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Abstract

Background: Clear cell renal cell carcinoma (ccRCQ) is the most common type of kidney cancer. Recent large-scale
next-generation sequencing analyses reveal that PBRMT is the second most frequently mutated gene harboring
many truncated mutations and has a suspected tumor suppressor role in ccRCC. However, the biological consequences
of PBRMT somatic mutations (e.g, truncated mutations) that drive tumor progression in ccRCC remain unclear.

Methods: In this study, we proposed an integrative genomics approach to explore the functional consequences of
PBRMT truncated mutations in ccRCC by incorporating somatic mutations, mRNA expression, DNA methylation, and
microRNA (miRNA) expression profiles from The Cancer Genome Atlas (TCGA). We performed a systematic analysis to
detect the differential molecular features in a total of 11 ccRCC samples harboring PBRM1 truncated mutations from the
33 "pan-negative” ccRCC samples. We excluded the samples that had any of the five high-confidence driver
genes (VHL, BAPI, SETD2, PTEN and KDM5C) reported in ccRCC to avoid their possible influence in our results.

Results: We identified 613 differentially expressed genes (128 up-regulated and 485 down-regulated genes using
cutoff |log,FC| < 1 and p < 0.05) in PBRMT mutated group versus “pan-negative” group. The gene function enrichment
analysis revealed that down-regulated genes were significantly enriched in extracellular matrix organization
(adjusted p=2.05x 10"7), cell adhesion (adjusted p=2.85x 10"7), and ion transport (adjusted p = 9.97 x 10°°).
Surprisingly, 26 transcriptional factors (TFs) genes including HOXB9, PAX6 and FOXCT were found to be significantly
differentially expressed (23 over expressed TFs and three lower expressed TFs) in PBRMT mutated group compared
with “pan-negative” group. In addition, we identified 1405 differentially methylated CpG sites (targeting 1308 genes,
llog,FC| < 1, p < 0.01) and 185 significantly altered microRNAs (|log,FC| < 1, p < 0.05) associated with truncated PBRM1
mutations. Our integrative analysis suggested that methylation and miRNA alterations were likely the downstream
events associated with PBRMT truncation mutations.

Conclusions: In summary, this study provided some important insights into the understanding of tumorigenesis driven
by PBRM1 truncated mutations in ccRCC. The approach may be applied to many driver genes in various cancers.
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Background

Renal cell carcinoma (RCC) is the most common type of
kidney cancer (>85 %), which causes ~3 % deaths in
men in the United States every year [1, 2]. RCC can be
classified into four clinical subtypes including clear cell
renal cell carcinoma (ccRCC), papillary RCC (pRCC),
chromophobe RCC (chRCC), and renal oncocytoma
(RO). Among them, ccRCC is the most common type
representing 75-85 % of all RCC cases [2, 3]. Unlike
other cancer types that are found to have recurrent mu-
tations in oncogenes [4—7], ccRCC tumors are mainly
associated with somatic mutations in tumor suppressor
genes such as VHL, PBRM1, BAPI and SETD2 [8-10].

PBRM1 (Polybromo-1, pbl, encoding BAF180 protein),
which maps to 3p21, plays an ATP-dependent chromatin-
remodeling role as a subunit of the SWI/SNF (SW1Itch/
Sucrose Non-Fermentable) complex [11-13]. PBRM]1 is
found to mediate gene regulation of cell growth, migra-
tion, proliferation and differentiation in multiple cancer
types including kidney, bladder, and breast. Among these
cancer types, PBRM1I is one of the most frequently mu-
tated and studied genes in ccRCC than any other cancer
types [11, 12, 14-18]. In ccRCC, PBRM1 is the second
most frequently mutated gene; it is observed in ~40 % of
tumor cases and functions as a driver tumor suppressor
gene [3, 9, 10, 13, 18-20]. PBRM1 mutations in ccRCC
samples may lead to a dysregulation of several critical cell
signaling pathways including actin-based motility by rho,
tight junction signaling, axonal guidance signaling and
germ cell-sertoli cell junction signaling [21]. Furthermore,
mutations in PBRM1I are identified as the root of tumor
evolution in a subgroup of ccRCC [22]. While previous
studies have focused on the exploration of particular
downstream genes and pathways directly regulated by
PBRM1 gene, an in-depth integrative analysis on the bio-
logical consequences of PBRM1I truncated mutations has
not been done yet. Such an analysis is important because
tumor suppressor genes play function largely through
truncated mutations [23].

Here, we performed an integrative genomics analysis
to investigate the biological consequences of truncated
PBRM1I mutations in ccRCC. We downloaded multiple
-omics data including RNA-Seq, DNA methylation, and
microRNA-Seq data of ccRCC samples from The Cancer
Genome Atlas (TCGA). We systemically compared mo-
lecular features in a total of 11 mutated PBRMI samples
with those in 33 “pan-negative” samples; and those sam-
ples were all exclusive of any of the five known ccRCC
driver genes (VHL, BAP1, SETD2, PTEN and KDM5C)
[13, 15]. The approach allowed us to maximally reduce
the noise from the observed molecular signals. We iden-
tified a substantial proportion of molecular alterations
including changes in gene expression, DNA methylation,
and dysregulation of microRNAs (miRNAs) that were
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significantly associated with truncated PBRM1 mutations,
as well as the follow up pathway, co-expression network,
and hypothesized mechanism analysis.

Results

Workflow for defining PBRM1-mutated and “pan-negative”

sample groups

Somatic mutation profiles for 548 tumor samples in
ccRCC, or kidney renal clear cell carcinoma (KIRC),
were downloaded from TCGA (data accessed on January
20, 2015). After examining PBRM1 mutations, we sepa-
rated samples into two groups including 177 mutated
PBRM1 samples and 371 non-mutated PBRMI samples,
respectively (Additional file 1) [13]. We further excluded
a total of 146 and 262 samples for downstream analysis
because they carried mutations in five high-confidence
ccRCC driver genes (VHL, BAP1, SETD2, PTEN, and
KDMS5C) [13, 15]. This process resulted in 31 PBRMI mu-
tated samples and 109 “pan-negative” samples, respectively
(Fig. 1a, Additional file 1). In the next step, we identified
the samples with matched RNA-Seq, DNA methylation,
and microRNA-Seq data; this resulted in a total of 11
mutated PBRM1 samples and 33 “pan-negative” samples.
They were used for the analyses for downstream pre-
transcriptional and transcriptional events (Fig. la, and b,
Additional file 1). Importantly, those 11 samples carried
“loss of function” mutations in PBRM I gene, including five
nonsense mutations, three splice sites mutations and three
frame shift deletions (Fig. 1b, Additional file 2: Table S1).

Identification of transcriptional factors from differentially
expressed genes associated with PBRM1 truncated
mutations

We performed a comparative analysis on gene expression
profiles to identify the differential expressed genes (DEGs)
between the PBRMI mutated group and “pan-negative”
group using edgeR [24]. At a significance threshold of
absolute log, transferred fold change (|log,FC|) > 1 and
p<0.05, a total of 613 DEGs were identified including
128 genes having over expression and 485 genes showing
lower expression in PBRMI mutated samples compared
with the “pan-negative” group (Fig. 1c, Additional file 1
and Additional file 3). Of those DEGs, 26 transcription
factors were observed, 23 were down-regulated but only
three were up-regulated (Fig. 1d). Interestingly, four Antp
homeobox family and two forkhead family transcriptional
factors (HOXA1, HOXB5, HOXB8, HOXB9, FOXP1, and
FOXC1) that are involved in cell development and prolif-
eration [25] were found to be down-regulated in the
PBRM 11 mutated group versus “pan-negative” group. Add-
itionally, GATA3, a transcription factor that was observed
to be down-regulated in PBRMI mutated group in our
study, was previously found to be an important early event
and potential regulator that associated with loss of TGFB
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Fig. 1 Sample filtering workflow used for integrative genomic analyses and differential expression results by comparing 11 PBRM1 mutated and
33 “pan-negative” ccRCC samples. a A sample filtering workflow was used for integrative genomic analyses. First, 548 ccRCC samples were split
into PBRM1 mutated group (177 samples) and PBRM1 non-mutated group (371 samples). Five high-confidence ccRCC driver genes (VHL, BAPIT,
SETD2, PTEN and KDM5C) were excluded in both groups, resulting in 31 PBRMT mutated samples and 109 “pan-negative” samples. After that, samples
that have all DNA methylation, RNA-Seq, and miRNA-Seq data were extracted; resulting in 11 PBRM1 mutated samples and 33 “pan-negative” samples
for further in-depth integrative analysis. b Cartoon representation of mutation types and locations in 11 PBRMT truncation mutated samples. Five
nonsense mutations (red diamond), three splice sites mutations (green round), and three frame shift deletions (purple square) were observed in 11
PBRM1 truncated mutation samples. ¢ Volcano plot of significance of gene expression difference between PBRM1 mutated group and “pan-negative”
group at gene expression levels. Each dot represents one gene. The x axis shows the gene expression difference by a log transformed fold change
while the y axis shows significance by —log, transformed p-value value obtained from edgeR. A gene is called significantly and differentially expressed
if its [log(FQ)| > 2 and p-value < 0.05. Red dashed line shows [log(FO)| =2 or p-value = 0.05. d Bar plot of log transfer of fold change in differentially
expressed transcriptional factors. 23 transcriptional factors were found to be down-regulated in PBRM1 mutated group while three transcriptional
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receptor expression in ccRCC [26, 27] (Fig. 1d). Gene
function enrichment analysis showed that down-regulated
genes were significantly enriched in extracellular matrix
organization (adjust p = 2.05 x 1077), cell adhesion (adjust
p=2.82x107") and ion transport (adjust p = 1.61 x 107),
while up-regulated genes were significantly enriched in
pathway-restricted SMAD protein phosphorylation (adjust
p=359x107%) (Fig. 2a and b, Additional file 2: Tables S2
and S3, Additional file 3). We further examined gene
expression and methylation, as hypo-methylation is often
related to active transcription and gene expression. Our
examination the relationship between lower expressed
genes and hyper-methylated genes showed that 33 down-
regulated genes were hyper-methylated (we abbreviated as
hyper-down genes), including BCAT1 associated with cell
growth, HOXB9 encoding a cell cycle regulation transcrip-
tion factor, and PAX6 encoding a cellular development
associated transcription factor (Additional file 1) [25].

Widespread epigenetic silencing associated with PBRM1
truncated mutations

We analyzed genome-scale DNA methylation profiles by
comparing B-value changes (measured as [-differences)
between mutated PBRMI group and “pan-negative” group
(see Methods). A total of 1308 differentially methylated
genes covering 1405 differentially methylated CpG sites
were identified using |B-difference|>0.15 and p<0.05
cutoff (Fig. 3a and b, Additional file 1, Additional file 4:
Figure S1). Among those genes, 1229 hyper-methylated
(94 %) and 79 hypo-methylated genes (6 %) were observed
in PBRMI mutated samples compared to the “pan-nega-
tive” samples, suggesting that an global gene inactivation
may be associated with PBRMI1 truncated mutations
(Additional file 2: Table S4, Additional file 4: Figure S2).
This observation is consistent with the differential gene
expression results above (more down-regulated genes than
up-regulated genes in PBRMI group); however, these
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Fig. 2 Functional enrichment results of differentially expressed genes from RNA-Seq of PBRMT mutation ccRCC samples. a Clustered function and
pathway enrichment results of up-regulated genes in PBRM1 mutated group compared with “pan-negative” group, with p-value < 0.01 results
shown. Different clusters were shown in different colors. b Clustered function and pathway enrichment results of down-regulated genes in PBRM1
mutated group compared with “pan-negative” group, with p-value < 0.001 results shown. Different clusters were shown in different colors

genes may not be immediately regulated by PBRM]I
because truncated mutations in a tumor suppressor
gene are expected to result in up-regulation of its im-
mediately regulated gene according to the “loss of func-
tion” model. Functional enrichment analyses indicated
that those hyper-methylated genes were significantly
enriched in multiple processes including generation of neu-
rons (q=1.20x107), cell differentiation (q =122 x 107°),
and regulation of catabolic process (q = 4.02 x 10™°), while
glomerulus development was observed to be most signifi-
cant in hypo-methylated genes (q = 3.21 x 10~) (Additional
file 2: Tables S5 and S6, Additional file 4: Figure S2). Inter-
estingly, we found that hyper-methylated CpG sites exhib-
ited a significantly higher proportion residing in several
gene regions including promoters and gene bodies than
hypo-methylated genes (Additional file 4: Figure S3) [28].

miRNA dysregulation associated with PBRM1 truncation
mutations

A total of 185 differentially expressed miRNAs were iden-
tified to be associated with PBRM 1 truncation mutations
using the cutoffs: absolute log, transferred fold change

(|logoFC|)>1 and p<0.05. Among them, 87 miRNAs
exhibited up-regulation pattern in PBRM1 mutated sam-
ples while the remaining 98 miRNAs exhibited down-
regulation pattern (Fig. 3c, Additional file 1). The 10 most
differentially expressed miRNAs were shown in Fig. 3d.
Interestingly, three identified miRNAs (miR-221, miR-222
and miR-16) exhibiting down-regulation patterns in
PBRM1 mutated group were consistent with the previous
reports by experimental studies [13]. Next, we performed
the analysis of those predicted targets genes that may be
regulated by these differentially expressed miRNAs. Among
the differentially expressed miRNAs, 64 up-regulated
miRNAs and 56 down-regulated miRNAs had targets in
TarBase [29] or miRTarBase [30] database. We observed
3093 and 3945 target genes for up-regulated miRNAs and
down-regulated miRNAs, respectively. Comparisons be-
tween miRNA targets and DEGs revealed that 14 miRNA
target genes were up-regulated while 129 were down-
regulated, in which nine miRNA target genes were hyper-
methylated and also down-regulated in PBRMI mutated
group (Fig. 4a, Additional file 1). Functional enrichment
analysis revealed that 24 functional terms and pathways,
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including extracellular matrix organization and extracellular
structure organization pathways, were observed in more
than one gene set; and these gene sets are differentially
expressed genes, differentially methylated genes, and differ-
ential expressed miRNA targets genes (Fig. 4b).

Integrated analysis for PBRM1 truncated mutations in
ccRCC

To further explore the regulatory mechanisms of the iden-
tified genes and miRNAs associated with PBRMI trun-
cated mutations in ccRCC, we constructed co-expression
networks using R software based on mRNA expression re-
sults (Fig. 5a and b, detailed information is in Methods). To
identify miRNAs that involved in gene co-expression net-
works, miRNAs target genes that were found co-expressed
with other genes and corresponding miRNAs were also
included in co-expression networks. Six miRNAs (miR-
17-5p, miR-9-5p, miR-16-5p, miR-615-3p, miR-124-3p,
and miR-93-5p) were observed in both up-regulated
and down-regulated co-expression networks, in which

different possible targets were involved. The miRNA
target genes including SLC39A14 and EGR2 that are
related to ion transport and cell growth were observed
in the PBRM I-specific up-regulated co-expression network,
suggesting that miRNAs may be involved in ion transport
and a cell growth process in PBRMI-driven dysregulation.
In the PBRM1 specific down-regulated co-expression net-
work, two down-regulated DNA-binding transcription
factors HOXB9 and PAX6 were observed as positively co-
expressed with several genes and regulated by miRNAs,
suggesting their essential role in PBRMI-related down-
regulation (Additional file 1). Similarly, SDCBP2 and PAX6
were found to be positively co-expressed with many
genes in the down-regulated co-expression network
(Additional file 1), which further verified the associ-
ation of compound metabolisms and development with
PBRM]1 truncation mutations [25].

Collectively, PBRM1 truncated mutations may lead to
the pre-transcriptional deregulation at DNA methylation
level and the post-transcriptional deregulation at the
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miRNA expression level. Accordingly, this resulted in
widespread hyper-methylation and miRNA expression
alteration in ¢ccRCC tumor genomes (Fig. 5). Based on
our integrative genomic analysis results, we proposed
the possible regulations linked to the PBRM]1 truncated
mutations in the tumorigenesis of ccRCC (Fig. 6). These
functional alterations include both up-regulation and
down-regulation of molecules and pathways that are
associated with the miRNA and methylation changes in
PBRM I-truncated mutation tumor cells.

Discussion

This study highlights the association between PBRM]I
truncated mutations and decreased extracellular matrix
organization, cell adhesion, ion transport and tissue devel-
opment. This suggests that PBRMI plays an important
regulatory role in cell-cell crosstalk in the tumorigenesis
of ccRCC. In this study, there are more differentially
methylated genes (1308 genes) than differential expressed

genes (613 genes) in PBRM 1 mutated group, suggesting
a complicated pre-transcriptional level regulation with
DNA methylation involved in PBRM1 mutations.
Studying the downstream events of a driver gene has
become important now because the scientific commu-
nity has witnessed large amount of genomic data allow-
ing the sample stratification by driver mutation and also
because a driver gene may lead to many critical bio-
logical events linking to tumorigenesis or drug treatment
[31, 32]. We recently develop approaches to study the
downstream events of a specific mutation in a driver
gene (BRAFY®%E 3nd NRAS?®Y) in melanoma [4, 5]. To
our knowledge, this is the first study to integrate pre-
transcriptional and post-transcriptional level data to investi-
gate the main effects of a driver gene (PBRM1) through its
truncated mutations in a cancer (ccRCC). Observations in
this study are based on 11 PBRMI mutated and 33 “pan-
negative” ccRCC samples, which may have some bias be-
cause of the small sample size. However, by an integrative
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analysis of multiple -omics data, we could still achieve
reliable results for further validation. As we did similarly in
melanoma [4, 5], the stratification of samples by driver
mutation only (cases) and “pan-negative” samples (controls)
would likely increase the power because it effectively re-
moved the noise from similar samples with other driver
mutations. This is especially important in cancer genomics
studies because driver mutations may affect the same or
similar signaling pathways (e.g., Ras pathway). Our results
suggest that PBRMI mutations are an important event in
the early stage of ccRCC tumor genetics, which paves the
way for further PBRMI-related research in ccRCC. To
excluded the influences of other driver genes and highlight
the effects of PBRM1 in ccRCC, we defined the “pan-nega-
tive” ccRCC sample set by excluding samples that con-
tained somatic mutations in any of the five well-known
driver genes in ccRCC. Future validation may apply the
similar strategies. Our integrative analysis using methyla-
tion, gene expression, and miRNA expression is the first to
study the PBRM 1 truncation mutation specific dysfunction
in co-expressed networks. All mutations in 11 PBRMI
mutated samples are truncation mutations, which signify
dysfunction state of PBRM1 as a tumor suppressor gene in
ccRCC.

There are several limitations in this study. First, how
our results are related to the influence of PBRMI on

tumor prognosis needs further investigation because
previous studies suggest the association between PBRM1
mutations and prognosis of ccRCC is still unclear [13,
22, 33, 34]. In addition, copy number variants of PBRM1
are not considered either since we only focus on the
downstream consequences that associate with early som-
atic mutation events in PBRMI. No validation cohorts
of PBRM1 have involved in this study yet because of the
limited results available related to PBRM1I at the current
stage. We hope more reports will become available from
other groups in the near future so that our results may
be experimentally validated. Our analysis focuses on the
gene level changes that associated with PBRMI trun-
cated mutation, in which protein level changes were not
considered because of the complicated regulation from
gene expression level to protein level.

PBRM1 is found to be highly mutated in several cancer
types. It is most frequently mutated in ccRCC. Loss of
function and expression of PBRM1 was less common in
non-ccRCC than in ccRCC, suggesting a specific regula-
tory role of PBRM1 truncation mutations in ccRCC [35].
In breast cancer, PBRM1 is shown to be a core regulator
of p21 [14]; however, we could not find a similar pattern
in ccRCC. The result suggests that PBRM I may act differ-
ently through its regulation mechanisms in different
cancer types. Future studies to dissect the role of PBRM1
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in different cancer types would be helpful to better under-
stand the mechanisms of PBRMI1 truncation mutations
and tumorigenesis. More cancer genomic data is expected
from large consortia like the International Cancer Genome
Consortium (ICGC). So, a follow up study is needed in
future.

Conclusion

Our study investigated molecular alterations including
gene expression, methylation, and miRNA expression that
associated with PBRM1 truncation mutations in clear cell
renal cell carcinoma. Our analysis results identified 613 dif-
ferentially expressed genes, 1308 differentially methylated
genes and 185 differentially expressed miRNAs between
PBRM 1 mutated group and “pan-negative” group. Hypoth-
esized mechanisms of PBRMI mutations in ¢ccRCC were
explored based on the integrative analysis results. Our
results provide some important insights into the PBRMI
regulation in the tumor development of ccRCC.

Methods

Summary of ccRCC samples

A total of 548 ccRCC (KIRC) samples were downloaded
from TCGA. Level 2 results from both BI Mutation Calling
and BCM Mutation Calling were utilized to find somatic

mutations in all samples. 177 of 548 ccRCC samples
(32.3 %) were identified to have PBRM I mutations and 371
samples (67.7 %) were identified as PBRMI non-mutated
or control samples. To eliminate the influence of other
driver genes, five well-known mutation genes (VHL, BAPI,
SETD2, PTEN and KDMS5C) were suggested as highly
potential driver genes of ccRCC based on the somatic
mutation results and earlier researches [13]. Samples with
somatic mutations of those five genes were excluded from
both mutated and non-mutated PBRM1 samples, resulting
in 31 PBRM1 mutated samples and 109 “pan-negative”
samples (Fig. 1a). Finally, 11 PBRMI mutated samples and
33 “pan-negative” samples that had DNA methylation,
gene expression, and miRNA expression data were utilized
for all the analyses in this study.

RNA-Seq and miRNA-Seq data pre-processing and
differential expression analysis

RNA-Seq and miRNA-Seq data were downloaded from
MluminaHiSeq RNASeqV2 and BCGSC IlluminaHiSeq_-
miRNASeq platform in TCGA database, respectively.
Level 3 data were utilized to find RNA expression and
miRNA expression. In each group, genes/miRNAs with
no expression were removed, while only genes/miRNAs
with counts per million (cpm) >1 in at least two samples
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were kept for further analysis. edgeR package [24] in R
software was used in differential RNA-Seq and miRNA
expression analysis. We defined significantly DEGs or
differentially expressed miRNAs if they had |log,FC| > 1
and p <0.05. MiRNA target genes were retrieved from
databases TarBase [29] and miRTarBase [30].

Methylation analysis

[lumina HumanMethylation450K BeadChip Kit contain-
ing 486,428 CpG sites was used to explore DNA methyla-
tion profile on the genome scale. Probes targeting the X
and Y chromosome, probes containing a single-nucleotide
polymorphism (SNP) within five base pairs of CpG site,
and probes that had no reference gene location were also
removed. In total, 312,777 probes were kept for further
analysis. B-values that ranged between 0 and 1 were used
to represent the relative methylation level, which was
measured as logistic transformation of the ratio of the
methylated probe intensity over all methylation probe
intensities [36]. B-difference value (differences between
[-values) was used to characterize different methylation
levels between PBRM1 mutated group and non-mutated
“pan-negative” group. All methylation analysis was per-
formed in R/Bioconductor packages [37]. Samr package
in R software [37] was used to calculate the significance
of each CpG site. Probes with |B-difference| > 0.15 and
p <0.01 were selected as differentially methylated probes,
and the gplots package in R software was used to obtain a
heatmap of differentially methylated probes.

Gene function and pathway enrichment analysis

The ClueGO plugin [38] in Cytoscape software [39] was
used for gene function and pathway enrichment analysis.
Catalogues in GO Biological Process, KEGG, REACTOME
and WikiPathways databases that catalogued in ClueGo
were applied for the functional enrichment analysis. The
Benjamin-Hochberg method [40] was used in the adjust-
ment of p (false discovery rate), and other parameters were
retained as default in GlueGO. Gene sets or pathways with
adjusted p < 0.05 were retained for further analysis. Tran-
scription factors were annotated based on the TRANSFAC
database (downloaded on April 1, 2015) [41].

PBRM1 mutation specific, differentially regulated
co-expression network

The Pearson correlation coefficient in R software was
used to calculate the correlation of each pair on all the
14270 genes that were extracted from RNA-Seq results
after excluding low expression genes in PBRM1 mutated
group. The top 5 % co-expressed gene pairs were kept as
co-expressed and protein-protein interactions from
PINA2 [42] were used to find out the relationships be-
tween co-expressed genes, which resulted in a PBRM]I
mutation specific background network that contains
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335,726 gene interaction pairs. 128 up-regulated genes
and miRNAs with targets in up-regulated genes were
mapped into the reference network, resulting in a PBRM1
mutation specific, up-regulated co-expression network.
485 down-regulated genes and miRNAs with targets in
down-regulated genes were mapped into the reference
network, resulting in a PBRM1 mutation specific, down-
regulated co-expression network. To explore the essential
genes associated with PBRMI mutations, only 33 hyper-
down genes and their first neighbors were kept, resulting
in PBRMI mutation specific, down-regulated core co-
expression network. The Cytoscape software was used to
make the network visualization, with genes that have three
or more degrees being shown in Fig. 5a and b.
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