm filters (Pierce Spin

Columns – Snap Cap, Thermo Fisher Scientific, Waltham, MA, USA) and spun down at 17 kG at 4˚C
for 1 hr. Part of the filtrates of each sample were then collected, divided into aliquots, and frozen at

�20˚C for future experiments. The remaining portion of the filtrates was then taken and placed on

0.45 mm centrifugal filters (Corning Costar Spin-X centrifuge tube filters; cellulose acetate mem-

brane, pore size 0.45 mm, sterile) and spun down at 5 kG at 4˚C for 1 hr. For experiments in which a

protease-inhibitor cocktail (Roche cOmplete, Mini, EDTA-free Protease-Inhibitor Cocktail, Roche,

Indianapolis, IN, USA) was used, a 100x concentrated stock solution was prepared in HBSS (without

calcium, magnesium, and phenol red; GE Healthcare Life Sciences, Marlborough, MA, USA). The

same procedure as detailed above were followed for the collection of luminal fluid, except immedi-

ately after the luminal contents were brought back from the animal facility on ice, 10 mL of the 100x

protease-inhibitor cocktail was added to each tube. The mixtures were then vortexed briefly to mix.

The contents were then spun down at 17 kG at 4˚C as described above to separate the solid from
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liquid contents. The liquid fraction collected from each group before 30 and 0.45 mm filtration was

usually ~200–300 mL, so the additional 10 mL of protease-inhibitor cocktail only diluted the samples

by ~5% at most.

Ex vivo and in vitro aggregation assays
We took 1 mm diameter PEG 5 kDa-coated polystyrene beads (with PEG 1 kDa ‘back-filling’) and sus-

pended them at 10 mg/mL in deionized water. Before use, they were vortexed to re-suspend in solu-

tion and then sonicated for 1 min. The particle solution was then added to the polymer solution or

small intestinal luminal fluid at a ratio of 1:10. After addition of particles, the mixture was vortexed

for 10 s. Then, 2 mL of the mixture was then immediately pipetted into an imaging chamber created

with a SecureSeal imaging spacer (0.12 mm depth and 9 mm diameter, Electron Microscopy Scien-

ces, Hatfield, PA, USA) and a glass slide. The top of the imaging chamber was immediately sealed

with a #1.5 coverslip. The samples were then imaged approximately 10 min later. In PEG solution

experiments and serial dilution experiments, HBSS (without calcium, magnesium, phenol red; GE

Healthcare Life Sciences) was used to dilute.

In the 1 MDa PEG experiments conducted in phosphate buffered saline (PBS) with pH = 6 (Fig-

ure 4—figure supplement 2) the PBS solution was initially prepared with 138 mM sodium chloride,

7.5 mM monosodium phosphate dihydrate, 1.1 mM disodium phosphate heptahydrate, and deion-

ized (DI) water (Milli-Q). The sodium chloride was added to ensure that the ionic strength matched

that of HBSS. The pH was then measured using an Orion 2-Star Benchtop pH Meter (Thermo Scien-

tific) with an Orion 9110DJWP Double Junction pH electrode (Thermo Fisher Scientific) after first cal-

ibrating the instrument using the following reference standard buffers: pH = 10 (VWR BDH5078-500

mL), pH = 7 (VWR BDH5046-500 mL), and pH = 4 (VWR BDH5024-500 mL). The pH of the solution

was then adjusted to pH = 6 using 1 M NaOH in DI water.

Microscopy for ex vivo and in vitro aggregation assays
All imaging was performed using a Zeiss LSM 800, using confocal fluorescence microscopy (488 nm

excitation, detection at 490–540 nm). We collected 3D stacks which were 200 � 200 � 40 mm in vol-

ume. 3D renders of aggregates were created using Imaris software from Bitplane, an Oxford Instru-

ments Company.

Imaging analysis
All image analysis was done in FIJI (ImageJ 2.0.0) using an ImageJ macro written using the ImageJ

macro scripting language. These macros are available in Dryad. Z-stacks were saved as 16 bit .czi

files and were subsequently loaded into FIJI. Each z-stack extended ~40 mm deep into each sample

in the z-direction and was composed of 113 slices. As a result of the depth of the stacks in the

z-direction, we observed a significant drop-off in measured aggregate fluorescence between the first

slice and the last slice, likely due to scattering from the intestinal fluid and the particles themselves.

To ensure that aggregates throughout a given stack had a similar brightness, which is important for

the 3D Object Counter plugin, the median pixel intensity for aggregates in every slice was set as the

maximum pixel intensity value for every slice. To achieve this, first the 10th slice and the 10th to last

slice of the z-stack were selected and thresholded using the Otsu method (Otsu, 1979), creating a

binary image of the aggregates in the two slices. The binary images were used as masks to measure

the median pixel intensity of each aggregate in the two slices as well as the mean and max pixel

intensity values for the background of both images. The drop-off in intensity was assumed to be

approximately linear, so the median pixel intensity for aggregates in each slice was determined by

interpolating between the median aggregate pixel intensity values from the 10th slice and 10th to

last slice. The minimum pixel intensity value for each slice was determined by adding 1/3 of the

mean background pixel intensity to 2/3 of the maximum background pixel intensity for the 10th and

10th to last slices (this was necessary to deal with the challenge determining background pixel inten-

sities) and then interpolating to calculate the minimum for all other slices. The process of inten-

tionally introducing image clipping in the z-stacks was justified by the manner in which aggregates

were identified; aggregates were first measured by total volume instead of by particle count, thus

being able to discern individual particles inside of each aggregate was unnecessary.
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The 3D Objects Counter plugin in FIJI was used to measure various parameters, including the vol-

ume of each aggregate. The plugin initially thresholds all slices in a stack using a single thresholding

value, which requires objects in every slice of a stack to be roughly the same intensity (hence, the

thresholding procedure described previously). The plugin takes the resulting now-binary z-stack and

determines the number of voxels occupied by each aggregate and converts voxel volume to metric

volume using metadata in each .czi file. A second macro was used to determine the average size of

a singlet (single particle) for each z-stack. In this macro, we identified 10 singlets by visually inspect-

ing the sample to determine the average size of a singlet. This was then used to normalize differen-

ces in measured aggregate volume between samples by converting to a particle count per

aggregate. This normalization step was necessary due to variations in the average measured singlet

size between samples. It also helped account for any differences in the thresholding procedure from

sample to sample.

The accuracy of this method for determining aggregate sizes was validated by comparing empiri-

cal cumulative distribution functions (ECDFs) of the cross-sectional area of the aggregates in a given

z-stack determined by the ImageJ macro to ECDFs generated by visually inspecting the samples to

measure the cross-sectional areas of aggregates. This comparison was done for at least three sepa-

rate z-stacks. ImageJ macros will be made available upon request.

Quantification of aggregate sizes
The sizes of aggregates in solution were quantified in two ways. One was by comparing the volume-

weighted empirical cumulative distribution functions (ECDFs) of the aggregate sizes of each sample

to each other. The volume-weighted ECDF, F, as follows (Bois, 2017):

F̂ Nð Þ ¼ 1
P

Ni

P

n

i¼1

I Ni �Nð Þ (6)

I Ni �Nð Þ ¼
Ni if Ni �N

0 if Ni>N

�

(7)

Where Ni is the number of particles per aggregate and n is the total number of aggregates in sol-

utions (where single particles also count as aggregates).

The other way in which the extent of aggregation was quantified was by creating bootstrap repli-

cates of the ECDFs of the aggregate distributions of each sample and computing the volume-

weighted average aggregate size ( Nh i; given in number of particles per aggregate) for each boot-

strap replicate. The volume-weighted average aggregate size is given by the following equation in

units of ’number of particles per aggregate’:

Nh i ¼

P

n

i¼1

N2

i

P

n

i¼1

Ni

(8)

This allowed us to calculate 95% empirical bootstrap CI on the volume-weighted average aggre-

gate size. We generated 10,000 bootstrap replicates from the original ECDF of each sample to gen-

erate these. The advantage of this approach is that we do not need to assume anything about the

underlying probability distribution; it is non-parametric (Bois, 2017). The original ECDFs, from which

the replicates were generated, each contained at least 300 aggregates, in many cases containing

~1000 or more aggregates. The codes used for the analyses (volume-weighted ECDFs and 95%

empirical bootstrap CIs) were written in Python 3.6.4 and are available on Dryad.

Filtration with MW cut-off filters
Small intestinal luminal fluid was collected and 0.45-mm-filtered as described in ‘Collection of Lumi-

nal Fluid’. It was then divided up and placed on MWCO filters (Pierce Protein Concentrators, Thermo

Fisher Scientific) with the following MWCOs: 100 kDa, 30 kDa, and 3 kDa. The samples were then

centrifuged at 15 kG at 4˚C for 2 hr, checking every 15 min for the first hour if additional volume had

flowed through. After the eluent from each was collected, they were diluted back to their original

volumes with HBSS.
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pH measurements of luminal fluid
Pooled samples of luminal fluid were collected from each section (stomach, upper small intestine,

lower small intestine, cecum, and colon) and 30-mm-filtered as described in ‘Collection of Luminal

fluid’ (with use of the same protease inhibitor cocktail). Samples were collected from two separate

groups of 2-month-old B6 male mice on a standard chow diet. Each group had three mice. Because

there was only ~25 mL of luminal fluid from the colons of each group we did not 30 mm-filter the

colonic fluid as there was concern all the fluid would be retained by the filter. The colonic contents

were simply spun down at 17 kG at 4˚C for 1 hr to separate the liquid and solid portions of the con-

tents. Then the supernatant (luminal fluid) was collected. Measurements were done using an Orion

2-Star Benchtop pH Meter. The instrument was first calibrated with three reference standard buffers:

pH = 10 (VWR BDH5078-500 mL), pH = 7 (VWR BDH5046-500 mL), and pH = 4 (VWR BDH5024-500

mL). Measurements were conducted at T = 25˚C. There was at least 100 mL of sample from each sec-

tion except for the stomach sample from one group of mice and from colon samples from both

groups. Measurements were conducted with both a standard pH electrode (Orion 9110DJWP Dou-

ble Junction pH Electrode) and a micro pH electrode (Orion 9810BN Micro pH Electrode, Thermo

Fisher Scientific). This was done because the standard electrode is only accurate for samples with

volumes of 200 mL whereas the micro electrode is accurate for samples as small as 0.5 mL in volume.

The results are consistent with other results for rodents (Ward and Coates, 1987; Smith, 1965) with

the exception of a study conducted with mice of a different gender, strain, and fed an 18% protein

diet (McConnell et al., 2008).

For the pH measurement of HBSS, the pH was measured with both the standard and micro pH

electrodes, and three technical replicates were done with each probe. The value for the pH reported

in the main text is the average of all six measurements.

Estimation of coverage and length of grafted PEG layer
Based on our NMR measurements (see section ’NMR of PEG-coated particles with “backfill”’) the

grafting density (G) of the PEG polymer on our PEG 5 kDa-coated particles with PEG 1 kDa backfill

should be approximately: G ¼ 0:48 chains/nm2 (to estimate this we assume that all of the PEG on the

surface is PEG 5 kDa). One can estimate the grafting density at which the grafted chains transition

from separate coils to overlapping coils or the brush regime by calculating the grafting density at

which coils would just begin to overlap (de Gennes, 1980). This can be estimated as:

G� ~ 1

pR2
g

(9)

Where Rg is the radius of gyration of the grafted polymer. Using literature measurements of the

hydrodynamic radius of PEG 5 kDa and the Kirkwood-Riseman relation, this can be estimated

as Rg ~ 3:45 nm. We therefore estimate that G
G� ~ 5, meaning that the grafting density is such that the

polymer coils on the surface should be overlapping and within the brush regime. To estimate the

length and average volume fraction of the layer, we therefore made the assumption that the grafted

polymer layer behaved as a brush and used the Alexander-deGennes brush approximation

(Rubinstein and Colby, 2003; Israelachvili, 2011). This theory was originally developed for high-

MW polymer coils, but has also been found, surprisingly, to quantitatively capture forces for grafted

layers only a few segments long (Israelachvili, 2011). We estimated the length (L) of the brush as

(Rubinstein and Colby, 2003):

L ~ NG
1�n
2n b

1

n (10)

Where N is the number of monomers per grafted chain, n is the Flory exponent, and b is the

Kuhn length of the grafted polymer. We used b = 0.76 nm based on literature measurements

(Waters et al., 2010) and took nffi 0:588, because aqueous salt solutions are good solvents for PEG

(Kawaguchi et al., 1997). Lastly, we estimated the number of monomers per chain by assuming the

number of monomers is approximately equation to the number of Kuhn segments and the relation-

ship between the radius of gyration, the Kuhn length and the number of Kuhn segments

(Rubinstein and Colby, 2003): N ~
Rg

b

� � 1

0:588

~ 13: We therefore estimate that L ~ 6.4 nm.
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The Alexander–de Gennes approximation assumes a step profile for the volume fraction of the

grafted polymer (f). We can estimate this using the following equation (Rubinstein and Colby,

2003):

f »
Gb2ð Þ

3n�1

2n for z<L

0 for z>L

(

(11)

Where z is the distance from the bare particle surface. Using the same approximations as above

we find f»0:43.

Western blot of luminal contents
The 30-mm-filtered small intestinal luminal fluid was reduced in sample buffer with 100 mM dithio-

threitol (DTT) at 95˚C for 5 min (the luminal fluid was diluted 10-fold in the sample buffer). Gel elec-

trophoresis was then run on 4–15% SDS/PAGE gels. The transfer was performed using wet

electroblotting to a nitrocellulose membrane. For detection of MUC2, the primary antibody was

diluted 1:1000 (MUC2 polyclonal antibody, rabbit host, Biomatik, Wilmington, DE, USA) as a

1:10,000 in Odyssey blocking buffer (Li-Cor, Lincoln, NE, USA) with 0.2% Tween 20. The secondary

antibody (Li-Cor IRDye 800CW Goat Anti-Rabbit IgG, Li-Cor) was diluted 1:10,000. For the detection

of IgG and IgM, 1:10,000 dilutions of Li-Cor IRDye 800 CW Goat Anti-Mouse IgG and Li-Cor IRDye

800CW Goat Anti-Mouse IgM were used respectively. For detection of IgA, a 1:10,000 dilution of

SouthernBiotech Goat Anti-Mouse IgA-unlabeled was used as the primary and a 1:10,000 dilution of

Li-Cor IRDye 800CW Donkey Anti-Goat IgG was used as the secondary. All membranes were visual-

ized using a Li-Cor Odyssey scanner.

Gel permeation chromatography
We used a Malvern OMNISEC RESOLVE connected to two Malvern A6000M columns (Malvern,

Westborough, MA, USA) equilibrated with 1x PBS with 0.02% sodium azide, flow rate: 0.75 mL/min.

For detection of the polymers, the OMNISEC REVEAL was used with a refractometer, UV detector,

dual-angle light scattering detector, and a capillary viscometer. Luminal contents were 0.45 mm fil-

tered as described above, then diluted 10-fold in the running buffer (1x PBS with 0.02% sodium

azide) before injection into the system. Prior to injection, samples were kept on the autosampler at

4˚C.

Synthesis of PEG-coated particles
We amended a previously published protocol (Maisel et al., 2015a) to synthesize PEG-coated par-

ticles; briefly, 2 mL of 1 mm fluorescent carboxylic-acid-terminated polystyrene beads (Fluoro-

Spheres, Invitrogen, Thermo Fisher Scientific) at 2% v/v with 2 mM NaN3 were rinsed at 3900 g for

40 min using a centrifugal filter (Millipore Amicon Ultra-4 mL 100 K MWCO). Particles were removed

from the filter using 4 mL of a solution of 15 mg/mL 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

(EDC, Sigma-Aldrich) and 15 mg/mL N-hydrosuccinimide (NHS, Aldrich), an excess concentration of

NH2-PEG-OMe (5 kDa, Creative PEGworks, Chapel Hill, NC, USA) in 1 mL increments using 100 mM

borate buffer, pH 8.4. By an excess concentration of NH2-PEG-OMe we mean ten-fold the concen-

tration of PEG required to enter the polymer brush regime (see ‘Estimation of coverage and length

of grafted PEG layer’ section for details of calculation). This solution was tumbled on a rotary tum-

bler for 4 hr at room temperature in a 15 mL falcon tube. Particles were washed three times to

remove starting materials with 4 mL Milli-Q water in a centrifugal filter and re-suspended in 2 mL

of Milli-Q water.

Synthesis of PEG-coated particles with ‘backfill’
12 mL of 1 mm fluorescent carboxylic-acid-terminated polystyrene beads at 2% v/v with 2 mM NaN3

(FluoroSpheres 1 mm; 505/515, Invitrogen) were centrifuged to a pellet at 12,000 g for 10 min. Beads

were pelleted and rinsed three times with Milli-Q water. To the final pellet of particles, 12 mL of a

solution of 6 mM EDC (10 mg/mL; Sigma-Aldrich) and 5 mM Sulfo-NHS (1.08 mg/mL, ThermoFisher),

with 50x excess of the number of chains needed to enter the brush regime (see ‘Estimation of cover-

age and length of grafted PEG layer’ for details of calculation) of NH2-PEG-OMe (mPEG-Amine 2

kDa; mPEG-Amine 5 kDa; Creative PEGWorks) in 10x PBS, pH 7.4 (100 mM), was added. This
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solution was tumbled on a rotary tumbler for 4 hr at room temperature. Tubes were vented every 30

min to release gas produced by the reaction. Particles were then pelleted and rinsed three times

with Milli-Q water. The 12 mL sample was divided into four 3 mL aliquots for the remaining condi-

tions. For condition without backfill, beads were quenched with 50 mM Tris pH 7.4 overnight at

room temperature with slow tilt rotation prepared from 10x Tris-buffered saline with Tween 20, pH

7.5 (Sigma-Aldrich). For particles with backfill, the 3 mL aliquot was re-suspended in 50x excess of

the number of chains needed to enter the brush regime (see ‘Estimation of coverage and length of

grafted PEG layer’ for details of calculation) of NH2-PEG-OMe (mPEG-Amine 350; mPEG-Amine 1

kDa; mPEG-Amine 5 kDa, Creative PEGWorks) in 100 mM PBS, pH 7.4 containing 6 mM EDC and 5

mM Sulfo-NHS for 4 hr before quenching overnight with 50 mM TRIS buffered Saline with Tween 20,

pH 7.5. All beads were washed three times with Milli-Q water before suspending in 3 mL sterile fil-

tered PBS, pH 7.4 with 1% BSA for storage.

NMR of PEG-coated particles with ‘backfill’
We took 400 ml of 2% w/v samples and lyophilized (~8 mg), then dissolved in deuterated chloroform

(Cambridge Isotope Laboratories, Tewksbury, MA, USA) with 0.01% tetramethylsilane (Aldrich)

immediately before measurement. Data were collected on a Varian Innova 600 MHz spectrometer

without spinning, using a 45o pulse width and 1 s relaxation delay between scans. The concentration

of PEG in each sample was determined by integrating the singlet at 3.64 pm and normalizing the

integral to TMS internal standard at 0.0 ppm.

Zeta potential measurements on PEG-coated particles with ‘backfill’
Each particle solution was 0.1 mg/mL of particles in 1 mM KCl. Measurements were done on a Broo-

khaven NanoBrook ZetaPALS Potential Analyzer (Brookhaven Instruments Corporation, Holtsville,

NY, USA). Three trials were done where each trial was 10 runs and each run was 10 cycles. Values

reported are the average zeta potential for the 30 runs.

Estimate of Weissenberg number for small intestine
The Weissenberg number (Wi), which weighs the relative contributions of elastic and viscous forces,

can be written as (Arratia et al., 2005):

Wi¼ _gl (12)

Where _g is the shear rate (in s�1Þ and l is the fluid relaxation time (in s). The shear rate in the

human small intestine during peristaltic contractions has been estimated as _g ~ 29 s�1 (Takaha-

shi, 2011). For dilute aqueous polymeric solutions of polyacrylamide with MWs ranging from 104 to

107 Da, it has been found that l = 0.009 to 0.45 s, with the relaxation time increasing with MW as

l aMW2=3 (Arratia et al., 2009). Using these values, we can estimate the Weissenberg number to

be Wi ~ 0.3 to 10.
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Minola A, Fernandez-Rodriguez B, Agatic G, Barbieri S, Piccoli L, Casiraghi C, Corti D, Lanzavecchia A, Regoes
RR, et al. 2017. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544:498–502.
DOI: https://doi.org/10.1038/nature22058, PMID: 28405025

Murphy K, Travers P, Walport M. 2004. Janeway’s Immunobiology. Eighth Edition. Current Biology, Ltd.
Napper DH. 1983. Polymeric Stabilization of Colloidal Dispersions. London, United Kingdom: Academic Press.
DOI: https://doi.org/10.1002/pi.4980180420

O’Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. EMBO Reports 7:688–693. DOI: https://doi.
org/10.1038/sj.embor.7400731, PMID: 16819463

Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and
Cybernetics 9:62–66. DOI: https://doi.org/10.1109/TSMC.1979.4310076

Padmanabhan P, Grosse J, Asad ABMA, Radda GK, Golay X. 2013. Gastrointestinal transit measurements in
mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Research 3:60. DOI: https://
doi.org/10.1186/2191-219X-3-60

Peterson DA, McNulty NP, Guruge JL, Gordon JI. 2007. IgA response to symbiotic bacteria as a mediator of gut
homeostasis. Cell Host & Microbe 2:328–339. DOI: https://doi.org/10.1016/j.chom.2007.09.013

Prasad V. 2002. Weakly interacting colloid polymer mixtures. Harvard University (PhD thesis).
Puri S, Friedman J, Saraswat D, Kumar R, Li R, Ruszaj D, Edgerton M. 2015. Candida albicans shed Msb2 and host
mucins affect the candidacidal activity of salivary hst 5. Pathogens 4:752–763. DOI: https://doi.org/10.3390/
pathogens4040752, PMID: 26529023

Pusey PN, van Megen W. 1986. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres.
Nature 320:340–342. DOI: https://doi.org/10.1038/320340a0

Royall CP, Poon WCK, Weeks ER. 2013. In search of colloidal hard spheres. Soft Matter 9:17–27. DOI: https://
doi.org/10.1039/C2SM26245B

Rubinstein M, Colby RH. 2003. Polymer Physics. New York, United States: Oxford University Press.
Rubio-Tapia A, Barton SH, Rosenblatt JE, Murray JA. 2009. Prevalence of small intestine bacterial overgrowth
diagnosed by quantitative culture of intestinal aspirate in celiac disease. Journal of Clinical Gastroenterology
43:157–161. DOI: https://doi.org/10.1097/MCG.0b013e3181557e67, PMID: 18719514

Saha D, Bhattacharya S. 2010. Hydrocolloids as thickening and gelling agents in food: a critical review. Journal of
Food Science and Technology 47:587–597. DOI: https://doi.org/10.1007/s13197-010-0162-6, PMID: 23572691

Sajjan SU, Forstner JF. 1990. Characteristics of binding of Escherichia coli serotype O157:H7 strain CL-49 to
purified intestinal mucin. Infection and Immunity 58:860–867. PMID: 1969394

Secor PR, Michaels LA, Ratjen A, Jennings LK, Singh PK. 2018. Entropically driven aggregation of bacteria by
host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa . PNAS 115:10780–10785.
DOI: https://doi.org/10.1073/pnas.1806005115

Simon GL, Gorbach SL. 1984. Intestinal flora in health and disease. Gastroenterology 86:174–193. PMID: 6357
937

Smith HW. 1965. Observations on the flora of the alimentary tract of animals and factors affecting its
composition. The Journal of Pathology and Bacteriology 89:95–122. DOI: https://doi.org/10.1002/path.
1700890112, PMID: 14263502

Smoluchowski M. 1916. Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen.
Physik Zeit 17:557–585.

Snijkers F, Pasquino R, Vermant J. 2013. Hydrodynamic interactions between two equally sized spheres in
viscoelastic fluids in shear flow. Langmuir 29:5701–5713. DOI: https://doi.org/10.1021/la4006604, PMID: 23600
865

Preska Steinberg et al. eLife 2019;8:e40387. DOI: https://doi.org/10.7554/eLife.40387 32 of 33

Research Communication Physics of Living Systems

https://doi.org/10.1007/s00248-014-0426-1
https://doi.org/10.1007/s00248-014-0426-1
http://www.ncbi.nlm.nih.gov/pubmed/24823989
https://doi.org/10.1016/j.jconrel.2014.10.026
https://doi.org/10.1016/j.jconrel.2015.04.040
https://doi.org/10.1016/j.jconrel.2015.04.040
https://doi.org/10.1038/mi.2011.41
http://www.ncbi.nlm.nih.gov/pubmed/21975936
https://doi.org/10.1211/jpp.60.1.0008
http://www.ncbi.nlm.nih.gov/pubmed/18088506
https://doi.org/10.1038/nrmicro2538
https://doi.org/10.1007/BF01523742
https://doi.org/10.1371/journal.ppat.1004405
http://www.ncbi.nlm.nih.gov/pubmed/25275396
https://doi.org/10.1038/nature22058
http://www.ncbi.nlm.nih.gov/pubmed/28405025
https://doi.org/10.1002/pi.4980180420
https://doi.org/10.1038/sj.embor.7400731
https://doi.org/10.1038/sj.embor.7400731
http://www.ncbi.nlm.nih.gov/pubmed/16819463
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1186/2191-219X-3-60
https://doi.org/10.1186/2191-219X-3-60
https://doi.org/10.1016/j.chom.2007.09.013
https://doi.org/10.3390/pathogens4040752
https://doi.org/10.3390/pathogens4040752
http://www.ncbi.nlm.nih.gov/pubmed/26529023
https://doi.org/10.1038/320340a0
https://doi.org/10.1039/C2SM26245B
https://doi.org/10.1039/C2SM26245B
https://doi.org/10.1097/MCG.0b013e3181557e67
http://www.ncbi.nlm.nih.gov/pubmed/18719514
https://doi.org/10.1007/s13197-010-0162-6
http://www.ncbi.nlm.nih.gov/pubmed/23572691
http://www.ncbi.nlm.nih.gov/pubmed/1969394
https://doi.org/10.1073/pnas.1806005115
http://www.ncbi.nlm.nih.gov/pubmed/6357937
http://www.ncbi.nlm.nih.gov/pubmed/6357937
https://doi.org/10.1002/path.1700890112
https://doi.org/10.1002/path.1700890112
http://www.ncbi.nlm.nih.gov/pubmed/14263502
https://doi.org/10.1021/la4006604
http://www.ncbi.nlm.nih.gov/pubmed/23600865
http://www.ncbi.nlm.nih.gov/pubmed/23600865
https://doi.org/10.7554/eLife.40387


Sun J, Le GW, Shi YH, Su GW. 2007. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small
intestinal mucus. Letters in Applied Microbiology 44:79–85. DOI: https://doi.org/10.1111/j.1472-765X.2006.
02031.x, PMID: 17209819

Takahashi T. 2011. Flow behavior of digesta and the absorption of nutrients in the gastrointestine. Journal of
Nutritional Science and Vitaminology 57:265–273. DOI: https://doi.org/10.3177/jnsv.57.265, PMID: 22041908

Tanford C. 1961. Physical Chemistry of Macromolecules. New York: Wiley.
Thakur BR, Singh RK, Handa AK. 1997. Chemistry and uses of pectin–a review. Critical Reviews in Food Science
and Nutrition 37:47–73. DOI: https://doi.org/10.1080/10408399709527767, PMID: 9067088

Tirosh B, Rubinstein A. 1998. Migration of adhesive and nonadhesive particles in the rat intestine under altered
mucus secretion conditions. Journal of Pharmaceutical Sciences 87:453–456. DOI: https://doi.org/10.1021/
js9703380, PMID: 9548898

Tzipori S, Montanaro J, Robins-Browne RM, Vial P, Gibson R, Levine MM. 1992. Studies with enteroaggregative
Escherichia coli in the gnotobiotic piglet gastroenteritis model. Infection and Immunity 60:5302–5306.
PMID: 1452364

USDA. 2007. The food supply and dietary fiber: its availability and effect on health. Nutrition Insight 36.
USDA. 2015. 2015 – 2020 Dietary Guidelines for Americans. Eighth Edition. health.gov.
Valentine MT, Perlman ZE, Gardel ML, Shin JH, Matsudaira P, Mitchison TJ, Weitz DA. 2004. Colloid surface
chemistry critically affects multiple particle tracking measurements of biomaterials. Biophysical Journal 86:
4004–4014. DOI: https://doi.org/10.1529/biophysj.103.037812, PMID: 15189896

Verma R, Crocker JC, Lubensky TC, Yodh AG. 1998. Entropic colloidal interactions in concentrated DNA
solutions. Physical Review Letters 81:4004–4007. DOI: https://doi.org/10.1103/PhysRevLett.81.4004

Vincent B, Luckham PF, Waite FA. 1980. The effect of free polymer on the stability of sterically stabilized
dispersions. Journal of Colloid and Interface Science 73:508–521. DOI: https://doi.org/10.1016/0021-9797(80)
90097-1

Vincent B, Edwards J, Emmett S, Jones A. 1986a. Depletion flocculation in dispersions of sterically-stabilised
particles (“soft spheres”). Colloids and Surfaces 18:261–281. DOI: https://doi.org/10.1016/0166-6622(86)
80317-1

Vincent B, Clarke J, Barnett KG. 1986b. The Flocculation fo non-aqueous, sterically-stabilised latex dispersions in
the presence of free polymer. Colloids and Surfaces 17:51–65. DOI: https://doi.org/10.1016/0166-6622(86)
80186-X

Vrij A. 1976. Polymers at interfaces and the interactions in colloidal dispersions. Pure and Applied Chemistry 48:
471–483. DOI: https://doi.org/10.1351/pac197648040471

Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. 2008. Addressing the PEG mucoadhesivity paradox to
engineer nanoparticles that "slip" through the human mucus barrier. Angewandte Chemie International Edition
47:9726–9729. DOI: https://doi.org/10.1002/anie.200803526, PMID: 18979480

Wanke CA, Cronan S, Goss C, Chadee K, Guerrant RL. 1990. Characterization of binding of Escherichia coli
strains which are enteropathogens to small-bowel mucin. Infection and Immunity 58:794–800. PMID: 1968435

Ward FW, Coates ME. 1987. Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and
fasting. Laboratory Animals 21:216–222. DOI: https://doi.org/10.1258/002367787781268693, PMID: 3626468

Waters DJ, Engberg K, Parke-Houben R, Hartmann L, Ta CN, Toney MF, Frank CW. 2010. Morphology of
Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering. Macromolecules
43:6861–6870. DOI: https://doi.org/10.1021/ma101070s, PMID: 21403767

Weitz DA, Huang JS, Lin MY, Sung J. 1984. Dynamics of diffusion-limited kinetic aggregation. Physical Review
Letters 53:1657–1660. DOI: https://doi.org/10.1103/PhysRevLett.53.1657

Yethiraj A, van Blaaderen A. 2003. A colloidal model system with an interaction tunable from hard sphere to soft
and dipolar. Nature 421:513–517. DOI: https://doi.org/10.1038/nature01328

Zaccarelli E, Lu PJ, Ciulla F, Weitz DA, Sciortino F. 2008. Gelation as arrested phase separation in short-ranged
attractive colloid–polymer mixtures. Journal of Physics: Condensed Matter 20:494242.

Preska Steinberg et al. eLife 2019;8:e40387. DOI: https://doi.org/10.7554/eLife.40387 33 of 33

Research Communication Physics of Living Systems

https://doi.org/10.1111/j.1472-765X.2006.02031.x
https://doi.org/10.1111/j.1472-765X.2006.02031.x
http://www.ncbi.nlm.nih.gov/pubmed/17209819
https://doi.org/10.3177/jnsv.57.265
http://www.ncbi.nlm.nih.gov/pubmed/22041908
https://doi.org/10.1080/10408399709527767
http://www.ncbi.nlm.nih.gov/pubmed/9067088
https://doi.org/10.1021/js9703380
https://doi.org/10.1021/js9703380
http://www.ncbi.nlm.nih.gov/pubmed/9548898
http://www.ncbi.nlm.nih.gov/pubmed/1452364
https://doi.org/10.1529/biophysj.103.037812
http://www.ncbi.nlm.nih.gov/pubmed/15189896
https://doi.org/10.1103/PhysRevLett.81.4004
https://doi.org/10.1016/0021-9797(80)90097-1
https://doi.org/10.1016/0021-9797(80)90097-1
https://doi.org/10.1016/0166-6622(86)80317-1
https://doi.org/10.1016/0166-6622(86)80317-1
https://doi.org/10.1016/0166-6622(86)80186-X
https://doi.org/10.1016/0166-6622(86)80186-X
https://doi.org/10.1351/pac197648040471
https://doi.org/10.1002/anie.200803526
http://www.ncbi.nlm.nih.gov/pubmed/18979480
http://www.ncbi.nlm.nih.gov/pubmed/1968435
https://doi.org/10.1258/002367787781268693
http://www.ncbi.nlm.nih.gov/pubmed/3626468
https://doi.org/10.1021/ma101070s
http://www.ncbi.nlm.nih.gov/pubmed/21403767
https://doi.org/10.1103/PhysRevLett.53.1657
https://doi.org/10.1038/nature01328
https://doi.org/10.7554/eLife.40387

	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=
	https://doi.org/%3Cext-link%20ext-link-type=

