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Traditional Chinese medicines (TCMs) contain a large quantity of compounds with multiple biological activities. By using
multitargets docking and network analysis in the context of pathway network of platelet aggregation, we proposed network
efficiency and network flux model to screen molecules which can be used as drugs for antiplatelet aggregation. Compared with
traditional single-target screening methods, network efficiency and network flux take into account the influences which compounds
exert on the whole pathway network. The activities of antiplatelet aggregation of 19 active ingredients separated from TCM and 14
nonglycoside compounds predicated from network efficiency and network flux model show good agreement with experimental
results (correlation coeflicient = 0.73 and 0.90, resp.). This model can be used to evaluate the potential bioactive compounds and
thus bridges the gap between computation and clinical indicator.

1. Introduction

Translational research moves basic biological discoveries
from the basic bench into the clinic applications, and it uses
the clinic observations to indicate future directions for basic
research. The biomarkers which are the molecular, biological,
or physical characteristics of a specific physiologic state have
an immense impact on the prevention and treatment of dis-
eases. For example, the use of blood pressure and cholesterol
as biomarkers for diagnostics and therapies has contributed
to a 50 percent decrease in cardiovascular mortality in the
USA over the past 30 years [1]. Most biomarkers of a specific
physiologic state are related to biological pathways. Therefore,
the studies on related pathways could help to find the links
between the molecules, pathways, cellular entities, and clinic
biomarkers.

Biological pathways are a defined group of biological
entities that are organized in a specified order and can

perform specified biological functions. Networks based on
pathways will play an important role in the development
of novel polypharmacological strategies to evaluate com-
pounds which will alter the entire pathway rather than
inhibit/activate the single target protein. Since many com-
pounds and enzymes whose biological functions are not
explored completely in biological pathways, it is time-
consuming and expensive to determine biological functions
through biological experiments for each. Therefore, it is
highly desired if a computational approach can be developed
to address this problem [2, 3].

Along with the progress of system biology, many com-
plex diseases such as cancer, cardiovascular disease, and
mental disorders are much more complex than initially
anticipated because they are often caused by system-wide
multifactors rather than being the result of a single defect
[4-8]. System biology provides a platform for integrating
multiple components and interactions in health and disease
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state, while conventional approaches focused on a single
event. The biological networks are becoming increasingly
important for chemical biology and drug discovery. Analysis
of biological networks offers an opportunity for integration
of biological complexities and multilevel relationships and
provides a new framework to understand the molecular basis
of physiological or pathophysiological states. The network-
based chemical biology and drug discovery aim to harness
this knowledge to investigate and understand the impact of
interventions of small molecules in the context of biological
networks [9, 10].

Several traditional computational approaches such as
pharmacophore, quantitative structure activity relationship,
molecular similarity, and molecular docking have been
used frequently. However, these methods cannot handle the
problems in systems level. In recent years, computational
polypharmacology approaches have been developed [11-
13]. Encouraged by the successes of using computational
approaches to tackle various problems in different biological
systems, we have developed a novel and valuable com-
putational approach to evaluate the efficacy of ligands by
calculating the influence on pathway network [14].

Platelet aggregation plays an important role in myocar-
dial infarction, thrombosis, stroke, and many other related
disorders. Normal platelet aggregation is an essential part
of hemostatic process which could protect mammalian from
injuries of blood vessels. However, improper hemostatic
stimuli in the blood could lead to a series of serious disorders
and even death. Therefore, antiplatelet aggregation agents
may be useful for regulating the platelet aggregation and
treating the relative disorders. In this work, we developed
a computational approach based on network efficiency and
network flux to evaluate the antiplatelet aggregation activities
of active ingredients separated from TCM.

2. Materials and Methods

2.1. Network Construction and Analysis. The network was
constructed by using the information retrieved from five
published literatures [15-19], Reactome [20], and KEGG
[21]. The enzymes which participated in the pathway were
proposed as nodes, and arrows between nodes represented
the connections. The direction of the arrow meant that
the node in the end of the arrow was in the downstream
of the node in the front. First, Xiang et al. and Broos
et al. have constructed the main framework [15, 16]. The
information of GPCRs and synthesis of thromboxane was
supplemented from other references. Finally, the pathway
network of platelet aggregation (Figure 1) contains 64 nodes
and 91 edges (arrows).

2.2. Multitarget Docking. Nineteen proteins (Table 1) in the
pathway network were chosen as targets for docking. The
protein-ligand complex structures (crystal or NMR) of each
protein were downloaded from RCSB Protein Data Bank
(http://www.rcsb.org/pdb/home/home.do). The structures of
targets PAR1 and PAR4 were prepared by homology modeling
based on crystal structure of bovine rhodopsin (PDB entry:
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1U19). The AutoDock4.01 program in DOVIS 2.0 [22] was
used for the virtual screening because of the better perfor-
mance of its scoring function [23]. First, polar hydrogen
atoms were added, and nonpolar hydrogen atoms were
merged by the hydrogen module in AutoDock Tools (ADTs)
for nineteen targets after water molecule was removed. Then,
Kollman united atom partial charges were assigned. The grid
map of the docking simulation was established by a 40 x 40
x 40 cube centered on the target active site, with a spacing
of 0.375A between the grid points. When every ligand
was docked to a target, the Lamarckian genetic algorithm
was used to optimize the conformation of ligands in the
binding pocket. The set of parameters was listed as follows:
the size of the population was 150. The number of energy
evaluations was set to 2.5 x 10 as the run terminates. For
clustering the conformations, the root mean square deviation
tolerance was 2.0. Twenty independent docking runs were
carried out for every ligand. Other parameters were set to
default. The original ligands in the complex structures or
known inhibitors (Table 1) were used as reference compounds
to determine the affinity of compounds to corresponding
targets. The compound database used for multitarget docking
contained 413 natural products from Chinese herbs which
were preserved in our laboratory. Each compound was
docked to each target.

2.3. Calculation of Network Efficiency and Network Flux. The
damage induced by the attacks on the network is character-
ized by the network efficiency (NE), which is defined as the
sum of the reciprocals of the shortest path lengths between all
pairs of nodes [24]. Due to a global topological property of a
network which could be applied to measure the integrity of
the network, the network efficiency was assumed to be used
as a measure for drug efficiency [13, 14, 25]. The NE of a graph
G is measured by the shortest paths between pairs of nodes
with the following

1
NE= ) o 0

i#jeGij

where d;; is the length of the shortest path between nodes i
and j and the sum is over all N(N — 1)/2 pairs of nodes with
a total number N of nodes in the graph G. If the network is
weighted, d;; is the path with the minimum weight. The initial
edge values of every edge were arbitrarily set to 10. To give a
relative network efficiency, this quantity NE is divided by the
initial network efficiency. Thus, we considered the network
efficiency of the initial network as 100% and measured the
relative network efliciency after each attack.

The compounds’ effects on the network rely on the
docking scores. We supposed that the compounds could
inhibit the target well while the docking scores were relatively
high. For a ligand, we transformed its docking scores with
a target to edge values (EVs) of all direct downstream edges
of the target in the network and then calculated the network
efficiency. In other words, the edge values of all edges, which
point to the other nodes from this target, were reassigned
based on the docking score between the compound and the
target. The edge values threshold was set to 10, so any edge
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FIGURE 1: Pathway network of platelet aggregation. Blue diamond and red ellipse represent proteins and small molecules, respectively.

values which were less than 10 were fixed to 10. We defined
that the reference ligand would knock the target by 99.95%.
Therefore, the reference ligand could make the value of the
edges that come out of the target enzyme as 200. The edge
values of the edges which did not come out of the target
enzyme were defined as 10. The edge values of the edges in
the network were calculated with the follwing

EV = 1O(score“gmd/scorerefe,ence)><2.30’ @)

where score,.fence represents the docking score of the
reference ligand, scorey;z,,q represents the docking score of
other compounds, and EV that are the edge values of the
edges, come out of the target in the network. Therefore,
different ligands would show different effects on each target.
For each ligand, the network efficiency was then calculated
using the redefined edge values. The network efficiency of
each ligand was ranked by the decrease of the network
efficiency. The more the network efficiency decreases, the

more potent the ligand would be. The program of network
efficiency calculation was written in C++ language using the
Dijkstra algorithm.

Network efficiency was a global parameter of a network.
However, it could not reflect the different importance of each
node in the pathway network. Typically, further down the
stream the node is located in a pathway network, the more
important it would be. Therefore, we proposed network flux
(NF) as a new indicator to evaluate the extent to which
compounds influence the pathway network. NF was defined
as follows:

NF= Y 3

i#jEG,j:exitdij

Network flux was reduced from network efficiency, and
NF includes only those shortest paths from upstream node to
the exit of the pathway network. The decrease of NE and NF
for each compound was listed in Table 2.
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TABLE 1: Nineteen target proteins in pathway network of platelet aggregation.

Protein name Uniprot PDB Ligandb Score®
Adenylate cyclase 060266 1ABS 1ABS 6.38
Glycoprotein IIb/IITa complex P05106 2VDM 2VDM 5.29
Inositol 1,4,5-trisphosphate receptor Q14643 IN4K IN4K 9.14
P2X purinoceptor 1 P51575 4DW1 4DW1 5.20
P2Y purinoceptor 1 P47900 1Y36 AMP 5.38
P2Y purinoceptor 12 Q9H244 1T78 AMP 3.84
Proteinase-activated receptor 1 P25116 Model F16357 5.38
Proteinase-activated receptor 4 QI96RI0 Model’ YD3 4.28
phosphatidylinositol 3-kinase P48736 4FUL 4FUL 6.78
RAC-alpha serine/threonine-protein kinase P31751 3DOE 3DOE 5.39
Protein kinase C P17252 3IW4 3IW4 6.89
Phospholipase A2 P14555 1J1IA 1J1A 522
Phosphoinositide phospholipase C beta-2 Q00722 2ZKM U73122 5.62
Phosphoinositide phospholipase C gamma-2 P16885 2W2W U73122 5.00
Prostaglandin G/H synthase 1 P23219 3N8X 3N8X 5.05
Ras-related protein Q9HOU4 3NKV 3NKV 5.30
Thrombin P00734 3DUX 3DUX 5.02
Thromboxane A2 receptor alpha P21731 1LBN $Q29548 7.90
Thromboxane A2 receptor beta P21731 1LBN $Q29548 7.90

“The structures of targets PARI and PAR4 were prepared by homology modeling based on crystal structure of bovine rhodopsin (PDB entry: 1U19).

 If the ligand was equal to the PDB entry, the structure was a ligand-protein complex; otherwise the reference ligand was a known inhibitor.

“Docking score of reference ligand for each target protein.

2.4. Experimental Validation. The inhibition of platelet ag-
gregation induced by ADP was determined by Chrono-
log Model 700 Whole Blood/Optical Lumi-Aggregometer
(Chrono-Log, Havertown, USA) in Experimental Research
Center, China Academy of Chinese Medical Science. First, the
blood (4~6 mL per rat) was collected from abdominal aorta,
and 10% of (v/v) heparin sodium solution (0.1% dissolved in
saline) was added to prevent clotting. Second, the blood was
diluted 1-fold with saline for storage. Third, 1mL of blood
was added to the aggregometer and incubated with 10 yuL
of compound solution (10 mM in DMF) in 37.5°C for 120
seconds. Finally, 10 uL of ADP saline solution (20 uM) was
added to the blood, and the inhibition effect was determined
by turbidimetric method according to standard protocol. The
inhibition effect of each compound was listed in Table 2.

3. Results and Discussion

3.1. Pathway Network Characteristics. The nodes in the
pathway network (Figure 1) covered most of the important
enzymes that participated in the process of platelet aggrega-
tion, such as GPIIb/IIIa, PARI1, PAR4, PLA2, P2Y1, P2Y12,
and PI3K. The network mainly reflected the process of
platelet aggregation and was suitable for multitarget virtual
screening. Furthermore, the average degree of each node
and the average shortest path length were 2.84 and 5.69,
respectively. The pathway network showed apparent scale-
free property, which meant that this network had strong
robustness.

3.2. Active Compounds Prediction. The network efficiency
could reflect the multitarget interaction of drugs [26]. In
order to know the influence by knocking out the 19 docking
targets, we measured the network efficiency in fully con-
nected (all edge values were set to 10) or fully blocked (all
edge values were set to 99999) state. When there was not any
inhibition on the platelet aggregation network, the network
efficiency of the whole system was 48.496. To the contrary,
the knockout of all the edges that came out from the 19 targets
made the efficiency decrease to 8.849.

For each screening compound, we have calculated the
network efficiency in which the target proteins were inhib-
ited by this compound. Then, we sorted the 413 screening
compounds by the decrease of network efficiency and took
out the first 40 compounds for antiplatelet aggregation
tests. Experimental results of the whole blood antiplatelet
aggregation tests showed that there were 19 compounds with
antiplatelet aggregation activities among the 40 compounds,
and the percentage of hits was 47.5%. Among the 19 active
ingredients, silybin and papaverine were the most two potent
molecules that were even comparing favorably with tirofiban
which was an effective drug used in treatment of acute
myocardial infarction. The papaverine, silybin, and tirofiban
could completely inhibit the rat’s whole blood platelet aggre-
gation at the concentration of 100 M. Decrease of the dosage
to 34 uM slightly reduced the inhibitory effect, and the
inhibitory rates for papaverine, silybin, and tirofiban were
67%, 64%, and 73%, respectively. Furthermore, to examine
the quantitative predicting abilities of the model, we also
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TABLE 2: Decrease of network efficiency and network flux, experimental results of each compound.

Compounds Inhibition® NE decrease % NF decrease % Combination of NE and NF?
Papaverine 0.67 45.5 79.8 61.8
Tirofiban® 0.64 39.9 61.5 49.6
Deoxycholic acid 0.66 60.8 834 61.9
Scutellarin® 0.51 52.1 779 57.8
Rhaponticin® 0.65 42.8 65.6 473
Dipyridamole” 0.60 41.8 74.1 55.6
Chrysin 0.68 479 75.5 65.6
Wogonin 0.67 55.6 68.7 58.8
Rhein 0.67 68.8 63.4 59.8
Silybin 0.73 56.6 96.6 71.6
Danshensu 0.57 32.2 434 383
Quercetin 0.67 47.9 89.7 76.7
Chlorogenic acid 0.54 34.6 37.9 38.6
Icariin® 0.65 53.4 62.0 55.6
Quercitrin® 0.57 41.8 60.0 50.1
Baicalin® 0.61 55.3 62.2 54.9
Liquiritin® 0.66 52.7 80.3 65.0
Salvianolic acid C 0.55 33.2 50.9 411
Kaempferol 0.63 50.4 71.9 60.3
Salvianolic acid B 0.53 25.0 22.8 239
Picroside II° 0.51 24.7 68.8 44.6

a
The inhibition effect determined in the final concentration of tested compounds was 34 yM.

®Tirofiban and dipyridamole are two approved drugs.
“These seven molecules are glycoside compounds.

dCombination of NE decrease and NF decrease: the square root of the product of the percentage of NE decrease and the percentage of NF decrease.

compared the predicted potent value and the experimental
results. Numerical analysis showed that the linear correlation
coeflicient of the decrease of network efficiency and whole
blood antiplatelet aggregation experimental results was 0.67
(Figure 2(a)).

The linear correlation coefficient was not very high. This
may be because the more important effect the downstream
nodes may exert had not been taken into account in the
calculation of network efficiency. However, network flux can
complement network efficiency. After the addition of NF, the
linear correlation coefficient increased to 0.73 (Figure 2(c)).

Given that docking program could not treat glycoside
with great accuracy because there were many flexible groups,
we only considered 14 nonglycoside compounds. In this
case, the linear correlation coefficients for the least square
fitting of NE, NF, and the combination of NE and NF with
experimental results were 0.80, 0.87, and 0.90, respectively
(Figure 3). It showed that the combination model could
not only qualitatively classify the active and the nonactive
compounds but also quantitatively predict the efficacy of the
compounds to a certain extent.

Traditional Chinese medicine has been used for thou-
sands of years. TCM presents much diversity in struc-
ture and bioactivity, and less toxicity and is an attractive
source of new active compounds in drug discovery. The
conventional approach to find active compounds in TCM
involves selecting a potential plant and isolating compounds

following bioassay guidance. This approach has been playing
an important part in drug development. However, it was
often time-consuming and can contain false positives. We
have reported a reverse approach (from finding bioactive
molecules to related plant) [27]. Papaverine was isolated
mainly from Papaver somniferum L. and often used to cause
dilation of the blood vessels. Silybin was a flavonolignan
isolated from Silybum marianum G. with antioxidative and
antiinflammatory activities. Therefore, these two herbs would
deserve some attention for antiplatelet aggregation activity.

3.3. Comparison with Single Target Screening. To reveal the
importance of the biological network system in this approach,
we compared the predictions generated by single target dock-
ing scores with those of network efficiencies and network flux
based on the multitarget docking.

The docking results showed that most of the compounds
could interact with many targets rather than a single tar-
get. When calculated by applying the single target docking
scores, the correlation coefficients of the docking score
and the experimental data for GPIIb/IIIa, PLA2, P2Y1, and
P2Y12, which were approved targets by FDA and supposed
as very important targets in platelet aggregation process,
were 0.57, 0.20, 0.07 and 0.23, respectively. However, the
correlation coeflicient between the predictions based on
network efficiencies, network flux, and the experimental data
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FIGURE 2: Linear regression between predicated activities of 19 natural products and two drugs and experimental inhibition effects. (a) network
efficiency; (b) network flux; (c) combination of network efficiency and network flux.

was improved by applying the multitarget strategy (r =
0.90, Figure 3). It suggested that overall consideration of
the contribution of the biological network might be better
than only consideration of the contribution of single target
for the accurate predictions of the biological activities. The
single target docking cannot capture the biological effects of
the ligands comprehensively, and the multitarget screening
was really necessary to characterize the complicated binding
properties of ligands with multiple targets involved in biolog-
ical network.

Like all virtual screening methods, our approach had
many advantages as well as some limitations. One of the
obvious advantages of the method was that it specifically
considered the role of every target in the whole platelet
aggregation process and assigned the weightiness on every
target by biological network analysis. The other advantage

was that the affinity evaluation in the method was not limited
to molecular docking and scoring, as used in this study.
Other binding energy prediction methods could also be
used, such as pharmacophore, quantitative structure-activity
relationship, or comparative molecular field analysis. It was
also assumed that the consideration of flexibility of the targets
in molecular docking might improve the accuracy of the
network efficiency and network flux. On the other hand, one
clear disadvantage of this technique was that its accuracy
relies heavily on the reliability of network construction and
the accuracy of binding affinity assessment.

4. Conclusions

In summary, we developed a novel computational approach
that combines multitarget docking, network efficiency, and



Evidence-Based Complementary and Alternative Medicine

Equation |y=a+fxx Equation y=a+px*x
Adj. R 0.6425 100 - Adj. R | 0.76885
70 - Value Standard error Value _[Standard error
H Intercept|-57.07249 2092792 |® )] Intercept | —123.38866  28.55731
H Slope |163.43468] _ 33.11094 90 - ] Slope | 300.52316] 45.18172 |g
60 80 4
= S 7
S =70
o 50 A b3
<
3 © 60
o
5 3
3 = 50
4 g i
E“Z‘] 40 Z
40 +
30 A 30
L] ]
20 o
20 T T T T 1 T T T T 1
0.5 0.55 0.6 0.65 0.7 0.75 0.5 0.55 0.6 0.65 0.7 0.75
Inhibition effect Inhibition effect
() (b)
Equation |y=a+b=xx
80 4 [ _AdiR” [ 080405
= Value |[Standard error| m
% M Intercept |-80.64343 | 18.41971
2 70 M Slope |214.83456] 29.1426 [ ]
5]
s}
o]
o
[Sa) -
g 60
*
<J
2 50 -
3
5
3
5 40 -
[sa)
Z
% 30 A
[97] |}
20
T T T T 1
0.5 0.55 0.6 0.65 0.7 0.75
Inhibition effect

(c)

FIGURE 3: Linear regression between predicated activities of 14 nonglycoside natural products and experimental inhibition effects. (a) Network
efficiency; (b) network flux; (c) combination of network efficiency and network flux.

network flux for the predictions of active ingredients sep-
arated from TCM with reasonable accuracy. The method
integrated the scores generated by the multitarget docking
and network analysis in the context of biological pathway.
This approach can evaluate the ligands’ efficacy more com-
prehensively than traditional single target docking with much
better prediction accuracy and would be very useful for
chemical biology and drug discovery. Meanwhile, top two
potent compounds (silybin and papaverine) and their source
herbs could be promising drugs for antiplatelet aggregation.
It remains to be determined what extent and complexity the
pathway network takes effect to the biological activity, and the
relevant work is underway.
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