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A B S T R A C T

AI-assisted data analysis can help risk analysts better understand exposure-response relationships by making it 
relatively easy to apply advanced statistical and machine learning methods, check their assumptions, and 
interpret their results. This paper demonstrates the potential of large language models (LLMs), such as ChatGPT, 
to facilitate statistical analyses, including survival data analyses, for health risk assessments. Through AI-guided 
analyses using relatively recent and advanced methods such as Individual Conditional Expectation (ICE) plots 
using Random Survival Forests and Heterogeneous Treatment Effects (HTEs) estimated using Causal Survival 
Forests, population-level exposure-response functions can be disaggregated into individual-level exposure- 
response functions. These reveal the extent of heterogeneity in risks across individuals for different levels of 
exposure, holding other variables fixed. By applying these methods to an illustrative dataset on blood lead levels 
(BLL) and mortality risk among never-smoker men from the NHANES III survey, we show how AI can clarify 
inter-individual variations in exposure-associated risks. The results add insights not easily obtained from 
traditional parametric or semi-parametric models such as logistic regression and Cox proportional hazards 
models, illustrating the advantages of non-parametric approaches for quantifying heterogeneous causal effects on 
survival times. This paper also suggests some practical implications of using AI in regulatory health risk as
sessments and public policy decisions.

Introduction

AI-assisted data analysis has great potential to improve the practice 
of exposure-response modeling and data analysis. AI assistance makes it 
easier than ever before for epidemiologists and risk analysts to apply 
advanced statistical methods, check whether they are appropriate for a 
given dataset, and gain more detailed and accurate insights into health 
outcomes associated with exposures by performing risk assessment 
modeling disaggregated down to the individual level. AI can help risk 
assessors select, apply, and optimize or “tune” appropriate machine 
learning (ML) and non-parametric statistical modeling methods to 
obtain better insights from data. “Better” here means insights that are 
less assumption-dependent (or, conversely, that are more robust to 
modeling choices and assumptions) than those from traditional para
metric statistical modeling methods such as regression modeling. AI- 
assisted data analysis can also help to visualize, interpret, and 

communicate results from these advanced methods in relatively simple, 
intuitive ways that facilitate comprehension and appropriate use of the 
results in health risk assessment. This paper illustrates and critically 
assesses the extent to which current large language models (LLMs), 
represented by ChatGPT, can already be used to obtain the above ad
vantages both for relatively simple exposure-response regression models 
and also for more advanced survival curve models.

This paper has two complementary objectives: to illustrate the ad
vantages of current LLMs in facilitating relatively advanced data ana
lyses, thereby reducing the barriers to using these methods in practice; 
and to show how LLM-assisted data analysis can support practical 
application of multiple complementary methods for clarifying causal 
impacts of variables on health outcomes over time. While AI’s usefulness 
in automating statistical tasks and generating insights from statistical 
modeling results is a key focus, the paper also demonstrates how 
combining AI tools with traditional and emerging methods (e.g., 
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regression models, survival forests, causal survival analyses) can 
enhance our understanding of causation. Combining these two per
spectives suggests practical ways to use currently available AI to greatly 
simplify application of appropriate advanced analytics methods to 
quantitative health risk assessments.

To quickly convey some of the main ideas, we will first show them in 
the simple context of the mtcars dataset, a well-known dataset often 
used in statistical and machine learning courses to introduce key ideas 
and methods to students. The dataset consists of 32 observations of 
automobile design and performance metrics. Key variables include mpg 
(miles per gallon, a measure of fuel efficiency) and wt (weight in 
thousands of pounds, an indicator of vehicle mass). The dataset is 
frequently used to illustrate regression and other machine learning 
methods due to its simplicity and interpretability. We use it now to 
demonstrate AI LLM-assisted regression modeling and diagnostic tech
niques in a very simple, well-understood setting: simple linear regres
sion (SLR) modeling with one continuous dependent variable and one 
continuous independent variable. Later sections then consider more 
sophisticated analyses and more complex health data.

A simple example: AI-assisted simple linear regression

Before turning to exposure-response modeling, it may be useful to 
illustrate the AI-assisted approach to data analysis for mtcars. Entering 
the prompt “Please show me a linear regression model of mpg vs. wt in 
mtcars, complete with 95% confidence bands” into ChatGPT 4o (as of 
August 2024) produced Fig. 1 on the first attempt.

(Not all runs are equally successful. On the third attempt, the same 
version of ChatGPT produced “There seems to be a persistent issue with 
processing the data types, which is preventing the successful generation 
of the plot with confidence intervals.”) In this case, the AI had no dif
ficulty retrieving the mtcars dataset, identifying that “wt” is a car weight 
variable and that “mpg” is miles per gallon, and correctly labeled the 
axes and performing the requested analysis. A follow-up prompt to 
check modeling assumptions, namely,

User: Please check whether the assumptions of the linear regression model 
hold and report the corresponding regression diagnostics. (The R package 
GVLMA automates this assumption-checking. Please use something similar 
for Python if possible.)

elicited this response:
ChatGPT: “I have provided the regression diagnostics, including tests 

for normality, homoscedasticity, multicollinearity, and autocorrelation 
of residuals. Here are the key results: 

1. Shapiro-Wilk Test for Normality: The p-value indicates that the 
residuals do not significantly deviate from normality (p-value 
>0.05).

2. Breusch-Pagan Test for Heteroscedasticity: The p-value suggests 
no evidence of heteroscedasticity, meaning the variance of residuals 
appears constant (p-value >0.05).

3. Variance Inflation Factor (VIF): The VIF values suggest that there 
is no significant multicollinearity (a VIF value of 1 is ideal).

4. Durbin-Watson Statistic: This value indicates that there might be 
some positive autocorrelation in the residuals (values close to 2 
suggest no autocorrelation).

These diagnostics help to validate the assumptions of the linear 
regression model…”.

Comment: This response is only partly adequate, as it fails to check 
whether the key assumption of a linear relationship between the inde
pendent and dependent variables, wt and mpg, is consistent with the 
data. A human expert noticing this omission can direct the AI to correct 
it:

User: …Please apply the Ramsey RESET test yourself in Python to get a p- 
value for the above linear regression model

ChatGPT: “The Ramsey RESET test has returned a p-value of 
approximately 0.0029. This low p-value indicates that there is statisti
cally significant evidence to suggest that the identity link function may 
not be appropriate, implying potential non-linearities in the relationship 
between mpg and wt. In other words, the model might be missing some 
non-linear terms or interactions, which could be better captured with a 
different link function or by including higher-order terms in the model.”

User: Please show me a LOESS curve instead
ChatGPT: “Here is the LOESS curve for the relationship between 

miles per gallon (mpg) and weight (wt) in the mtcars dataset. The red 
line represents the smoothed curve, which is locally fitted to the data, 
allowing for a flexible, non-linear relationship between the variables. 
This visualization can help you see if there are any non-linear patterns in 
the data that were not captured by the linear regression model.” (The 
full chat is at https://chatgpt.com/share/a10b35ee-6087-4388-bf0 
3-9c00b115bca0).

This short chat illustrates some of the power and some of the 

Fig. 1. A simple linear regression (SLR) model.
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limitations of current conversational AI. ChatGPT is able to successfully 
run basic statistical analyses, such as linear regression, model di
agnostics, and LOESS (non-parametric smoothing regression) analyses, 
when directed to do so. It takes the initiative to identify numerous 
needed details, such as which specific model diagnostic tests to perform, 
how to label the axes of plots, and what colors to use for plotting, which 
is very convenient and a very useful time-saver for busy analysts. It also 
interprets the results, which can help communicate findings to non- 
specialists. On the other hand, its choices are not always fully 
adequate. For example, it neglected to check the assumption of a linear 
link function until prompted to do so. Its unguided interpretations may 
also be simplistic or wrong. For example, an initial assessment that a 
model fits the data adequately may have to be revised when a user points 
out additional tests that should be run. This mix of skills and limitations 
positions current AI to be a very useful partner and assistant to a human 
data analyst, but not a reliable substitute for human experts.

For statistical programming, an extremely useful capability of cur
rent AI is that it can show the code it uses in its analyses. It can also 
generate new code upon demand for performing advanced data ana
lyses, even in cases where it cannot run the code itself, e.g., because of 
lack of access to needed packages. For example, ChatGPT does its ana
lyses in Python, but it can also generate code in R that a user can then 
paste into R, or inspect and modify as needed. Getting the code right for 
complex analyses frequently takes many iterations, strong direction, and 
patience from the user, again emphasizing the importance of human-AI 
collaboration. But the fact that ChatGPT and other large language 
models (LLMs) such as Gemini can appropriately draw on thousands of 
statistics packages in R and Python to help create new code to accom
plish user-specified analyses vastly increases productivity in performing 
advanced analyses. Checking that different implementations using 
different statistics packages in R and Python produce the same answers 
help build confidence in the results.

As an example, Fig. 2 shows an Individual Conditional Expectation 
(ICE) plot [11] for the same data as in Fig. 1. Appendix A gives the code, 
developed with the help of ChatGPT, to generate this plot in R using 
existing ICE plot packages. In an ICE plot, each individual case is 

represented by an entire curve showing the predicted expected values of 
the dependent variable (here, mpg) for different values of the indepen
dent variable (wt), holding all other variables at their current levels for 
each individual. Predictions are made using an ML algorithm. The ICE 
plot in Fig. 2 used the popular Random Forest algorithm for its pre
dictions. The dots show the predicted value of mpg for the current value 
of wt for each case (make of car) in the dataset. The curve going through 
each dot shows how the predicted mpg value changes as wt changes, but 
none of the other variables changes. Thus, an ICE plot is closely analo
gous to the concept of the natural direct effect (of wt on mpg) used in 
epidemiology and mediation analysis [5].

The heavy curve in the middle is a Partial Dependence Plot (PDP). 
This shows the average (marginal) values of the ICE plots averaged over 
all individual cases. Both the PDP and the individual curves in the ICE 
plot are less steep than the cloud of dots, meaning that most of the in
dividual data points fall above the PDP on the left (positive residuals) 
and below it on the right (negative residuals). This reflects the fact that 
various confounders (including displacement and number of cylinders) 
that are positively correlated with wt and negatively correlated with mpg 
strengthen the negative statistical association between wt and mpg. Cars 
with higher values of weight also tend to have more cylinders and 
greater displacement. The points in the scatter plot of predicted mpg vs. 
wt reflect not only how mpg covaries with wt alone, as in a PDP or ICE 
plot, but also the effects on mpg of these correlates of wt. ICE plots 
remove the effects of such observed confounders by holding their levels 
fixed as wt varies.

Fig. 2 also illustrates an important conceptual limitation of all ana
lytic methods. The meaning and utility of an analysis is limited by the 
clarity of the concepts and variables it uses [14]. Operational definitions 
can show exactly what is and is not implied by analytic results, including 
ICE plots. For example, while it is surely intuitive that lighter cars get 
higher mpg, other things held fixed, as quantified in Fig. 2, this does not 
imply that lightening the load by removing its engine or its wheels 
would cause a car to get better gas mileage. Such common-sense caveats 
are beyond what data analysis alone can show, but are well within the 
grasp of current LLMs, suggesting another way in which LLMs can 

Fig. 2. An Individual Conditional Expectation (ICE) plot. 
Source: The code to generate this ICE plot is in Appendix A.

L.A. Cox Jr. et al.                                                                                                                                                                                                                              Global Epidemiology 9 (2025) 100179 

3 



complement purely statistical and ML methods in making sense out of 
data.

Figs. 1–3 are intended to illustrate for a non-controversial dataset 
how current AI-assisted analysis can help perform both elementary and 
more sophisticated analyses with only a small fraction of the effort that 
was required before the advent of LLMs. The following sections suggest 
and illustrate how this technology can be applied to help clarify 
exposure-response relationships and health risks.

An example data set for health risk assessment blood lead and 
mortality risk in the NHANES III data

To explore how well current AI-assisted data analysis can be applied 
to realistic exposure-response data, we use a previously analyzed illus
trative dataset assembled from the NHANES III survey data (Third Na
tional Health and Nutrition Examination Survey (NHANES III), 
1988–94, https://wwwn.cdc.gov/nchs/nhanes/nhanes3/default.aspx), 
focusing on blood lead levels (BLL) and their impact on mortality risk 
among self-reported never-smoker men. This example dataset is 
described and analyzed further in [5,7]). Table 1 summarizes its vari
ables. Table 2 shows the layout of the data. We use this dataset purely for 
purposes of illustration, and do not seek to draw conclusions from it for 
any larger or different population (e.g., the general US population), so 
we do not use the weights for various subpopulations developed by 
NHANES.

AI-assisted data analysis and results

The following sections show how AI-assisted data analysis can be 
used to obtain insights into BLL-mortality exposure-response relation
ships in the example dataset. The interplay between human user 
knowledge (knowing what to ask for) and ChatGPT knowledge 
(knowing how to produce it) is clearly illustrated throughout the process 
of producing and refining results.

AI-assisted logistic regression analysis

An epidemiologist might start exploring this data set by fitting a 
logistic regression model to the exposure (BLL) and response (mortality) 

data, as in Fig. 3.
Using an LLM, this can be done by attaching the data file and 

entering a prompt such as “Please show me the logistic regression curve 
of mortality probability vs. BLL implied by the logistic regression model, 
with 95% confidence bands.” This prompt induced ChatGPT to produce 
Fig. 3. (The full chat is at the link provided under Fig. 3. The key word 

Fig. 3. A simple logistic regression model fit to the BLL-mortality exposure-response data. 
Source: Appendix B, https://chatgpt.com/share/ddc0b554-755f-4e73-adae-d076abb0b801

Table 1 
Variables in the Example NHANES III Blood Lead Data Set.

Variable Type Description

Dependent Variables

Status Binary

Indicates whether an individual had died 
by the end of the follow-up period. Value 
of 1 if the individual had died, 0 if still 
alive.

Death Age (deathage) Continuous

Age at death, measured in years, derived 
as: deathage = age + survival.time/12, 
where survival time is in months and age 
is in years.

Independent Variables
Exposure = Blood 
Lead Level (BLL) Continuous

Primary exposure variable, measured in 
micrograms per deciliter (μg/dL).

Age Continuous
Age at the start of follow-up, measured in 
years.

Grade Continuous Highest grade of education attained, 
measured as a continuous variable.

Income Ratio Continuous Income expressed as a multiple of the 
poverty level.

Ethnicity and Race Categorical
Not Hispanic 
(notHispanic) Binary

Indicates whether the individual is non- 
Hispanic (1) or Hispanic (0).

Black Binary
Indicates whether the individual is Black 
(1) or not (0).

Geographic Location
Small Metropolitan 
Area (small.metro)

Binary Indicates residence in a small 
metropolitan area (1) or not (0).

South Binary
Indicates residence in the South region (1) 
or not (0).

West Binary
Indicates residence in the West region (1) 
or not (0).

Marital Status
Never Married 
(never.married)

Binary Indicates whether the individual has 
never been married (1) or otherwise (0).
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“please” is used in this and subsequent chats to indicate specific tasks 
that the user asks the LLM to complete.) Since creating and validating 
the code can be a time-consuming, iterative process when the LLM 
makes mistakes, it is convenient to harvest and save the final versions of 
the code segments used to produce the results shown. Appendix B does 
this for the logistic regression modeling results, starting with the simple 
(univariate) logistic regression model shown in Fig. 3.

Likewise, the LLM can perform multivariate logistic regression 
modeling in Python, or generate R code to do it. It can then select and 
run model diagnostics and interpret the results. Doing so in an extension 
of the chat that produced Fig. 3 produced the forest plot in Fig. 4. In this 
plot, 95 % confidence intervals (the horizontal “whiskers” around the 
dots representing point estimates of odds ratios) entirely to the right of 1 
indicate a significant (at the 5 % significance level) increase in predicted 
risk per unit of the corresponding variable. This is the case for never. 
married and age. Confidence intervals entirely to the left of 1 indicate a 
significant decrease in predicted risk per unit of the corresponding 
variable, as is the case for income.ratio and grade. Variables with confi
dence intervals that include 1 do not have any clear statistically signif
icant association with mortality probability.

The same chat that produced the R code for Figs. 3 and 4 also con
tains the following AI-generated interpretations, conclusions, and 

caveats for the multivariate logistic regression model:
“1. Model Fit: The Hosmer-Lemeshow test suggests a poor fit for 

the logistic regression model. This means the model might not capture 
the relationship between the predictors and mortality risk well. You may 
want to explore alternative models (e.g., generalized additive models or 
interaction terms).

2. Significant Predictors: 

• Age, education (grade), income ratio, and marital status (never 
married) are significantly associated with mortality risk.

• Blood Lead Levels (Exposure) do not appear to be significantly 
associated with mortality risk.

3. Multicollinearity: There is no serious multicollinearity issue 
based on the VIF values.

4. Influential Points: A large number of influential points may be 
affecting the model. These should be reviewed and potentially addressed 
(e.g., through robust regression techniques or sensitivity analysis).”

These conclusions suggest that the positive exposure-response asso
ciation in Fig. 3 might plausibly be due to confounding, since there is no 
significant exposure-response association in a multivariate logistic 
regression model. Further exploration reveals that age is positively 

Table 2 
Layout of the Data (first 10 of 2631 cases) for Male Non-Smokers.

age grade income.ratio Exposure survival.time Status Not 
Hispanic

small. 
metro

Black South West never. 
married

21 12 0.641 5 293 0 0 0 0 0 1 1
35 17 5.406 2 306 0 1 0 0 0 0 0
50 12 3.416 7.3 292 0 0 0 0 0 1 0
31 14 3.358 5.6 311 0 1 0 0 0 0 0
55 16 2.578 3.2 313 0 1 1 0 1 0 0
27 14 3.918 3.3 314 0 1 0 0 0 1 0
72 12 2.569 4.9 182 1 0 0 0 0 1 0
43 8 1.19 4 292 0 0 0 0 0 1 0
32 17 5.46 2.5 313 0 1 0 0 0 1 0
21 12 2.123 1.3 308 0 0 1 0 0 1 1

Fig. 4. A forest plot for the multivariate logistic regression model. 
Source: Appendix provides the R code used to generate this figure, and the URL for the chat that produced the R code.
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correlated with both exposure and mortality risk. This confounder was 
not controlled (held fixed) in Fig. 3, and much of the positive association 
between exposure and mortality probability is explained by age. How
ever, regression diagnostics suggest that multivariate logistic regression 
is not the most appropriate model for this dataset (p-value = 1.036e-06 
in the Hosmer-Lemeshow test).

AI-assisted ICE plot and PDP analysis

Fig. 5 shows a PDP and ICE plot as a non-parametric alternative to 
multivariate logistic regression modeling. The PDP suggests an increase 
in mortality risk from about 0.30 on average at low exposures (BLL 
levels) to about 0.37 at high exposures, holding all other variables in the 
dataset fixed for each individual. (The possibility of unmeasured or re
sidual confounding is not excluded by such PDP analysis, however.) The 
ICE curves show that much of the inter-individual heterogeneity stems 
from a cluster of high-risk individuals – those who were old at the start of 
follow-up – against a background of relatively lower-risk individuals. To 
better show inter-individual variability, Fig. 5b shows a centered ICE plot, 
meaning one in which all individual ICE curves are given a nominal 
starting value of 0 at the left end (for exposure = 0) and the curves show 
predicted deviations from this zero-exposure baseline level of risk as 
exposure increases. This display has a striking implication. Although 
predicted mortality risk increases with exposure on average, as shown by 
the PDP, for a substantial fraction of the individuals, the ICE curves 
decrease with exposure, other variables in the dataset being held fixed. If 
the individual-level exposure-response relationships predicted by these 
curves are assumed to be causal, meaning that the changes in mortality 
risk along each curve are caused by changes in exposure (rather than by 
unmeasured or residual confounding), then reductions in exposure 
reduce average risk in the population but nonetheless increase it for a 
substantial fraction of the individuals in the population. Such inter- 
individual heterogeneity is obscured by statistical analyses that only 
consider average effects in populations. The vast majority of exposure- 
response curves and analyses published to date do not quantify inter
individual heterogeneity at the individual level. AI-assisted data analysis 
now makes such individual-level ICE plot calculations relatively easy to 
perform, but it does not tell risk managers and policy-makers how to use 
the results, which make visible potential trade-offs between risks to 
different individuals that are left comfortably invisible in more 

traditional, aggregate, statistical modeling.

Background on survival data analysis

We now pivot from considering mortality probability during follow 
up as the main outcome of interest to considering survival times of in
dividuals as the main outcome of interest. Quantifying the probabilistic 
relationship between exposure and survival times requires survival data 
analysis. This section introduces key ideas from this branch of statistics.

Survival data analysis comprises a set of methods that are concerned 
with predicting the time (typically called the “survival time”) until a 
well-defined event of interest, such as death, occurs [18]. Traditional 
approaches for survival data analysis include non-parametric methods 
such as the Kaplan-Meier estimator (see Fig. 7); semi-parametric 
methods such as Cox Proportional Hazards (CPH) models (Fig. 6); and 
parametric methods such as parametric regression models for survival 
times. CPH is the most widely used regression technique for survival 
analysis [16]. It addresses the limitations of purely empirical (e.g., 
Kaplan-Meier) descriptive methods by modeling the effects of several 
variables while also enabling the quantification of survival differences 
between groups [9]. The CPH relies on the proportional hazards 
assumption which states that the hazard function for the comparison 
groups is proportional to the hazard functions for exposed people, so 
that the hazard ratio between them remains constant over time [20]. 
CPH cannot easily model nonlinearities and interaction effects in data 
correctly [15]. By contrast, Random Survival Forest (RSF) is a 
nonparametric ensemble method constructed by fitting multiple deci
sion trees and aggregating their predictions (see Fig. 8). Key advantages 
of RSF include its ability to evaluate multiple covariates, non-linearities 
and interactions, and non-reliance on the proportionality assumption 
[17]. Traditional survival methodologies assume the same probability of 
the outcomes for all included individuals and do not explicitly address 
the key issue of inter-individual variability.

Accurately describing the relationship between exposure(s) and 
outcome(s) is central to policy and regulatory decisions. In many in
stances however, treatment effects vary considerably over the popula
tion, making it difficult to translate inferences from the average 
population effects to the individual level [3,8]. Understanding hetero
geneity of effects requires addressing challenges due to high volume and 
complexity of individual-level characteristics [12,13]. Furthermore, 

Fig. 5. a. ICE plot (individual curves) and PDP (heavy curve) for mortality probability vs. exposure (BLL). 
Fig. 5b. A centered ICE plot for the same information as in Fig. 5. 
Source: Appendix C gives R code for generating these figures.
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censored survival data has several challenges for use. Therefore, using 
flexible approaches like survival trees within a counterfactual modeling 
framework in which exposure alone is varied, holding other variables 
fixed, is a promising approach as survival trees can uncover complex 
relationships that are beyond the scope of parametric models and yet are 
easy to interpret [2,4]. Survival trees (see Fig. 7) are a method that 
identifies homogenous groups predefined by specific covariates by a 
recursive binary partitioning of the data into subsets with distinct 

outcome patterns. This results in smaller subsets of relatively homoge
neous outcomes called ‘nodes’ with the final smallest subset being 
termed “terminal” or “leaf” nodes [19]. Several different splitting 
criteria have been previously used within survival trees. Existing sta
tistical techniques such as Kaplan–Meier curve estimates can then be 
applied to understand the survival distribution in the final subset (ter
minal node/leaf). Survival trees provide a flexible approach to charac
terize the effects of covariates and their interactions on outcomes.

Fig. 6. Forest Plot for Cox Proportional Hazards (CPH) model. 
Source: Appendix D gives the R code and a link to the chat that produced it for this figure.

Fig. 7. A survival tree showing empirical (Kaplan-Meier) estimates of survival curves (shown in the bottom-most nodes) for different sets of conditioning infor
mation. 
Source: Appendix E gives the R code and a link to the chat that produced it for this figure.
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Exposure response functions are a key consideration in regulatory 
risk assessments and policymaking with the assumption that historical 
exposure-response relationships can be used to predict future impacts of 
regulation change or interventions. There are fundamental issues that 
are yet to be fully understood in this context including causal interpre
tation of historical associations and spatiotemporal differences in the 
shapes of exposure response curves [6]. If they are not carefully 
addressed, such issues risk creating inaccurate perceptions of the public 
health benefits to be expected from tighter regulations. Regression based 
exposure response curves largely represent the average responses for 
different levels of exposure in a population. They do not provide clarity 
on heterogeneity in individual risks or estimate total or direct causal 
effects [5].

Several non-parametric machine learning methods have been pre
viously validated to provide clarity and precision to the exposure- 
response curves. These methods have been widely used in other fields 
and can be applied in health research for a deeper understanding of 
causality which is not well addressed by existing methods. The partial 
dependence plots (PDPs) and individual conditional expectation (ICE) 
plots are model-agnostic tools that can visualize inter-individual vari
ability in exposure-response curves and help interpret the impact of 
variables in the prediction of a machine learning model [1,5]. A partial 
dependence plot illustrates the average marginal effects between model 
inputs and predictions [21]. ICE plots, on the other hand, disaggregate 
the average exposure response curve into individual exposure response 
curves to help visualize the individual differences by u]sing each pre
diction separately [11]. Further details of these computational methods 
have been described previously [5]. The following sections demonstrate 
how aggregate exposure-response curves can be “de-averaged” or 
decomposed into clusters of individual-level exposure-response curves 
of different shapes using these methods while allowing for time-varying 
responses modeled by survival curves estimated from data using 
non-parametric machine-learning methods.

AI-assisted Cox Proportional Hazards modeling

Perhaps the best-known survival data model among epidemiologists 
and health risk analysts is the Cox Proportional Hazards (CPH) model. 
Fig. 6 shows a forest plot for the results of CPH modeling, and Appendix 
D contains the R code and a link to the chat used to produce it. That chat 
provides the following AI-generated interpretation of the CPH results: 
“The Cox Proportional Hazards model indicates that higher… education 
level, and income are associated with a significantly reduced risk of 
death, while being Black and never having been married are linked to a 
higher mortality risk. Blood lead levels (BLL) show a marginally sig
nificant positive association with mortality (p = 0.083), but ethnicity, 
geographic location, and living in small metropolitan areas do not have 
a significant impact.” However, when prompted to interpret regression 
diagnostics for the CPH model, ChaGPT warns that “The global 
Schoenfeld residuals test indicates a violation of the proportional haz
ards assumption for the overall model, with significant issues for cova
riates such as age, grade, income ratio, ethnicity (non-Hispanic), and 
race (Black), while the assumption holds for blood lead levels (BLL). 
Martingale residuals suggest a generally adequate model fit for contin
uous covariates, but potential non-linearities should be further explored. 
Deviance residuals identify possible outliers that could disproportion
ately affect the model, and DFBeta values highlight influential obser
vations that may require closer examination for data issues or undue 
influence.” Thus, similar to the logistic regression model for mortality 
probability, the CPH model produces plausible results (Fig. 6), but its 
assumptions (especially, the proportional hazards assumption) are not 
well supported for this dataset.

One option is to seek a better-fitting CPH model by introducing 
interaction terms, time-varying covariates (e.g., effects of age on mor
tality risk may depend on year of birth), dummy variables for ranges of 
the variables, and other adjustments. We will instead follow a more 

flexible modeling strategy by dropping the CPH modeling framework 
and exploring non-parametric approaches to survival data analysis and 
analyses of longevity.

AI-assisted survival tree and random survival forest analysis

Fig. 7 shows a survival tree depicting how non-parametric (Kaplan- 
Meier) survival curves (shown in the bottom-most or “leaf” nodes) vary 
based on different combinations of information (ranges of values) for the 
variables in the paths from the root node (age, at the top of the tree) to 
each leaf node. Appendix E presents the R code that produced this tree 
and gives a link to the chat used to produce the R code. Prompted to 
explain the tree to someone unfamiliar with Classification and Regres
sion Tree analysis and survival data analysis, ChatGPT generated the 
following explanation and interpretation:

“The attached image [Fig. 7] represents a survival tree generated 
using CART (Classification and Regression Tree) analysis to identify 
subgroups of individuals based on predictors that influence mortality 
risk. The dataset consists of non-smoking men from NHANES III 
(1988–1994), and the primary outcome of interest is survival time. The 
tree identifies key variables that stratify the population into groups with 
differing survival probabilities over time, represented by Kaplan-Meier 
curves at the terminal nodes.

The model begins by splitting the population based on age. In
dividuals younger than 58.5 years are placed in the left branch, while 
those older than 58.5 years are placed in the right. Subsequent splits are 
made using variables such as income ratio, age, and education level 
(grade). Each terminal node represents a distinct subgroup based on 
these variables, with the size of the subgroup (n) indicated, along with a 
survival curve that depicts the probability of survival over time.

The x-axis of each survival curve shows time (in months), while the 
y-axis represents survival probability. Flatter survival curves indicate a 
lower mortality risk, while steeper curves reflect a higher risk of death 
over time. Key patterns observed include: 

• Younger individuals with a high income ratio show better survival 
outcomes, as seen in Node 4, which has a flat survival curve and 
represents individuals with lower mortality risk.

• Older individuals and those with lower income ratios and edu
cation levels exhibit steeper survival curves, suggesting higher 
mortality risk. For instance, Node 9 shows a steep curve, indicating 
shorter survival times for middle-aged individuals with lower in
comes and education.

Overall, the analysis highlights age as the most important predictor 
of mortality risk, followed by income ratio and education level. 
Younger individuals with higher incomes and education have better 
survival probabilities, whereas older individuals with lower socioeco
nomic status are at greater risk of mortality.”

Although not stated by ChatGPT, another salient feature of Fig. 7 is 
that Exposure does not appear in the tree, suggesting that it is not one of 
the most important predictors of mortality risk. In addition, there is 
clearly substantial inter-individual heterogeneity in survival curves, as 
shown by the wide range of dissimilar curves at the leaf (bottom) nodes 
of Fig. 7.

Single CART trees can be extended to “random forests,” i.e., en
sembles of hundreds of trees trained on different subsets of a data frame. 
Their predictions are then averaged (“bagged”) in an effort to obtain 
more accurate predictions. Random forest predictions for each individ
ual case as an independent variable is varied, holding all other variable 
values fixed, generate partial dependence plots (PDPs), as in Fig. 2. 
Similarly, single survival trees can be extended to “survival forest” en
sembles of hundreds of survival trees. These can also be used to generate 
partial dependence plots (PDPs) and ICE plots for the effects of indi
vidual predictors on expected survival times or, conversely, cumulative 
hazard for mortality. Fig. 8 shows the PDPs from a Random Survival 
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Forest for each independent variable, with bootstrapped 95 % uncer
tainty bands for continuous variables such as age and Exposure, and box 
plots for discrete variables such as never married. Fig. 9 shows an ICE 

plot for predicted median survival times for individuals as Exposure is 
varied. Appendix F contains the code that produced these figures. 
Asked to explain Fig. 8, ChatGPT generated the following response:

Fig. 8. Partial Dependence Plots (PDPs) for cumulative hazard of mortality, as estimated by Random Survival Forest (RSF) analysis.

Fig. 9. ICE plots and PDP for median survival times vs. exposure(BLL in μg/dL). 
Source: Appendix F gives code for Figs. 8 and 9.
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“The partial dependence plots (PDPs) in the top row illustrate the 
marginal effects of continuous variables (age, education, blood lead 
level, and income ratio) on predicted mortality risk, averaged over the 
distribution of all other variables in the model. These plots demonstrate 
how mortality risk increases significantly with age and blood lead levels, 
while higher levels of education and income ratio are associated with 
lower mortality risk. The dashed red uncertainty bands represent vari
ability in predictions, calculated using resampling methods within the 
random forest survival model. The box plots in the bottom row compare 
predicted mortality risks across categorical variables, such as ethnicity, 
marital status, race, and geographic location. For instance, non- 
Hispanic, never-married, and Black individuals, as well as those living 
in the South, tend to have higher predicted mortality risks, whereas 
individuals in the Western US and small metropolitan areas exhibit 
lower risks. The y-axis represents relative mortality risk, derived from 
the model’s predictions, rather than absolute probabilities or time units, 
offering an abstract measure of risk over the follow-up period.”

Fig. 9 shows how predicted median survival time in months varies 
with exposure, holding other variables fixed, for different individuals. It 
shows substantial heterogeneity in individual exposure-response ICE 
curves around the population average exposure-response PDP curve. 
The causal interpretation of such curves is not self-evident, since, for 
example, exposure (BLL) may be correlated with unmeasured con
founders such as environmental tobacco smoke or unreported smoking. 
But even without a clear causal interpretation, it is clear that inter- 
individual-heterogeneity is large enough so that the green PDP curve 
for population average exposure-response is not highly representative of 
most of the individual-level ICE curves.

AI-assisted survival causal survival forest analysis

Causal effects of exposure on survival times can be clarified using 
causal survival forest analysis. A causal survival forest [8] is an 
ensemble of causal survival trees. A causal survival tree is similar to a 
regular survival tree, such as the one in Fig. 7, except that instead of 
seeking to predict survival times or survival probabilities based on the 
values of independent variables, a causal survival tree seeks to estimate 
heterogeneous treatment effects (HTEs), i.e., the individual-level dif
ferences in survival times or probabilities made by different levels of 
exposure. The leaf nodes and splits (interior nodes) in a causal survival 
tree are selected to try to maximize treatment effect differences instead 
of trying to maximize a measure of homogeneity in survival outcomes. 
For the predictions at the leaf nodes to have valid causal interpretations, 
several key assumptions must hold. A commonly used set of assumptions 
is the following: (1) No unmeasured confounding; (2) Positivity, 
meaning that for each individual (or subgroup), there must be a positive 
probability of receiving each level of exposure. This ensures that there is 
sufficient variability in treatment levels across the covariates to estimate 
causal effects. (3) Stable Unit Treatment Value Assumption (SUTVA), 
meaning that each individual’s outcome must be independent of the 
exposures of others, i.e., there is no interference between individuals. 
This is critical for ensuring that the estimated treatment effects reflect 
individual-level causal effects. (4) Correct model specification, meaning 
that the tree (or forest) should correctly capture the relationship be
tween treatment, covariates, and survival outcomes. (5) The censoring 
mechanism (e.g., the end date for data collection) must be independent 
of the exposure and the outcome, conditional on covariates. If these 
assumptions hold, the causal survival tree provides valid estimates of 
treatment effects at the leaf nodes.

Fig. 10 shows the estimated causal (if the above assumptions hold) 
relationship between exposure level (x axis) and mean causal effect on 
survival time in months over a 10-year horizon (y axis). The dots show 
the estimated mean causal effect (HTEs) of blood lead levels on survival 
for groups of individuals with the same exposure levels. Specifically, 
each dot corresponds to a specific exposure level (blood lead concen
tration) and shows the average predicted causal effect of that exposure 

level on mean survival time over a horizon of 10 years for individuals 
with that level of exposure. Red dots represent results for individuals 
who were never married and blue dots are for individuals who are or 
have been married. The red and blue curves fit to this scatter plot are 
LOESS (non-parametric smoothing regression) curves. Exposure causes 
different estimated effects (HTEs) on the mean survival times of different 
subsets of individuals, ranging from reductions on the order of about a 
month over the next 10 years in predicted mean survival times to gains 
on the order of up to half a month over the next 10 years. With the 
exception of one outlier at the lower right, it appears that estimated 
HTEs of lead exposure are less for never-married (blue) than for ever- 
married (red) people.

Other sources of heterogeneity in the estimated individual-level 
causal effects (HTEs) of exposure can be explored, e.g., via CART tree 
or Random Forest analysis. The three most important sources of het
erogeneity in HTEs identified in Random Forest analysis (not shown) are 
age, grade, and income ratio. As shown in Fig. 10, individual differences 
in never-married status also help to explain heterogeneity in individual 
HTEs, but differences in age, grade, and income are even more 
important.

An attractive benefit of AI-assisted data analysis using LLMs is that 
they are “living” analyses [10], meaning that the LLM remembers them 
in detail, making it easy for the same or other investigators to return to 
an analysis and to extend it as new questions arise. Simply resuming the 
interactive chat used to create an analysis with an LLM, even months or 
years after it is first done, makes it easy to revisit, interrogate, and up
date its data, assumptions, reasoning, conclusions, and explanations. For 
example, an anonymous reviewer of an earlier version of this article 
asked the following two questions: “1. How were tuning parameters 
chosen in the survival tree and causal survival forest? 2. Can the authors 
also present a forest plot using causal survival forest?” Returning after 
several months to the chat used to develop the causal survival forest and 
entering those questions elicited the following response from ChatGPT:

“Addressing Reviewer Comments:
1. How were tuning parameters chosen in the survival tree and 

causal survival forest?
Tuning parameters for the causal survival forest were chosen based 

on the default settings of the grf package, which are designed to provide 

Fig. 10. Results of a Causal Survival Forest analysis of Heterogeneous Treat
ment Effects (HTEs). 
Source: Appendix G gives code for Fig. 10.
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robust performance for general use cases. However, users can customize 
these parameters depending on the problem at hand. The default pa
rameters include: 

• num.trees ¼ 2000: A sufficient number of trees to ensure stability 
and robustness in predictions. Increasing the number of trees may 
reduce variance but increases computational cost.

• min.node.size ¼ 5: The minimum number of observations in each 
leaf node, which balances bias and variance.

• sample.fraction ¼ 0.5: Half of the data is used for growing each 
tree.

• honesty ¼ TRUE: Ensures that the splits in trees are determined 
using a disjoint subset of the data to reduce overfitting.

• horizon ¼ 120 months: The time point for the restricted mean 
survival time (RMST) calculation, corresponding to the research 
question. 

No cross-validation or parameter tuning was explicitly performed 
in the presented analysis, but this can be done by using the tune. 
parameters argument in the causal_survival_forest function. 

2. Can the authors also present a forest plot using the causal 
survival forest? 

A forest plot is a common visualization in survival analysis that 
summarizes the effects of predictors or treatments on outcomes. 
Here’s how to present a forest plot based on the causal survival forest 
model…” The LLM then generated code which, after slight refine
ment (e.g., to sort the confidence interval bars), produced Fig. 11 and 
the following explanation: 

“Explanation of the Forest Plot:

1. Covariate Groups:

◦ The y-axis represents combinations of binary covariates (e.g., 
never.married, small.metro, Black, South) to show how the HTE 
[Heterogenous Treatment Effect] varies across subpopulations. 

2. Mean Causal Effects:

◦ The x-axis shows the mean causal effect (HTE) for each group. 

3. Confidence Intervals:

◦ Horizontal bars indicate the 95 % confidence intervals for the mean 
causal effects.”

These kinds of responses to follow-up questions to clarify or extend 
an analysis can greatly increase its value and the return on the in
vestments of time, data, and analysis and expositions skills that went 
into the initial analysis [10].

Discussion

The following questions about inter-individual heterogeneity in risks 
are of frequent interest in public health risk assessment and 
epidemiology. 

• Do some people have greater exposure-associated risks than others, even if 
their exposures are the same?

• If so, how do their individual exposure-response curves differ?
• To what extent do differences in covariates predict differences in 

exposure-response functions?
• How would changing exposure (but nothing else, such as income) change 

the distribution of individual life lengths in the population?
• How would changing exposure (but nothing else) change each in

dividual’s probability distribution of life length, given the values of other 
covariates for the individual?

Computationally practical methods for answering such questions 
based on data are comparatively new. ICE plot analyses (Figs. 5 and 9) 
and heterogeneous treatment effects (HTEs) of exposure (Fig. 10) pro
vide promising frameworks for using survival data to answer such 

Fig. 11. Forest Plot for Causal Survival Forest, Generated Upon Request.
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questions. They show that for the same value of exposure on the x axis, 
there are very different individual mortality risks. Moreover, the HTEs, 
as well as the average slopes of the individual exposure-response curves 
(i.e., the ICE curves) as exposure increases, e.g., from 0 to 10, are very 
different for different individuals. Since it is not convenient to visualize 
how entire probability distributions of individual life lengths vary with 
exposure, Fig. 9 shows only how the median predicted survival time (in 
months) varies with exposure. If desired, other quantiles can be plotted 
similarly. Likewise, Fig. 10 shows the estimated changes in life expec
tancy over the next 10 years caused by different levels of exposure for 
different individuals. Similar-looking plots can be shown for other time 
horizons. A useful insight from the non-parametric survival data analysis 
results based on Random Survival Forest predictions is that they show 
clearly that exposure is significantly positively associated with increased 
mortality risk (Figs. 8 and 9). This was not as clear in logistic regression 
(Fig. 4) or CPH modeling results (Fig. 6).

This paper has illustrated how AI-powered data analysis can enable 
subject matter experts (SMEs) to quickly complete a variety of analyses 
to show how predicted individual-level risks vary with exposure, hold
ing other covariates fixed. Disaggregating population exposure-response 
functions to show inter-individual variability in risk for each level of 
exposure enables risk managers to understand quantitatively the extent 
of inequalities in exposure-associated risks and in exposure-response 
relationships within a population. AI-assisted data analysis makes it 
relatively easy to produce these highly resolved risk assessments using 
relatively recent and sophisticated methods such as ICE plots and HTE 
estimates. The capability to produce advanced analyses easily frees risk 
analysts to focus on what questions to ask and the extent to which un
derlying modeling assumptions are appropriate for the data being 
analyzed, while delegating many of the details of how the answers are 
computed to reliable R and Python packages that are selected, run, and 
interpreted under the supervision of an AI.

We have sought to show how AI-assisted data analysis can be used to 
accelerate and enhance key analytics tasks such as the following: 

• Calculate and visualize individual-level outcomes. Tools such as Indi
vidual Conditional Expectation (ICE) plots and HTEs allow for the 
visualization of the dependence of individual-level health risks on 
exposure and other variables. This goes beyond what traditional 
methods such as regression modeling and Partial Dependence Plots 
(PDP) do by quantifying average effects in a population. By showing 
individual-level effects, these methods enable practitioners to better 
understand heterogeneous responses to exposures, potentially 
enabling more personalized and precise risk assessments.

• Check assumptions of statistical models. Advanced diagnostic tests, 
such as martingale residual tests for Cox Proportional Hazards (CPH) 
models, allow practitioners to test and verify (or refute) the as
sumptions underlying their statistical models. This ensures that the 
models used are appropriate for the data, improving the validity of 
the results.

• Apply more advanced methods when assumptions of simpler models 
are found not to hold: When diagnostic tests indicate that the as
sumptions of simpler models (such as linear or logistic regression) do 
not hold, more sophisticated techniques (such as Random Forests or 
Random Survival Forests) can be used instead. These methods are 
non-parametric. They can handle non-linear relationships and in
teractions between variables, providing more robust and reliable 
results.

• Cross-check validity and robustness of conclusions. Using multiple 
analytical methods allows practitioners to cross-validate their find
ings. By comparing results from different models, they can assess the 
consistency and robustness of their conclusions, leading to greater 
confidence in their results.

However, as illustrated in the chats at the links in the appendices, it is 
currently still prudent – and even essential, in order to achieve 

trustworthy results – for statistics and ML experts to carefully review AI- 
generated results and code to assure that statistical software is being 
used appropriately.

Conclusions and recommendations

This paper has demonstrated the current potential of AI-assisted data 
analysis to help clarify statistical exposure-response relationships using 
survival data. ICE plots and sophisticated machine learning analyses 
using predictors such as Random Survival Forest are now relatively easy 
to prepare using off-the-shelf statistics packages. Large language models 
(LLMs) make those packages much more accessible and easier to use 
than ever before. The resulting individual-level risk predictions provide 
insights into inter-individual variability in exposure-response relation
ships that are not easy to quantify and visualize using traditional 
aggregate statistical regression models.

The illustrative analysis of blood lead levels (BLL) and mortality risk 
for male nonsmokers in the NHANES III dataset illustrates how non- 
parametric machine learning methods can reveal inter-individual dif
ferences in predicted survival times as functions of exposure, offering a 
deeper, data-driven perspective on exposure-associated health risks. 
These findings suggest several key conclusions: 

1. Limitations of Traditional Models: Logistic regression and Cox 
Proportional Hazards models, may not detect significant exposure- 
response relationships, especially in the presence of non-linearities 
and interactions among variables.

2. Non-Parametric Methods: Combining non-parametric prediction 
methods such as survival forests with ICE plot methods for dis
aggregating average exposure response curves down to the individ
ual level provides a flexible and powerful approach to modeling 
survival data. Regulatory agencies and risk management policy- and 
decision-makers can take advantage of such methods to quantify 
differences in estimated individual-level exposure-response func
tions rather than relying solely on population-averaged estimates. 
Our illustrative analysis of the NHANES III dataset using blood lead 
levels (BLL) and mortality risk illustrates the value of these methods 
in providing a deeper, more personalized understanding of risk 
profiles across populations.

3. AI-Assisted Analysis: The use of AI, particularly large language 
models like ChatGPT, can greatly facilitate the application of ma
chine learning methods and advanced statistical analyses for risk 
analysts and epidemiologists. We have demonstrated ChatGPT’s 
ability to help conduct complex analyses and generate new insights 
with minimal user input, making advanced statistical methods more 
accessible to researchers. It is timely for public health researchers 
and risk assessors to consider integrating AI-assisted data analysis 
into their workflows to take advantage of recent machine learning 
approaches and to help check the assumptions and interpret the re
sults of advanced statistical analyses.

4. Human-AI partnership: While AI-assisted data analysis appears 
very promising, continued validation of results is necessary to ensure 
accuracy. AI can automate much of the analysis, but expert oversight 
is critical for ensuring the appropriate application of models and the 
correct interpretation of results, as illustrated by some of the chats 
referenced in the appendixes. Researchers should view AI as a 
valuable tool for assisting human analysis rather than a replacement 
for expert judgment. Standardizing the use of these tools in health 
risk assessments might help to improve their credibility and reli
ability in policy contexts.

In conclusion, AI-assisted data analysis represents a potentially 
transformative step forward in health risk assessment, offering more 
granular insights into exposure-response relationships and enabling 
better-informed decisions for public health and regulatory policies.
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Appendix A. R code for generating an ICE plot

simple_ice <− function(data = mtcars) {.
# Load required packages.
if (!requireNamespace("randomForest", quietly = TRUE)) {.
install.packages("randomForest").
}
if (!requireNamespace("ICEbox", quietly = TRUE)) {.
install.packages("ICEbox").
}
library(randomForest).
library(ICEbox).
# Train a Random Forest model on mpg vs. all other variables in the 

dataset.
model <− randomForest(mpg ~ ., data = data).
# Generate ICE data for the predictor wt.
ice <− ice(object = model, X = data, y = data$mpg, predictor =

"wt").
# Plot the ICE curves without centering and plot all curves.
plot(ice, centered = FALSE, frac_to_plot = 1,
xlab = "weight (wt) rescaled to run from 0 to 1",
ylab = "miles per gallon (mpg)").
# Add a title to the plot.
title("ICE Plot: mpg vs. wt using Random Forest").

}
# Example usage:
simple_ice().

Appendix B. R code for Fig. 3 (simple logistic regression) and 
logistic regression analyses

# Load necessary libraries.
library(ggplot2).
# Assuming the dataset is already loaded in R as df, where "Exposure" 

is the variable for blood lead levels (BLL) and "Status" is the mortality 
status.

# Fit a logistic regression model.
model <− glm(Status ~ Exposure, data = df, family = binomial).
# Create a sequence of Exposure values for prediction.
Exposure_range < − seq(min(df$Exposure), max(df$Exposure), 

length.out = 100).
# Create a dataframe for prediction.
pred_df < − data.frame(Exposure = Exposure_range).
# Predict mortality probabilities based on the logistic regression 

model.
pred_df$predicted_prob <− predict(model, newdata = pred_df, type 

= "response").
# Get confidence intervals for the predictions.
pred <− predict(model, newdata = pred_df, type = "link", se.fit =

TRUE).
critval <− 1.96 # Critical value for 95 % confidence intervals.
pred_df$upper <− plogis(pred$fit + critval * pred$se.fit).
pred_df$lower <− plogis(pred$fit - critval * pred$se.fit).
# Plot the logistic regression curve along with observed data points 

(jittered).
ggplot() +.
geom_point(data = df, aes(x = Exposure, y = Status), color = "red", 

alpha = 0.5, position = position_jitter(height = 0.02)) +.
geom_line(data = pred_df, aes(x = Exposure, y = predicted_prob), 

color = "blue") +.
geom_ribbon(data = pred_df, aes(x = Exposure, ymin = lower, ymax 

= upper), fill = "blue", alpha = 0.2) +.
labs(title = "Logistic Regression: Mortality Probability vs. Blood Lead 

Levels (Exposure)",
x = "Blood Lead Levels (Exposure) [μg/dL]",
y = "Mortality Probability") +.
theme_minimal().
# Code for regression diagnostics for simple logistic regression 

model.
# Load necessary libraries.
library(ResourceSelection) # For Hosmer-Lemeshow test.
library(ggplot2).
library(car) # For Cook’s distance.
# Fit the logistic regression model.
model <− glm(Status ~ Exposure, data = df, family = binomial).
# 1. Hosmer-Lemeshow Goodness-of-Fit Test.
# Dividing data into deciles of fitted values for the test.
hoslem_test <− hoslem.test(df$Status, fitted(model), g = 10).
print(hoslem_test).
# 2. Residual Analysis: Plot of deviance residuals vs. fitted values.
df$deviance_residuals <− residuals(model, type = "deviance").
ggplot(df, aes(x = fitted(model), y = deviance_residuals)) +.
geom_point(color = "red") +.
geom_hline(yintercept = 0, linetype = "dashed") +.
labs(title = "Deviance Residuals vs. Fitted Values",
x = "Fitted Values", y = "Deviance Residuals") +.
theme_minimal().
# 3. Linearity in the Logit: Plot logit vs. Exposure.
df$logit <− log(fitted(model) / (1 - fitted(model))) # logit of fitted 

values.
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ggplot(df, aes(x = Exposure, y = logit)) +.
geom_point(color = "blue") +.
geom_smooth(method = "loess", color = "red") +.
labs(title = "Logit (Predicted Probability) vs. Exposure",
x = "Exposure", y = "Logit (Predicted Probability)") +.
theme_minimal().
# 4. Influential Points: Cook’s distance.
cooks_d < − cooks.distance(model).
influential_points < − which(cooks_d > (4 / nrow(df))) # Rule of 

thumb for identifying influential points.
# Plot Cook’s distance.
ggplot(data.frame(index = 1:nrow(df), cooks_d = cooks_d), aes(x =

index, y = cooks_d)) +.
geom_bar(stat = "identity", fill = "skyblue") +.
geom_hline(yintercept = (4 / nrow(df)), linetype = "dashed", color 

= "red") +.
labs(title = "Cook’s Distance for Influential Points",
x = "Observation Index", y = "Cook’s Distance") +.
theme_minimal().
# Print influential points.
print(paste("Influential points:", paste(influential_points, collapse =

", "))).
# Code for simple logistic regression and loess curve (not shown in 

text).
# Load necessary library.
library(ggplot2).
# Fit the logistic regression model.
model <− glm(Status ~ Exposure, data = df, family = binomial).
# Create a dataframe for prediction.
Exposure_range < − seq(min(df$Exposure), max(df$Exposure), 

length.out = 100).
pred_df < − data.frame(Exposure = Exposure_range).
pred_df$logistic_pred <− predict(model, newdata = pred_df, type =

"response").
# Plot the LOESS curve and logistic regression curve together.
ggplot(df, aes(x = Exposure, y = Status)) +.
geom_point(color = "red", alpha = 0.5) + # Observed data points.
geom_smooth(method = "loess", color = "blue", se = FALSE) + # 

LOESS curve.
geom_line(data = pred_df, aes(x = Exposure, y = logistic_pred), 

color = "darkgreen", size = 1.5) + # Thicker, darker logistic regression 
curve.

labs(title = "LOESS and Logistic Regression Curves for Mortality Risk 
vs. Exposure",

x = "Exposure (Blood Lead Levels) [μg/dL]",
y = "Mortality Risk (Status)") +.
theme_minimal().
# Code for multivariate logistic regression.
# Fit the multivariate logistic regression model.
model <− glm(Status ~ Exposure + age + grade + income.ratio +

notHispanic + Black + small.metro + South + West + never.married,
data = df, family = binomial).
# Summarize the model.
summary(model).
# Calculate odds ratios and confidence intervals.
odds_ratios <− exp.(coef(model)) # Odds Ratios.
conf_int < − exp.(confint(model)) # 95 % Confidence Intervals.
# Extract p-values.
p_values <− summary(model)$coefficients[, "Pr(>|z|)"].
# Combine results into a single dataframe.
results <− data.frame(.
Variable = rownames(summary(model)$coefficients),
Odds_Ratio = odds_ratios,
CI_Lower = conf_int[,1],
CI_Upper = conf_int[,2],
p_value = p_values.

)
# Print the results.
print(results).
# Code for multivariate logistic regression model diagnostics.
# Load necessary libraries.
library(ResourceSelection) # For Hosmer-Lemeshow test.
library(car) # For Variance Inflation Factor (VIF).
library(ggplot2).
# Fit the multivariate logistic regression model.
model <− glm(Status ~ Exposure + age + grade + income.ratio +

notHispanic + Black + small.metro + South + West + never.married,
data = df, family = binomial).
# 1. Hosmer-Lemeshow Goodness-of-Fit Test.
hoslem_test <− hoslem.test(df$Status, fitted(model), g = 10).
print(hoslem_test).
# 2. Check for multicollinearity using VIF.
vif_values <− vif(model).
print(vif_values).
# 3. Deviance Residuals vs Fitted Values Plot.
df$deviance_residuals <− residuals(model, type = "deviance").
ggplot(df, aes(x = fitted(model), y = deviance_residuals)) +.
geom_point(color = "red") +.
geom_hline(yintercept = 0, linetype = "dashed") +.
labs(title = "Deviance Residuals vs. Fitted Values",
x = "Fitted Values", y = "Deviance Residuals") +.
theme_minimal().
# 4. Linearity of logit (log odds) with predictors.
df$logit <− log(fitted(model) / (1 - fitted(model))).
ggplot(df, aes(x = Exposure, y = logit)) +.
geom_point(color = "blue") +.
geom_smooth(method = "loess", color = "red") +.
labs(title = "Logit (Predicted Probability) vs. Exposure",
x = "Exposure", y = "Logit (Predicted Probability)") +.
theme_minimal().
# 5. Cook’s Distance for influential points.
cooks_d < − cooks.distance(model).
influential_points < − which(cooks_d > (4 / nrow(df))) # Identify 

influential points.
ggplot(data.frame(index = 1:nrow(df), cooks_d = cooks_d), aes(x =

index, y = cooks_d)) +.
geom_bar(stat = "identity", fill = "skyblue") +.
geom_hline(yintercept = (4 / nrow(df)), linetype = "dashed", color 

= "red") +.
labs(title = "Cook’s Distance for Influential Points",
x = "Observation Index", y = "Cook’s Distance") +.
theme_minimal().
# Print influential points.
print(paste("Influential points:", paste(influential_points, collapse =

", "))).
# Code for logistic regression forest plot.
# Load necessary libraries.
library(ggplot2).
# Fit the multivariate logistic regression model.
model <− glm(Status ~ Exposure + age + grade + income.ratio +

notHispanic + Black + small.metro + South + West + never.married,
data = df, family = binomial).
# Summarize the model.
summary(model).
# Calculate odds ratios and confidence intervals.
odds_ratios <− exp.(coef(model)) # Odds Ratios.
conf_int < − exp.(confint(model)) # 95 % Confidence Intervals.
# Extract p-values.
p_values <− summary(model)$coefficients[, "Pr(>|z|)"].
# Combine results into a single dataframe.
results <− data.frame(.
Variable = rownames(summary(model)$coefficients),
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Odds_Ratio = odds_ratios,
CI_Lower = conf_int[, 1],
CI_Upper = conf_int[, 2],
p_value = p_values.
)
# Create the forest plot using ggplot2.
ggplot(results, aes(x = Variable, y = Odds_Ratio)) +.
geom_point(size = 4, color = "black") + # Larger points for better 

visibility.
geom_errorbar(aes(ymin = CI_Lower, ymax = CI_Upper), width =

0.2, color = "black") +.
geom_hline(yintercept = 1, linetype = "dashed", color = "grey") + # 

Reference line at OR = 1.
coord_flip() + # Flip coordinates to make it horizontal.
labs(title = "Forest Plot of Odds Ratios for Mortality Risk",
x = "Variables",
y = "Odds Ratio (95% CI)") +.
theme_minimal() +.
theme(.
plot.title = element_text(size = 18, face = "bold"), # Larger title font.
axis.title.x = element_text(size = 14), # Larger x-axis title font.
axis.title.y = element_text(size = 14), # Larger y-axis title font.
axis.text.x = element_text(size = 12), # Larger x-axis text font.
axis.text.y = element_text(size = 12), # Larger y-axis text font.
legend.position = "none" # Remove legend if not needed.
)

Appendix C. R code for ICE plots in Fig. 5

simple_ice <− function(data) {.
# Load required packages.
if (!requireNamespace("randomForest", quietly = TRUE)) {.
install.packages("randomForest").
}
if (!requireNamespace("ICEbox", quietly = TRUE)) {.
install.packages("ICEbox").
}
library(randomForest).
library(ICEbox).
# Train a Random Forest model on Status (mortality) vs. all other 

variables in the dataset.
model <− randomForest(Status ~ ., data = data).
# Generate ICE data for the predictor Exposure.
ice <− ice(object = model, X = data, y = data$Status, predictor =

"Exposure").
# Plot the ICE curves without centering and plot all curves.
plot(ice, centered = FALSE, frac_to_plot = 1,
xlab = "Exposure rescaled to run from 0 to 1",
ylab = "Mortality Probability (Status)").
# Add a title to the plot.
title("ICE Plot: Mortality vs. Exposure using Random Forest").
}
# Example usage:
sampled_data <− read.csv("df.csv").
simple_ice(sampled_data).
# To obtain a centered ICE plot, change "centered = FALSE" to 

"centered = TRUE" above.

Appendix D. R Code for Cox Proportional Hazards (CPH) model 
forest plot in Fig. 6

https://chatgpt.com/share/89c68911-ffdb-49e0-9f22-003775e 
5b2e3

# Quietly install and load necessary packages if not already installed.
if (!require(survival)) {.
install.packages("survival", quiet = TRUE).

library(survival).
}
if (!require(survminer)) {.
install.packages("survminer", quiet = TRUE).
library(survminer).
}
# Load the dataset.
df < − read.csv("df.csv").
# Rename columns to replace ‘.’ with ‘_’.
names(df) < − gsub("\\.", "_", names(df)).
# Derive the ‘deathage’ as mentioned in the dataset description.
df$deathage <− df$age + df$survival_time / 12.
# Fit a Cox Proportional Hazards model.
cox_model <− coxph(Surv(deathage, Status) ~ age + grade +

income_ratio + Exposure + notHispanic + small_metro + Black + South 
+ West + never_married, data = df).

# Display the summary of the Cox model.
summary(cox_model).
# Visualize hazard ratios using a forest plot with a custom title.
ggforest(cox_model, data = df, main = "Forest Plot for Cox Propor

tional Hazards Model: Multiple Covariates").

Appendix E. R Code for the survival tree in Fig. 7

https://chatgpt.com/share/25011467-cd4f-4cd2-8d99-3baab9492d 
1c

# Load required libraries.
library(survival).
library(rpart).
library(rpart.plot).
library(partykit).
# Read the data.
df < − read.csv("df.csv").
# Rename columns to replace any ‘.’ with ‘_’.
names(df) < − gsub("\\.", "_", names(df)).
# Fit the survival tree using the rpart method with cp = 0.003.
surv_tree <− rpart(Surv(survival_time, Status) ~ age + grade +

income_ratio + Exposure +.
notHispanic + small_metro + Black + South + West +

never_married,
data = df, method = "exp", control = rpart.control(cp = 0.003)).
# Plot the survival tree using rpart.plot.
rpart.plot(surv_tree, type = 3, extra = 101, fallen.leaves = TRUE).
# Convert rpart object to partykit object to visualize survival curves 

at the leaf nodes.
surv_tree_party <− as.party(surv_tree).
# Plot the tree with survival curves at the leaf nodes.
plot(surv_tree_party, tp_args = list(type = "surv")).

Appendix F. R code for Survival Forest Analysis

# NOTE: This code may take several minutes to run.
# Install the randomForestSRC package if not already installed.
if (!require(randomForestSRC)) {.
install.packages("randomForestSRC").
}
# Load the necessary library.
library(randomForestSRC).
# Load the dataset (assuming it’s saved as df.csv).
df < − read.csv("df.csv").
# Rename columns to replace "." with "_", if needed.
names(df) < − gsub("\\.", "_", names(df)).
# Fit a survival random forest model.
surv_forest <− rfsrc(Surv(survival_time, Status) ~ age + grade +

income_ratio + Exposure + notHispanic + small_metro + Black + South 
+ West + never_married,
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data = df, ntree = 1000, importance = TRUE).
# Generate Partial Dependence Plots for all variables.
plot.variable(surv_forest, partial = TRUE, smooth.lines = TRUE, 

show.plots = TRUE).
# Appendix F (cont.) R code for survival forest ICE plots.
# Install necessary packages.
if (!require(randomForestSRC)) {.
install.packages("randomForestSRC").
}
if (!require(ggplot2)) {.
install.packages("ggplot2").
}
if (!require(dplyr)) {.
install.packages("dplyr").
}
# Load the libraries.
library(randomForestSRC).
library(ggplot2).
library(dplyr).
# Load your dataset (assuming it’s saved as df.csv).
df < − read.csv("df.csv").
# Rename columns to replace "." with "_", if needed.
names(df) < − gsub("\\.", "_", names(df)).
# Fit a survival random forest model.
surv_forest <− rfsrc(Surv(survival_time, Status) ~ age + grade +

income_ratio + Exposure + notHispanic + small_metro + Black + South 
+ West + never_married,

data = df, ntree = 1000, importance = TRUE).
# Function to extract median survival time from the survival curve.
# This function finds the time at which survival probability = 0.5 

(median survival time).
extract_median_survival_time < − function(surv_object, newdata) {.
pred <− predict(surv_object, newdata = newdata).
apply(pred$survival, 1, function(surv_probs) {.
time_points < − pred$time.interest.
# Find the first time point where survival probability drops below 

0.5.
median_time_index <− which.min(abs(surv_probs - 0.5)).
time_points[median_time_index].
})
}
# Set up a grid of values for the variable you want to generate PDPs 

for (e.g., Exposure).
exposure_values <− seq(min(df$Exposure), max(df$Exposure), 

length.out = 100).
# Create an empty list to store predictions.
pdp_data <− list().
# Loop through each individual in the dataset and calculate the 

median survival time for each exposure level.
for (i in 1:nrow(df)) {.
# Create a copy of the original dataset and modify the "Exposure" 

column for each grid value.
newdata <− df[rep(i, length(exposure_values)),].
newdata$Exposure <− exposure_values.
# Extract median survival times for each exposure value.
median_survival_times <− extract_median_survival_time(surv_for

est, newdata).
# Store the results in a dataframe.
pdp_data[[i]] < − data.frame(id = i, Exposure = exposure_values, 

Predicted = median_survival_times).
}
# Combine all PDP data into a single dataframe.
pdp_df < − do.call(rbind, pdp_data).
# Calculate the average median survival time at each level of 

Exposure (PDP curve).
pdp_avg_df < − pdp_df % > %.

group_by(Exposure) % > %.
summarize(Predicted = mean(Predicted, na.rm. = TRUE)) # Taking 

the mean of the median times.
# Plot the PDP with Median Survival Time on the y-axis.
ggplot() +.
geom_line(data = pdp_df, aes(x = Exposure, y = Predicted, group =

id), alpha = 0.1, color = "blue") +.
geom_line(data = pdp_avg_df, aes(x = Exposure, y = Predicted), 

color = "green", size = 1.2) +.
theme_minimal() +.
labs(title = "PDP with Median Survival Time for Exposure", x =

"Exposure (μg/dL)", y = "Predicted Median Survival Time (months)").

Appendix G. R code for Causal Survival Forest Analysis

# Install and load necessary packages.
if (!require(grf)) install.packages("grf", dependencies = TRUE).
if (!require(dplyr)) install.packages("dplyr", dependencies = TRUE).
library(grf).
library(dplyr).
# Assuming you have a dataset ‘df’ loaded with the following 

columns:
# "age", "grade", "income.ratio", "Exposure", "survival.time", "Status", 

"notHispanic",
# "small.metro", "Black", "South", "West", "never.married".
# Remove rows with missing values from the dataset to ensure 

matching lengths.
df_clean <− df[complete.cases(df[, c("age", "grade", "income.ratio", 

"notHispanic", "small.metro",
"Black", "South", "West", "never.married", "survival.time",
"Exposure", "Status")]),].
# Ensure Y, W, and D are numeric vectors and X is a matrix.
X < - as.matrix(df_clean[, c("age", "grade", "income.ratio", "notHis

panic", "small.metro",
"Black", "South", "West", "never.married")]).
Y < - as.numeric(df_clean$survival.time) # Event time (survival time 

in months).
W < - as.numeric(df_clean$Exposure) # Treatment assignment 

(Blood Lead Levels).
D < - as.numeric(df_clean$Status) # Event type (1: death, 0: 

censored).
# Define the time horizon (set it to 120 months).
horizon <− 120.
# Fit the causal survival forest.
cs_forest <− causal_survival_forest(X = X, Y = Y, W = W, D = D, 

horizon = horizon).
# Predict causal effects on out-of-bag (OOB) samples.
cs_pred_oob < − predict(cs_forest).
# Create a data frame to store Exposure and corresponding pre

dictions, including ‘never.married’.
df_results <− data.frame(.
Exposure = df_clean$Exposure,
Causal_Effect = cs_pred_oob$predictions,
Never_Married = df_clean$never.married.
)
# Group by Exposure levels and calculate the mean causal effect.
df_mean_effects <− df_results % > %.
group_by(Exposure) % > %.
summarize(Mean_Causal_Effect = mean(Causal_Effect)).
# Assign colors based on ‘never_married’ status: red for ‘never_

married = 1’, blue otherwise.
dot_colors <− ifelse(df_results$Never_Married == 1, "red", "blue").
# Fit a LOESS curve to the data and calculate standard errors.
loess_fit <− loess(Mean_Causal_Effect ~ Exposure, data = df_mea

n_effects, span = 0.75).
loess_pred <− predict(loess_fit, se = TRUE).
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# Add the fitted values and standard errors to the dataframe.
df_mean_effects$Fitted <− loess_pred$fit.
df_mean_effects$SE < - loess_pred$se.fit.
# Calculate the 95 % confidence interval.
df_mean_effects$Upper_CI < - df_mean_effects$Fitted +1.96 * 

df_mean_effects$SE.
df_mean_effects$Lower_CI < - df_mean_effects$Fitted - 1.96 * 

df_mean_effects$SE.
# Plot the LOESS smoothed curve with grey uncertainty bands.
plot(df_mean_effects$Exposure, df_mean_effects 

$Mean_Causal_Effect,
xlab = "Exposure (Blood Lead Levels)",
ylab = "Mean Causal Effect",
main = "Mean Causal Effect vs. Exposure (LOESS Curve with 95% 

CI)",
col. = "blue", pch = 16).
# Add the LOESS fitted curve.
lines(df_mean_effects$Exposure, df_mean_effects$Fitted, col. = "red", 

lwd = 2).
# Add the uncertainty bands (95% CI) with grey shading.
polygon(c(df_mean_effects$Exposure, rev(df_mean_effects$Exposure)),
c(df_mean_effects$Upper_CI, rev(df_mean_effects$Lower_CI)),
col. = rgb(0.5, 0.5, 0.5, 0.4), border = NA) # Grey shaded area for CI.
# Plot the individual dots with colors based on ‘never.married’ 

status.
points(df_results$Exposure, df_results$Causal_Effect, col. = dot_

colors, pch = 16).
# Comparison of estimated HTEs by never_married status.
# Install and load necessary packages.
if (!require(grf)) install.packages("grf", dependencies = TRUE).
if (!require(dplyr)) install.packages("dplyr", dependencies = TRUE).
library(grf).
library(dplyr).
# Assuming you have a dataset ‘df’ loaded with the following 

columns:
# "age", "grade", "income.ratio", "Exposure", "survival.time", "Status", 

"notHispanic",
# "small.metro", "Black", "South", "West", "never.married".
# Remove rows with missing values from the dataset to ensure 

matching lengths.
df_clean <− df[complete.cases(df[, c("age", "grade", "income.ratio", 

"notHispanic", "small.metro",
"Black", "South", "West", "never.married", "survival.time",
"Exposure", "Status")]),].
# Function to process and plot for a given ‘never.married’ group.
plot_group <− function(df_filtered, color, line_color, add = FALSE) {.
# Ensure Y, W, and D are numeric vectors and X is a matrix.
X < - as.matrix(df_filtered[, c("age", "grade", "income.ratio", 

"notHispanic", "small.metro",
"Black", "South", "West", "never.married")]).
Y < - as.numeric(df_filtered$survival.time) # Event time (survival 

time in months).
W < - as.numeric(df_filtered$Exposure) # Treatment assignment 

(Blood Lead Levels).
D < - as.numeric(df_filtered$Status) # Event type (1: death, 0: 

censored).
# Define the time horizon (set it to 120 months).
horizon <− 120.
# Fit the causal survival forest.
cs_forest <− causal_survival_forest(X = X, Y = Y, W = W, D = D, 

horizon = horizon).
# Predict causal effects on out-of-bag (OOB) samples.
cs_pred_oob < − predict(cs_forest).
# Create a data frame to store Exposure and corresponding 

predictions.
df_results <− data.frame(.

Exposure = df_filtered$Exposure,
Causal_Effect = cs_pred_oob$predictions.
)
# Group by Exposure levels and calculate the mean causal effect for 

this group.
df_mean_effects <− df_results % > %.
group_by(Exposure) % > %.
summarize(Mean_Causal_Effect = mean(Causal_Effect)).
# Fit a LOESS curve to the data and calculate standard errors.
loess_fit <− loess(Mean_Causal_Effect ~ Exposure, data = df_mea

n_effects, span = 0.75).
loess_pred <− predict(loess_fit, se = TRUE).
# Add the fitted values and standard errors to the dataframe.
df_mean_effects$Fitted <− loess_pred$fit.
df_mean_effects$SE < - loess_pred$se.fit.
# Calculate the 95 % confidence interval.
df_mean_effects$Upper_CI < - df_mean_effects$Fitted +1.96 * 

df_mean_effects$SE.
df_mean_effects$Lower_CI < - df_mean_effects$Fitted - 1.96 * 

df_mean_effects$SE.
# Plot or add the points and LOESS curve.
if (add) {.
# Add points and LOESS curve to an existing plot.
points(df_mean_effects$Exposure, df_mean_effects$Mean_Causal_Effect, 

col. = color, pch = 16).
lines(df_mean_effects$Exposure, df_mean_effects$Fitted, col. = line_ 

color, lwd = 2).
} else {.
# Create a new plot.
plot(df_mean_effects$Exposure, df_mean_effects$Mean_Causal_Effect,
xlab = "Exposure (Blood Lead Levels)",
ylab = "Mean Causal Effect",
main = "Mean Causal Effect vs. Exposure",
col. = color, pch = 16).
lines(df_mean_effects$Exposure, df_mean_effects$Fitted, col. = line_ 

color, lwd = 2).
}
}
# Filter for individuals with never_married = 1 (blue) and never_

married = 0 (red).
df_never_married_1 < − df_clean % > % filter(never.married == 1).
df_never_married_0 < − df_clean % > % filter(never.married == 0).
# Plot for never_married = 1 (blue).
plot_group(df_never_married_1, color = "blue", line_color = "blue").
# Overlay plot for never_married = 0 (red).
plot_group(df_never_married_0, color = "red", line_color = "red", add 

= TRUE).
# Add legend to explain what the red and blue dots represent.
legend("topright", legend = c("Never Married = 1", "Never Married =

0"),
col. = c("blue", "red"), pch = 16, title = "Legend").
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