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The goal of this review article is to provide a resource for longitudinal studies, using animal
models, directed at understanding and modifying the relationship between cognition and
brain structure and function throughout life. We propose that forthcoming longitudinal
studies will build upon a wealth of knowledge gleaned from prior cross-sectional
designs to identify early predictors of variability in cognitive function during aging, and
characterize fundamental neurobiological mechanisms that underlie the vulnerability
to, and the trajectory of, cognitive decline. Finally, we present examples of biological
measures that may differentiate mechanisms of the cognitive reserve at the molecular,
cellular, and network level.
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INTRODUCTION

Differences in the onset and trajectory of age-related cognitive decline result from factors
related to the characteristics of the individual (genetics, sex, and epigenetic dispositions), the
environment, and lifestyle factors, as well as positive experiences (e.g., environmental enrichment)
and negative experiences (e.g., stress or inflammation), which interact to influence the structure
and function of molecules, cells, and circuits that comprise the brain. An understanding
of how these factors interact across the lifespan and propagate through multiple scales of
biology will enable interventions that can maintain the brain and promote the formation
of ‘‘reserve,’’ a term that describes plastic properties of the brain that collectively allow for
sustained cognitive performance in the face of age-related changes, brain insult, or disease.
An international consortium of researchers across a wide range of disciplines, covering both
human and nonhuman animal studies, currently works on consensus definitions for the
related concepts ‘‘cognitive reserve,’’ ‘‘brain reserve,’’ ‘‘brain maintenance’’ as well as ‘‘resilience’’
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and ‘‘resistance’’1. A ‘‘white paper’’ and several other publications
have previously started first attempts to harmonize nomenclature
and concepts (Cabeza et al., 2018; Stern et al., 2020).Within these
efforts, it was recognized that longitudinal studies are a central
requirement to examine variability in the trajectory of cognitive
decline. The trajectory of age-related changes in cognition and
measures of brain aging is not necessarily linear. Measurements
at multiple time points permit the characterization and analysis
of how chronological age interacts with nonlinear trajectories
of aging. The goal of the present article is to more precisely
identify and characterize the role of longitudinal animal studies
in this context.

Human research, aimed at further elucidating cognitive
reserve, requires the inclusion of three components: clinical
or cognitive performance changes and outcomes, the status of
brain aging, including metrics such as gray matter volume,
cortical thickness, white matter tract integrity, or white matter
hyperintensity burden (reflecting age-related brain change or
pathology), and a measure of the reserve itself—‘‘reserve’’
here used as an umbrella term for the mentioned inter-
related concepts. Similarly, nonhuman animal studies (from here
forward referred to as animal studies) can examine cognitive
performance changes and outcomes for a variety of domains
of cognition of which the neural underpinnings are often well
understood. Moreover, these tests can be done under highly
controlled conditions and can be repeatedly applied over the
lifespan. Brain imaging has been employed in animal models
to examine the status of brain aging, providing the opportunity
to translate findings across species. An additional advantage
of animal models is the ability to probe levels of biology
in-depth at the cellular and molecular levels that cannot be
examined in humans. In this case, the relationship of cognition
and molecular or cellular measures may help define concepts
related to cognitive reserve, including brainmaintenance (i.e., the
similarity in biological measures between young and aged-
unimpaired). Whereas, for cognitive reserve, measured as a
change in a process (resilience, adaptation, or compensation)
in response to brain aging, better-than-expected cognition may
result in biological measures quite different from that normally
observed in young adults or aged-impaired animals.

Within the human literature, the terms brain maintenance
and cognitive reserve are generally used to define better than
expected cognition for a given age or in the face of brain
pathology. In the case of brain maintenance, preserved cognition
is due to delaying brain changes, structural, physiological,
molecular, or cellular, associated with aging, tomaintain youthful
brain structure and function. In contrast, cognitive reserve is
thought to mediate better cognition for a given level of brain
aging or pathology. The mechanisms of the cognitive reserve
are not clear and so cognitive reserve proxies are employed.
Typical proxies for the degree of cognitive reserve include IQ,
cognitively stimulating exposures across the age span, education,
occupational attainment, leisure activity, social networks, or
other exposures that might impart reserve (Oveisgharan et al.,
2020). Similar proxies (baseline cognition, activity levels, social

1https://reserveandresilience.com/background/

isolation, and environmental enrichment) may be established
for longitudinal animal studies. Alternatively, animal studies
might focus on inherent genetic or epigenetic modifications to
understand individual differences in cognition. A key aspect of
such studies must always be the variability of these parameters
within a given human or animal population and the impact of
aging on this variability. Reserve is a highly individual measure.
Animal studies allow one to control for genetic (and to some
extent environmental) contributions not only to the expression
of a phenotype but also its variance (Dunn et al., 2020).
Studies that address a larger number of variables are thus at an
advantage because it allows the description of complex matrices
of covariance. Whereas in the human situation, the impact
of unknown parameters is difficult to estimate, well-designed
animal studies enable model building that helps estimate such
contributions (and their individual variability).

Finally, animal studies permit manipulations of
molecules and circuits to test hypothesized mechanisms.
Furthermore, longitudinal animal studies permit examination
of well-controlled environments or environmental experimental
modifiers that may positively (exercise, Mediterranean diet,
environmental enrichment) or negatively (inflammation,
cardiovascular disease, Western diet, stress) impact the
propensity for cognitive decline (Dunn et al., 2019; Neuner
et al., 2019b). Such studies can illuminate the timing, critical
periods, and genetic context thought to influence the trajectory
of cognitive decline.

The goal of this review article is to provide a resource
for longitudinal studies, using animal models, directed at
understanding the relationship between cognition and brain
structure and function throughout life and the mechanisms
of maintenance and reserve that modify this relationship to
support successful cognitive function in aging. We propose that
longitudinal studies will build upon knowledge gained using
a prior cross-sectional design to identify early predictors of
variability in cognitive function during aging and characterize
fundamental neurobiological mechanisms that underlie the
vulnerability to and the trajectory of cognitive decline. Finally,
we present examples, mainly from cross-sectional studies, of
biological measures that may differentiate mechanisms of the
cognitive reserve at the molecular, cellular, and network level.

ADVANTAGES AND LIMITATIONS OF
LONGITUDINAL STUDIES IN ANIMAL
MODELS

Compared to cross-sectional studies, there are both advantages
and limitations of conducting longitudinal studies in animal
models to examine individual differences in cognitive aging
trajectories. In the case of rodent models, an advantage is that
there is considerable prior knowledge about cognitive aging.
Additionally, the shorter lifespan, and ability to modulate the
extent of genetic diversity, as well as the ability to control
and exploit environmental factors, facilitates examination of
interventions (Burke and Foster, 2019; Dunn et al., 2019).
Nevertheless, a challenge for animal studies modeling cognitive
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decline over the lifespan is to identify age-sensitive tasks that can
be used to translate findings across different levels of analysis
and different species to effectively characterize the trajectory
of cognitive decline (Foster, 2012a). Relative to cross-sectional
research, longitudinal studies can better identify the onset of
cognitive impairment and provide a potential time course for
changes in theoretical constructs of cognition and health, such as
episodicmemory, physical function, and circadian dysregulation.
Also, longitudinal testing can control for batch effects and
guard against problems associated with a history of exposure
to an impoverished environment (Sabolek et al., 2004; Volkers
and Scherder, 2011). For example, in cross-sectional studies,
cognitive impairment and increased anxiety of the oldest animals
arise due to an interaction of age and the length of exposure
to social isolation or an impoverished environment (Diamond,
1990; Winocur, 1998; Bell et al., 2009; Diniz et al., 2010; Volkers
and Scherder, 2011; Sampedro-Piquero et al., 2014; Sparling
et al., 2018; Wang et al., 2018). In contrast, animals that are
repeatedly handled and tested across the lifespan exhibit reduced
anxiety to novel situations (Dellu et al., 1994; Hall et al., 1997;
Febo et al., 2020). In this case, repeated testing may be considered
a form of environmental enrichment, which reduces anxiety.
Environmental enrichment itself is a key experimental concept in
this context as it has allowed the dissection of non-genetic effects
on the development of brain-related phenotypes, including
susceptibility to disease (Nithianantharajah and Hannan, 2006;
Kempermann, 2019). Exposure to environmental enrichment
can, among other effects, reduce anxiety and improve cognition
(Leal-Galicia et al., 2008; Hughes and Collins, 2010; Kumar et al.,
2012; Garthe et al., 2016; Cortese et al., 2018; Sparling et al.,
2018; Birch and Kelly, 2019). In addition to unintended (or
at least unidentified) enrichment effects, longitudinal studies of
cognition need to control for influences that carry over from one
testing situation to another, including memory for procedural
aspects of the behavioral tasks (Guidi et al., 2014).

A key advantage of animal models is the ability to
experimentally examine and manipulate cellular, molecular, and
epigenetic mechanisms that accompany changes in cognitive
function, which may suggest possible similar roles in humans.
However, success in translating findings across different levels of
analysis and different species will depend on having age-sensitive
tasks, linked to defined neural systems (Foster, 2012a; Roberson
et al., 2012). Furthermore, to examine individual variability in
the trajectory of cognitive aging will require tasks that can be
repeated throughout the full lifespan or the use of different
procedures that independently assess and interrogate the same
cognitive process or integrity of the same neural system. To
achieve such analogous testing across species boundaries is no
trivial task. Touchscreen tasks and virtual humanized versions of
the classical Morris watermaze task for hippocampal learning are
an example of such efforts (Foster et al., 2012; Horner et al., 2013;
Dickson et al., 2014; Beraldo et al., 2019). A touchscreen-based
attentional set-shifting task, modeled after the CANTAB intra-
extra dimensional set-shifting task in human studies, measures
discrimination of simple and multidimensional visual stimuli to
reveal individual differences in attentional set-shifting deficits
from simple visual discrimination—and expected to control for

age-related vision changes that can confound interpretation of
deficits in executive function. During testing on this operant
task, mice learn to discriminate pairs of visual stimuli of a
single dimension presented on the touch screen in response
to reward (vanilla soymilk). Once the criterion is reached,
correct performance on discrimination of compound stimuli
from novel exemplars is assessed, rewarded, and thus evaluates
intra-dimensional shift reversal learning. The extra-dimensional
shift requires attention to previously unrewarded dimensions of
the compound stimuli where performance is defined by errors
to criterion, latency to make a choice, latency to collect the
reward, and propensity to correct reward. Given the applicability
of this task for longitudinal measures of visual discrimination,
reversal learning, and attentional set-shifting deficits in aging
mice, future efforts to identify and fully characterize cellular,
molecular, and epigenetic mechanisms that accompany such
changes in cognitive function may be realized (Dickson et al.,
2014). The Morris watermaze test of episodic spatial memory
developed in rodents has been adapted using virtual computer-
generated environments for testing of spatial memory in humans
with controls that can compensate for age-related changes in
reaction time and mobility—bridging methodologies for studies
of cognitive aging in rodent and human behavioral studies
(Foster et al., 2012).

Similarly, the use of analogous techniques in humans and
animals, such as brain imaging, could be used to identify the
time course for neural network alterations. At the same time,
the opportunity to validate imaging results histologically, at least
at defined study endpoints, provides a fundamental advantage
of animal studies. In turn, correlations between behavior
and brain measures could illuminate their relationship to
cognitive/brain reserve, suggesting when and where to examine
cellular and molecular changes, and address questions of when
to successfully apply experimental manipulations designed to
tap into mechanisms of cognitive/brain reserve in humans and
animal models (Roberson et al., 2012).

At present, the experimental literature using longitudinal
studies in animals is small in comparison to the body
of cross-sectional data. Many cross-sectional studies imply
interactions between trajectories of age-related cognitive decline
and advancing age, but only a comparison between effects at
different age points has been performed. Only a within-animal
design, however, permits the characterization of individual
differences in the trajectory of cognitive decline. It is thus
important to invest in more longitudinal studies and to promote
the methodology, analyses, and theoretical background of this
approach, and to either validate or invalidate conclusions made
from findings derived from cross-sectional approaches.

As the first step in this review of the literature, we
identify some relevant variables (age, sex, and strain) and
appropriate dependent variables emphasizing psychological
measures and cognitive function that can be repeatedly tested.
The literature review focuses on behavioral/cognitive measures,
linked to specific brain systems that decline with aging in
humans and animal models including hippocampal involvement
in memory and pattern separation, prefrontal processes of
sustained attention, cognitive flexibility and impulsivity, and
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the perirhinal cortex in recognition memory (Table 1). We
highlight considerations for translating findings across different
levels of analysis to predict the onset and trajectory of cognitive
impairment. Therefore, whenever possible, previous longitudinal
studies are underscored to identify possible confounds and
recommend best practices (Table 1).

SEX DIFFERENCES

In humans, the pathological progression of age-related
neurodegenerative diseases is sexually dimorphic and
longitudinal studies in mice appear to confirm sex differences
(Havas et al., 2011; Wood et al., 2011; van Duijn et al., 2013;
Roy et al., 2018). In most cases, sex differences that have been
found in rodent models cannot be easily extrapolated to the
human situation, either concerning effect size or underlying
genetic cause. The detection of sex differences, however, will be
an important co-variate in complex models aimed at elucidating
other important relationships (Jonasson, 2005; Sutcliffe et al.,
2007; Barter et al., 2019; Febo et al., 2020). Although there are
likely interactions of age × genetics × sex (Dunn et al., 2019;
Neuner et al., 2019b; O’Connell et al., 2019), cross-sectional
studies have reported sex differences in aging of physical and
cognitive function (Andrews, 1996; Veng et al., 2003; Jonasson,
2005; Barha et al., 2017; Berkowitz et al., 2018). Also, a few
longitudinal studies have confirmed sex differences in rats
(Altun et al., 2007; Talboom et al., 2014; Febo et al., 2020).

MODEL DIFFERENCES

The choice of animal model will depend on the questions to
be addressed. Due to the ability to modify genetics, mice are
generally employed for examining genes linked to aging and
diseases of aging (Yuan et al., 2011; Ackert-Bicknell et al., 2015).
The relatively short lifespan of rodents allows studies that can
address cognitive health span (the period of life spent in good
health, unaffected by age-related diseases or disabilities) vs. the
entire life span (e.g., Leduc et al., 2010).

The inbred C57BL/6J mouse, and the related C57BL/6JNia
substrain supported by the National Institute of Aging for
studies of aging, are the most widely used mouse strains for
aging research, including genetic manipulations (Mitchell et al.,
2015). However, some aging studies have used other strains due
to age-related hearing loss in C57BL/6J and related substrains
(Johnson et al., 1997; Tremblay et al., 2012).

The availability of murine genetic reference populations, for
example, the panel of recombinant inbred strains of mice such
as BXD, based on a cross between C57BL/6J and DBA/2J,
allows powerful genetic studies of aging that can be related to
human cohort studies (Hook et al., 2018). Based on this genetic
approach, disease models have been developed, for example,
the ongoing AD-BXD study (Neuner et al., 2019b), which
represents the first study addressing the interaction between a
disease-causing mutation for Alzheimer’s disease and systematic
variation of the genetic background.

For aging studies in rats, the inbred Fischer 344 are the most
widely used, again due to support by the National Institute of

Aging for this model. In the absence of a de novo mutation,
inbred animals are genetically identical. The similarity in genes
should reduce phenotypic variability, increasing reproducibility
and fewer animals are required to determine experimental
outcomes (Festing, 1976). In turn, the reduced variability
is thought to lead to better predictability. This may be
a consideration for studies examining independent variables
hypothesized to modify cognitive/brain reserve, because any
differences observed are likely to be due to treatment effects.
Alternatively, there are also outbred rat strains—such as the
Sprague–Dawley, Long Evans, and Wistar rats—that may be
advantageous in studying individual differences in cognitive
aging trajectories. In particular, studies of outbred strains can
provide insight into the genetic contributions to age-related
cognitive decline and neurodegenerative disease. Regardless of
wh, ether inbred, outbred, or hybrid strains are employed,
researchers need to protect against gen, etic shifts or drift, which
could impact reproducibility including using the same vendor
and same breeding room.

The choice of an animal model may also be influenced
by the cognitive processes of interest and factors that will
influence outcomes and interpretation of cognitive tests. For
example, strain differences can be observed in locomotor activity,
stress response, memory function, and longevity (Satinder,
1981; van der Staay and Blokland, 1996; Dhabhar et al., 1997;
Wolfer and Lipp, 2000; Wyss et al., 2000; Yilmazer-Hanke,
2008; Segar et al., 2009). Also, adult hippocampal neurogenesis,
which declines in an age-dependent fashion, shows strong
strain differences (Kempermann et al., 1997), as do synaptic
markers and physiology (Guitart et al., 1992; Novick et al., 2008;
Bowden et al., 2012; Paban et al., 2013; Huang et al., 2016) and
morphological parameters of neurons/brains themselves (Boss
et al., 1987; Wells et al., 2010).

WHEN DOES COGNITION DECLINE?

Relative to cross-sectional research, longitudinal studies can
better identify the onset of cognitive impairment and provide
a potential time course for changes in theoretical constructs
of cognition and health, such as episodic memory, physical
function, and circadian dysregulation. Also, longitudinal studies
permit the early identification of outliers or the exclusion of adult
animals that are unable to perform the task. Central for studies of
brain maintenance and brain reserve, is the idea that early life
events may influence the onset of age-related cognitive decline
(Jagust, 2016; Hohman and Kaczorowski, 2020). Therefore, it is
important to consider the phases of life in which a behavior is
measured or experimental manipulation applied (e.g., Asiminas
et al., 2019; Howard and Hunter, 2019). What is considered
young or old may vary by animal model and strain. Rats and
mice are generally weaned at ∼21–28 days postnatal and reach
sexual maturity by ∼9 weeks of age. However, the brain is
still growing at this time, and animals are not socially mature.
Because many physiological, hormonal, and cognitive changes
related to aging begin to occur inmiddle-age, longitudinal studies
interested in capturing the onset of cognitive aging may want
to sample more than once during middle-age. Humans undergo
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TABLE 1 | Longitudinal testing of traits relevant to aging, cognition.

Domain Assay Specific trait
measured (if
applicable)

Effect of age Considerations

Physical
Bodyweight

↑ With age (Turturro et al.,
1999; Altun et al., 2007;
Freund et al., 2013; Febo
et al., 2020).

• Bodyweight may impact motor behavior.
• Body composition is strain-dependent.

Grip strength
↓ With age (Fischer et al.,

2015; Zhang et al., 2015;
Xue et al., 2016; Martinez de
Toda et al., 2018; Sheth
et al., 2018; Zammit et al.,
2019; Febo et al., 2020).

• Grip strength predicts cognitive decline in
humans butt not rodents (Praetorius
Bjork et al., 2016; Stijntjes et al., 2017;
McGrath et al., 2019; O’Connell et al.,
2019; Febo et al., 2020).

Gait, rotarod Motor coordination
↓ With age (Zhang et al., 2015;

Bair et al., 2019).

• Unclear if related to cognitive function.
• Cognitive function is impaired when

paired with physical demands in the task
(Seidler et al., 2010).

Locomotor activity
↓ With age (Salvatore et al.,

2009; Stowie and Glass,
2015; Febo et al., 2020).

• Not subject to test/retest or practice
effects (Altun et al., 2007).
• Reduced physical activity corresponds to

reduced cognitive function (Shoji et al.,
2016; Logan et al., 2018; Febo et al.,
2020).
• Female rodents have higher physical

activity compared to males; may be
mediated by estradiol and contribute to
b, better cognitive performance (Stern
and Murphy, 1972; Gerall et al., 1973;
Gentry and Wade, 1976; Yonker et al.,
2006; Bean et al., 2015; Stowie and
Glass, 2015; Barha et al., 2017;
Rosenfeld, 2017; Febo et al., 2020).
• Voluntary locomotor activity increases

neurogenesis and synaptic plasticity
(Kronenberg et al., 2006).

Visual, hearing acuity ↓ With age (strain-dependent) • Age-related memory decline is not due to
loss of visual acuity (Lindner and Gribkoff,
1991; Weber et al., 2015).

Sleep
↑ Fragmentation with age

(Zepelin et al., 1972;
Rosenberg et al., 1979; Van
Gool and Mirmiran, 1983).

• Sensitive to and interacts with age, sex,
stress, environment (Mirmiran et al.,
1982; Buechel et al., 2014; Fischer et al.,
2015).
• Fragmented sleep is associated with

impaired learning (Markowska et al.,
1989; Stone et al., 1989).

Psychological
Open field test Anxiety ↓ A novelty-induced locomotor

activity with age
↓ or ↑ anxiety with age,

depending on the testing
paradigm

• Reduced center time is associated with
decreased learning abilities when
cross-sectionally measured (Dellu et al.,
1994) or predicts better performance
when longitudinally tested (Febo et al.,
2020).
• Neophobia increases with age, extended

impoverished environment (Diamond,
1990; Hall et al., 1997; Winocur, 1998;
Hellemans et al., 2004; Bell et al., 2009;
Diniz et al., 2010; Volkers and Scherder,
2011; Sampedro-Piquero et al., 2014;
Sparling et al., 2018; Wang et al., 2018).

(Continued)
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TABLE 1 | Continued

Domain Assay Specific trait
measured (if
applicable)

Effect of age Considerations

• Longitudinal: reduced locomotor activity in
OFT with repeated handling, environmental
enrichment (Fox et al., 2006; Galani et al.,
2007; Leal-Galicia et al., 2008; Hughes and
Collins, 2010; Sampedro-Piquero et al.,
2014).
• Cross-sectional: variable effects of age on

novelty-induced locomotor activity in OFT
(Miyagawa et al., 1998; Boguszewski and
Zagrodzka, 2002; Torras-Garcia et al., 2005;
Bergado et al., 2011; Meyza et al., 2011;
Moretti et al., 2011; Shoji and Miyakawa,
2019).

Watermaze (visual
platform)

Anxiety, spatial learning Dependent on anxiety response • Repeated training with visual platform elicits
reduced anxiety and reduces age-related
differences (Rapp et al., 1987; Treit and
Fundytus, 1988; Herrero et al., 2006; Guidi
et al., 2015).

Cognitive—hippocampal

T-maze Spatial working
memory, reference
memory

↓ Working memory, reversal
with age (Ando and Ohashi,
1991; Dellu et al., 1997; Zhuo
et al., 2007; Talboom et al.,
2014; Birch and Kelly, 2019).

↑ Reference memory with age
(Talboom et al., 2014).

↑ Acquisition with age, practice
(Dellu et al., 1994).

• Severe food deprivation improves function in
old rats (Ando and Ohashi, 1991).
• Environmental enrichment, practice protects

against age-related decline, with possible
female sex-specificity (Dellu et al., 1997;
Zhuo et al., 2007; Talboom et al., 2014; Birch
and Kelly, 2019).

Radial arm maze Spatial working
memory

↓ With age (Dellu et al., 1997;
Templer et al., 2019).

• Continuous training may mask age-related
decline (Beatty et al., 1985; Bierley et al.,
1986; Caprioli et al., 1991).
• Increased number of arms, reduced training

prevents the use of response strategies in
aged animals (Chrobak et al., 1995; Dellu
et al., 1997; Sabolek et al., 2004; Templer
et al., 2019).

Y-maze Spatial, episodic
working memory

↔ Spontaneous alternations
with age (Chaney et al.,
2018; Neuner et al., 2019b).

↓ Performance in delayed
choice paradigm with age
(Dellu et al., 1994; Vallee
et al., 1999).

• Variability in performance at midlife may
predict future deficits (Stone et al., 1997).
• Strain differences in mouse performance

(Neuner et al., 2019b).
• Performance may be influenced by

novelty-induced locomotor activity (Dellu
et al., 1994).

Watermaze Working memory,
reference memory,
episodic memory

↓ Acquisition, delayed
matching-to-place ( Lindner
and Gribkoff, 1991; Clark
et al., 1992; Rick et al., 1996;
Gallagher et al., 2015; Febo
et al., 2020).

↔ or ↓ Reference memory with
age (Colombo and Gallagher,
2002; Zhuo et al., 2007).

• Early or repeated training is protective against
age-related decline in normal aging (but not in
Alzheimer’s models; Algeri et al., 1991;
Pitsikas et al., 1991; Gyger et al., 1992; Dellu
et al., 1997; Vallee et al., 1999; Markowska
and Savonenko, 2002; van Groen et al.,
2002; Vicens et al., 2002; Billings et al.,
2005; Reichel et al., 2017).
• Correlates to open field performance (Febo

et al., 2020).
• Sensitive to stress effects (Rapp et al., 1987;

Treit and Fundytus, 1988; Herrero et al.,
2006; Guidi et al., 2015).

Barnes maze Spatial working
memory

• Sensitive to training or practice effects
(Heimer-McGinn et al., 2020).

(Continued)
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TABLE 1 | Continued

Domain Assay Specific trait
measured (if
applicable)

Effect of age Considerations

• Less physically demanding, stress-inducing
test may be advantageous over watermaze in
aged rodents (Harrison et al., 2009;
Berdugo-Vega et al., 2020).

Pattern separation
↓ With age (Yassa and Stark,

2011; Holden and Gilbert,
2012; Gracian et al., 2013;
Johnson et al., 2017; Ces
et al., 2018; Smith et al.,
2020).

• Age-related deficits may be related to altered
synaptic plasticity and neurogenesis in the
dentate gyrus (Wilson et al., 2006; Creer
et al., 2010; Wu et al., 2015; Ces et al., 2018;
Ray et al., 2018; Smith et al., 2020).

Cognitive-
prefrontal
cortex

5-choice serial reaction
time task

Sustained attention ↓ with age (Muir et al., 1999). • Shorter cue duration reveals greater
age-related changes (Muir et al., 1999).

Attention set-shifting
task

Cognitive flexibility ↓ With age (Zhuo et al., 2007)

Delayed non-matching
to position task

↔ With age (longitudinal testing
between 24 and 36 months;
Blokland et al., 2004).

Span task Variable (Sabolek et al., 2004). • Possibly subject to practice effects.
Delay discounting Impulsivity

↓ With age (Simon et al., 2010;
Hernandez et al., 2017).

• No existing longitudinal testing data.
• Significant variability across strains exists in

the ability to tolerate a delay (Isles et al.,
2004; Anderson and Woolverton, 2005;
Wilhelm and Mitchell, 2009).
• Delay tolerance may be associated with

working memory, cognitive flexibility
(Hernandez et al., 2017).

Cognitive-
perirhinal
cortex

Novel object
recognition

↓ With age (Chaney et al.,
2018).

• Environmental enrichment, previous training
protects against age-related decline (Birch
and Kelly, 2019).

↑ = increased with age;↔ = no change with age; ↓ = decreased with age.

menopause in middle-age (∼51 years). Rats and mice undergo
estropause starting with irregular estrous cycles at 10–12months,
moving to an acyclic state with constant estrus (9–15 months),
and follicle depletion from 18 to 24 months (Lu et al., 1979;
Finch, 2014). Again, the characteristics of estropause will be
strain-dependent. Finally, the definition of ‘‘old’’ as defined by
mean/median lifespan will vary by individual strain and housing
condition (Lipman, 1997; Yuan et al., 2009).

PHYSICAL MEASURES, PSYCHOLOGICAL
MEASURES, AND CIRCADIAN FUNCTION

Physical Measures
Epidemiological studies suggest measures with no clear
connection to cognition can predict aging outcomes (e.g.,
walking speed and cognitive decline). Thus, measures with
no obvious underlying construct relationship (e.g., home cage
activity at middle-age and memory in old age) could prove to
have substantial predictive value.

Body Weight
In general, in laboratory rodents’ body weight increases with
age, in a sex-dependent manner (Turturro et al., 1999; Altun

et al., 2007; Freund et al., 2013; Febo et al., 2020). An increase
in weight could influence locomotor activity and maybe a
consideration of tasks that depend on food deprivation as a
motivation. Also, changes in body fat impact metabolic states.
Some rat strains gain significantly more weight across age than
others, such as Sprague–Dawley and Long Evans rats. One of
the reasons NIA chose F344 rats for their first supported rat
breeding colony is because they did not gain extreme amounts
of weight across age, and thus might be preferable for some
behavioral studies.

Grip Strength
Longitudinal studies indicate that grip strength decreases
throughout aging in mice (Fischer et al., 2015; Zhang
et al., 2015; Martinez de Toda et al., 2018; Sheth et al.,
2018), rats (Xue et al., 2016; Febo et al., 2020) and humans
(Zammit et al., 2019). In humans, grip strength measured
late in life is predictive of cognitive decline (Praetorius
Bjork et al., 2016; Stijntjes et al., 2017; McGrath et al.,
2019). In animal models, there is little indication that
changes in grip strength during middle-age predict the
trajectory of cognitive decline (O’Connell et al., 2019;
Febo et al., 2020).
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Rotarod and Gait Analysis
An age-related decline in motor coordination leads to problems
in the ability to maintain a uniform gait and balance during
walking. Studies in humans demonstrate greater cognitive
performance decrements under dual-task conditions that involve
combined cognitive andmotor performance (Seidler et al., 2010).
Rodents exhibit age-related changes in gait (Zhang et al., 2015;
Bair et al., 2019) and performance on the rotarod (Fischer et al.,
2015; Zhang et al., 2015; Febo et al., 2020); however, it is not clear
from longitudinal studies that motor coordination performance
predicts cognitive function.

Locomotor Activity
In general there is a decrease in locomotor activity with age
(Salvatore et al., 2009; Stowie and Glass, 2015; Febo et al.,
2020). Repeated testing over the lifespan does not appear to
influence sensory-motor function, such that the decline in
locomotor activity is similar for longitudinal and cross-sectional
studies (Altun et al., 2007). Longitudinal studies indicate that
decreased locomotor activity can be observed during exploration
of a novel environment (Dellu et al., 1994; Dellu-Hagedorn
et al., 2004; Altun et al., 2007; Chiquita et al., 2019; Febo
et al., 2020) or in an activity wheel (Dawson and Crowne,
1988; Febo et al., 2020). Continuous access to a running
wheel, however, partly prevented the age-related decline in
adult hippocampal neurogenesis, suggesting sustained effects
of physical activity on age-dependent changes in plasticity
(Kronenberg et al., 2006).

It has otherwise been suggested that physical activity and
cognitive function decline in parallel in aging rodents (Shoji
et al., 2016; Logan et al., 2018; Febo et al., 2020). Age-related
cognitive decline was evident across multiple tasks and cognitive
domains, including spatial memory performance on the Barnes
maze, watermaze, and a contextual fear memory test, and
executive function on reward-based discrimination and reversal
learning task, which corresponded to a decrease in general
activity metrics (i.e., distance traveled, acceleration). Moreover,
female rodents are more active than males (Stowie and Glass,
2015; Rosenfeld, 2017; Febo et al., 2020) and sex differences
in cognition may be confounded by the differential influence
of exercise (Barha et al., 2017). Also, the level of estradiol is
linked to activity and cognitive function. Estradiol treatment
of older animals promotes wheel-running activity (Stern and
Murphy, 1972; Gerall et al., 1973; Gentry and Wade, 1976)
and memory (Yonker et al., 2006; Bean et al., 2015). In a
longitudinal study, it was observed that activity and spatial
memory function on the delayed-matching-to-place watermaze
in females declined in parallel, from 12 to 18 months (Febo
et al., 2020). The results suggest that longitudinal studies
should examine ovarian estradiol levels as a mechanism
determining sex differences in activity and memory function
during aging.

Visual Acuity
Aged animals are more likely to develop cataracts. Albino
animals may exhibit decreased visual acuity; however, effects
of aging on visual acuity and memory can be distinguished
by careful behavioral testing, such that impaired learning and

memory are not due to the decline in visual acuity (Lindner
and Gribkoff, 1991; Weber et al., 2015). A longitudinal study
indicated no loss of visual acuity, as measured by the animal’s
ability to perform on the visual discrimination version of the
watermaze (Markowska and Savonenko, 2002). Also, age-related
hearing loss has relevance for certain learning and memory
tasks as was alluded to earlier (C57BL/J6 hearing loss), which
is relevant to humans because hearing loss is a risk factor for
cognitive decline.

Sleep
Sleep duration decreases with age in humans and rodent models,
and the pattern of sleep (sleep stage bouts and duration)
is altered such that sleep fragmentation increases (Zepelin
et al., 1972; Rosenberg et al., 1979; Van Gool and Mirmiran,
1983). A longitudinal study in mice confirmed increased sleep
fragmentation with age and indicated an age by sex difference
for total sleep time (Fischer et al., 2015). The decrease in
bout duration within different sleep stages is associated with
impaired retention of inhibitory avoidance, and impaired spatial
learning (Markowska et al., 1989; Stone et al., 1989). Sleep
patterns are influenced by stress and environmental enrichment;
however, the malleability of sleep architecture may change with
age (Mirmiran et al., 1982; Buechel et al., 2014). A decrease in
sensitivity to stress-induced sleep disruption may be an early
marker of aging (Hargis et al., 2018). Interestingly, variability in
memory in middle-age predicted changes in paradoxical sleep
and sleep/circadian adaptation with advancing age (Stone et al.,
1997; Febo et al., 2020).

Psychological and Affective Measures
(Response to Novelty, Anxiety, Neophobia)
Open Field
Locomotor activity in response to a novel environment and the
time spent in the center of the open field has been used as
measures of anxiety and neophobia. Individual differences in
response to a novel environment, measured in adults, predict the
propensity for drug abuse and memory function (Dellu et al.,
1994; Antoniou et al., 2008; Flagel et al., 2014; Febo et al., 2020).
Cross-sectional studies indicate that impaired learning of the
reference memory version of the watermaze in older animals is
associated with decreased activity in the open field, possibly due
to heightened neophobia (Gallagher and Burwell, 1989; Rowe
et al., 1998; Collier et al., 2004). For studies that involve multiple
age cohorts, decreased exploratory activity observed in such
tests may be related to a general decrease in locomotor activity
characteristic of aging. Also, the oldest animals may experience
prolonged exposure to an impoverished environment, which
can increase neophobia/anxiety (Hall et al., 1997; Hellemans
et al., 2004) and impair cognition (Diamond, 1990; Winocur,
1998; Bell et al., 2009; Diniz et al., 2010; Volkers and Scherder,
2011; Sampedro-Piquero et al., 2014; Sparling et al., 2018;
Wang et al., 2018).

Cross-sectional studies examining age differences in
exploration on the open field task indicate that exploration
is decreased, increased, or not changed with age (Miyagawa
et al., 1998; Boguszewski and Zagrodzka, 2002; Torras-Garcia
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et al., 2005; Bergado et al., 2011; Meyza et al., 2011; Moretti
et al., 2011; Shoji and Miyakawa, 2019). Longitudinal studies
in mice and rats indicate a decline in distance and velocity
in the open field consistent with a general decline in activity
with age (Chiquita et al., 2019; Febo et al., 2020). However,
it is also possible that the decrease in locomotor activity may
represent decreased anxiety due to repeated testing/handling
and environmental enrichment. Environmental enrichment
is associated with decreased anxiety (Fox et al., 2006), and
the effects on anxiety can be observed when environmental
enrichment is initiated in older animals (Galani et al., 2007;
Leal-Galicia et al., 2008; Hughes and Collins, 2010; Sampedro-
Piquero et al., 2014). Similarly, familiarization with the testing
procedure or an age-related decrease in activity was thought to
underlie an age-related decrease in arm entry for a longitudinal
study of plus-maze behavior (Andrade et al., 2003).

Longitudinal studies indicate an age-related decrease
in general activity (e.g., wheel running) and decreased
locomotion in response to a novel environment does not
correlate with impaired memory; rather, increased activity
measured in adults was associated with poorer memory
when tested in older animals (Dellu et al., 1994; Febo et al.,
2020). It has been suggested that the increase in locomotor
activity, initially seen in adults, may be due to a baseline
difference in spatial learning ability, resulting in poorer
habituation to exploration, which manifests as a cognitive
impairment during aging. Also, the novelty induced increase
in locomotor activity in a subset of adults referred to as high
responders is associated with an elevated stress response
highlighted in a longitudinal brain imaging study, which
found that high responders to chronic unpredictable stress
paradigm exhibited increased functional connectivity and
atrophy within networks involved in learning and memory
(Magalhaes et al., 2018). Together, the results highlight
differences in the response to novelty for cross-sectional
and longitudinal studies. Moreover, for longitudinal studies,
individual differences in reactivity to novelty or stress in
adults may be related to maintenance or reserve mechanisms,
which predict network changes associated with a decline in
cognitive function.

Visual Platform Training on the Watermaze
The initial exposure to the watermaze represents a novel
environment, which is stressful to many animals (Harrison
et al., 2009). Cross-sectional studies indicate task order effects
mediate age-related differences when visual discrimination on
the watermaze is examined before hidden platform testing.
The age difference may be due to differences in anxiety
in response to the watermaze, failing to shift from an
inefficient strategy (i.e., thigmotaxis; Treit and Fundytus,
1988; Herrero et al., 2006). If visual platform training is
initiated after hidden platform training, age differences are
minimized (Rapp et al., 1987; Guidi et al., 2015). Similarly,
if spatial discrimination testing is conducted after visual
discrimination training, age-differences in spatial learning are
reduced (Guidi and Foster, 2012). The results indicate that
prior experience with the watermaze facilitates subsequent

performance, possibly due to the acquisition of the procedural
aspects of the task, which minimizes age differences. Thus,
a longitudinal study found no age-related decline in visual
discrimination performance when animals were repeatedly
tested on the visual discrimination version of the watermaze
(Markowska and Savonenko, 2002).

COGNITIVE MEASURES:
HIPPOCAMPUS-DEPENDENT SPATIAL
MEMORY

Spatial reference and episodic/working memory depend on
the hippocampus. Cross-sectional studies indicate that both
decline over the course of aging; however, the training
procedures and age at which impairment occurs are different
for these two behaviors (Foster, 2012b). In most cases,
tasks for spatial reference memory examine trial-independent
and incremental acquisition over days of training (i.e., rate
of learning) for invariant spatial information. In contrast,
tasks for spatial episodic/working memory focus on trial-
dependent and delay-dependent memory for rapidly acquired
and flexible spatial information. Impaired episodic/working
memory emerges earlier, possibly in middle-age, and before
impairment in the acquisition of spatial reference memory.
The difference in onset may arise due to the level of
cognitive processing or difficulty of the tasks, or differential
aging of the mechanisms involved in each process (Foster,
2012b). Alternatively, the decline may be progressive, such
that impairment in rapid episodic memory may advance
to more severe deficits, observed as an impaired ability to
acquire spatial information through incremental learning. In
this case, impairment in spatial episodic/working memory
may precede and predict the trajectory of impaired spatial
reference memory.

Important for longitudinal studies, tasks that involve the
repeated acquisition of rapidly acquired and flexible spatial
information exhibit minimal carryover effects. Also, longitudinal
studies of spatial episodic/workingmemory, examined on several
tasks (Y-maze, non-matching in a T-maze, radial arm maze, and
episodic/working memory versions of the watermaze), confirm
that memory deficits emerge around middle-age and continue to
decline with advanced age (Ando and Ohashi, 1991; Vallee et al.,
1999; Markowska and Savonenko, 2002; Dellu-Hagedorn et al.,
2004; Sabolek et al., 2004; Febo et al., 2020).

In contrast to tasks that focus on delay-dependent memory,
longitudinal studies emphasize that learning is resistant to
age-related impairment when the procedures or strategies for
solving spatial tasks are acquired in youth. These savings are
particularly evident for the acquisition of spatial reference
memory. Thus, relative to when rodents were first tested as
young adults, aged animals exhibit no deficit and, in many
cases, aged animals are better able to perform a spatial reference
memory task when examined on the T-maze (Ando and Ohashi,
1991; Dellu et al., 1997), radial arm maze (Beatty et al.,
1985; Bierley et al., 1986; Caprioli et al., 1991) and watermaze
(Algeri et al., 1991; Pitsikas et al., 1991; Gyger et al., 1992; Dellu
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et al., 1997; Vallee et al., 1999; Markowska and Savonenko, 2002;
van Groen et al., 2002; Vicens et al., 2002; Birch and Kelly, 2019).

T-Maze
Several longitudinal studies have employed various types of the
T-maze to examine cognition (Ando and Ohashi, 1991; Dellu
et al., 1997; Zhuo et al., 2007; Talboom et al., 2014; Birch and
Kelly, 2019). Ando and Ohashi (1991) first employed the delayed
non-matching to place the T-maze task to longitudinally examine
spatial working and reference memory. In this case, the stem
of the T-maze was divided into two paths and the end of one
path was always blocked, such that the animal had to acquire a
trial-independent memory (i.e., reference memory) for accessing
the choice point. For the trial-dependent memory, the animal
(female F344 rat) was forced to select one arm, which contained a
reward. After a delay, the animal was allowed to choose between
the two arms, and choosing the opposite arm was rewarded. The
results indicate that spatial episodic/working memory, but not
reference memory declined with age. Importantly, the authors
found the same result for a cross-sectional study and noted that
more severe food deprivation, from 80 to 70% of free-feeding
body weight, was required to get the same rate of learning in older
rats (Ando and Ohashi, 1991).

Another study employed 2 days of training in which the
rats learned to choose one rewarded arm of the T-maze. On
the third day, the goal was shifted to the opposite arm (Dellu
et al., 1997). The number of trials to reach the criteria on
initial learning and reversal were tested at 3, 12, and 27 months.
Acquisition improved with age (i.e., fewer errors with age)
suggesting that animals remembered the procedural aspects of
the task. In contrast, age-related impairments were observed
for reversal learning. Similarly, training on a reference memory
version of the T-maze at 6 months improved reference memory
performance examined at 18 months, relative to rats initially
trained on the task at 18 months (Talboom et al., 2014).
Interestingly, the researchers found evidence that, for females,
but not males, the cognitive training or increased handling
associated with prior testing protected against age-related
decline examined on other mazes. Finally, environmental
enrichment was associated with protection against an age-related
impairment in working memory, tested on the T-maze
(Birch and Kelly, 2019).

Together, the results indicate that, for longitudinal studies, the
T-maze is sensitive to impairment in episodic/working memory,
confirming impaired workingmemory deficits observed in cross-
sectional studies. The episodic/working memory deficits were
observed in the absence of impairment in reference memory. The
lack of impairment for reference memory is in contrast to cross-
sectional studies and suggests that differences in the acquisition
of a reference memory may relate to long-term memories for
the procedural aspects of the task. Interestingly, environmental
enrichment prevented impaired episodic/working memory,
suggesting possible brain maintenance or cognitive reserve
mechanisms. Important caveats for future studies include
age-related changes in motivation due to food restriction
and possible sex differences. Also, it would be interesting to
determine if impairment in spatial episodic/working memory

that emerges in middle-age could predict later deficits in
spatial learning (i.e., reference memory) examined using a
different task.

Radial Arm Maze
For this task, animals are food-deprived and trained to visit
equidistantly spaced arms, which radiate from a central platform,
to obtain food. Performance is defined by the ability to remember
which arms normally contain food and which arms have already
been visited during the ag trial. In the case of the 8-arm radial
arm maze, early (2–6 months) and continuous training across
the lifespan can provide skills or strategies that promote learning,
enabling animals to more rapidly reacquire the task later in life.
Also, the use of a behavioral strategymaymask impaired working
memory (Beatty et al., 1985; Bierley et al., 1986; Caprioli et al.,
1991). The development of a learning strategy can be minimized
by decreasing the training trials (e.g., one trial/day for 9 days)
and intermittent testing (e.g., once every 6 months). In this case,
the number of errors across 9 days of training increased with
age such that 26-month rats made more errors than when they
were tested at 3 months (Dellu et al., 1997). In another study,
both working memory and reference memory improved from
adult to middle-age, and decline from middle-age to old age
(Templer et al., 2019). To prevent the use of response strategies,
which could compensate for a decline in working memory,
it is suggested that researchers increase the number of arms
from 8 to 12 and control the initial arm selections (Chrobak
et al., 1995; Sabolek et al., 2004). Under these conditions, older
animals exhibit impairments for information acquired during
the initial pre-delay training trial relative to their performance
as adults.

Y-Maze
In general, the Y-maze provides measures of spatial
episodic/working memory. An important consideration is
a delay between acquisition and retention testing. In one
longitudinal study in mice, short-term working memory,
examined as the number of alterations within a session
(i.e., spontaneous alternation), was not altered with age
(Chaney et al., 2018); although, there may be strain differences
(Neuner et al., 2019b). In rats, variability in alternation
behavior in middle-age predicted future memory deficits
for tasks that impose longer delays (Stone et al., 1997).
Another version of the Y-maze permits animals to explore
two arms. After a delay, animals are allowed access to all
three arms, and the percentage of visits and time spent in
the novel arm is measured. In this case, recognition of the
novel location is defined as novel arm visits greater than
chance (i.e., >33%), and longitudinal studies indicate that
memory declines with age (Dellu et al., 1994; Vallee et al.,
1999). Interestingly, Dellu et al. (1994) found an age-related
difference in memory was predicted by the locomotor response
to novelty measured as adults. The memory decline was
evident in older high responders following a 4 h delay, but
not after a 1 min delay, suggesting that the deficit was due
to impaired delay-dependent memory and not due to the
impaired acquisition.
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Watermaze
A great wealth of information related to hippocampus-
dependent memory has been generated in rodent models
using the spatial watermaze, first developed by Morris (1984).
The proper procedures for employing the watermaze when
examining aged animals have been detailed elsewhere (Foster,
2012b; Guidi and Foster, 2012; Guidi et al., 2014; Burke
and Foster, 2019). Therefore, the current review focuses on
the use of the watermaze for longitudinal studies. Cross-
sectional studies indicate that deficits in the acquisition of
a spatial reference memory can be observed in a subset
of older animals (Gallagher et al., 2015). Other studies
suggest that with advanced age, the majority of the oldest
animals exhibit impairments in forming a reference memory,
depending on the task parameters (Lindner and Gribkoff,
1991; Clark et al., 1992; Rick et al., 1996). In contrast,
longitudinal studies emphasize that when the procedures for
spatial reference memory are acquired in youth, performance
is resistant to age-related impairment, such that aged animals
are better able to perform a spatial reference memory task
on the watermaze relative to when they were first tested
as young adults (Algeri et al., 1991; Pitsikas et al., 1991;
Gyger et al., 1992; Dellu et al., 1997; Vallee et al., 1999;
Markowska and Savonenko, 2002; van Groen et al., 2002;
Vicens et al., 2002). In mice from 6 to 14 months, working
memory on the T-maze declined in the absence of impaired
reference memory on the watermaze (Zhuo et al., 2007),
confirming the vulnerability of working memory. Finally, while
repeated reference memory training across the lifespan was
protective against learning deficits in older rats, performance
at 12 months could predict performance at 18 months
(Markowska and Savonenko, 2002). Similarly, aged animals
(24 months) that were impaired in the reference memory
version of the task exhibited savings in learning when retested
in a new environment 2 weeks later; however, a probe trial
30 min after the final training trial indicated that those
aged rats exhibiting the most impairment during the initial
training also were the most impaired during transfer training
(Colombo and Gallagher, 2002).

There is evidence that aging mice and transgenic Alzheimer’s
disease (AD) mice may not exhibit the same carryover/protective
effects on learning when testing is initiated in adults (Vicens
et al., 2002; Billings et al., 2005; Reichel et al., 2017). One study in
particular investigated the relationship of hippocampal volume
and an age-related impairment of spatial reference memory
(Reichel et al., 2017). A retrospective examination of mice that
exhibited poor learning at 24 months indicated these same
animals exhibited poorer learning at 16, but not 8 months.
Interestingly, no difference in hippocampal volume was observed
at 16 months; however, poor performers exhibited a greater
decrease in the volume of the dorsal hippocampus from 16 to
24 months. The results suggest that the emergence of cognitive
deficits may signal underlying processes that ultimately result in
a decline in hippocampal volume.

Episodic/working memory can be examined using the
delayed-matching-to-place (DMTP) version of the watermaze or
a 1-day version of the watermaze. For this task, the platform

is moved for each session. A session consists of an acquisition
phase, followed by a retention test after a delay. Longitudinal
studies confirm that memory deficits begin to emerge in
middle-age, particularly for longer delays, and the propensity for
memory deficits increased with age, such that more aged animals
exhibit impairments at shorter delays (Febo et al., 2020). The
deficits in middle-age correlated with time spent in the center
of the open field. Interestingly, deficits were more apparent for
males and correlated with their response to a novel environment
measured at 6months. In the case of females, memory function in
middle-age predicted disturbances in circadian adaptability with
advanced age.

For the 1-day version of the watermaze, training occurs in
a single day. An acquisition probe trial can be delivered after
several blocks of training to determine the learning; a second
retention probe trial can be delivered after a delay (2–24 h) to
measure memory. The task can be repeated, with the escape
platform located in a different position during retesting. The task
is reliable for measures of memory, such that behavior on the
retention probe trials were correlated when the task was repeated
with a 10-day interval (Guidi et al., 2014). Another study found
that performance on the acquisition probe trial at 12 months
could predict probe trial performance at 18 months (Markowska
and Savonenko, 2002). It is important to note that acquisition
and retention probe trials should be followed by a refresher block
of training with the return of the escape platform, to ensure that
the animals do not shift their search strategy. Also, there may be
a limit on the number of probe trials that can be administered.
At some point, the animals may figure out that sometimes, the
platform goes missing and turns up in another location.

Barnes Maze
The Barnes maze is a dry-land test of spatial memory, in which
the animals need to navigate a circular surface with holes around
its circumference to find an escape tunnel to leave a brightly lit,
exposed surface (Barnes, 1979). Thus, the animal must remember
the escape tunnel location, using spatial cues in the room. This
maze is less stressful than the watermaze (Harrison et al., 2009).
However, similar to training on the watermaze, early training
on the Barnes maze results in better learning later in life due to
preserved procedural memory (Heimer-McGinn et al., 2020). For
aged animals, the Barnes maze often is the method of choice, if
the watermaze cannot be applied because of its greater physical
demands (Berdugo-Vega et al., 2020).

Pattern Separation
An age-related decline in the ability to distinguish objects as
feature overlap increases or discriminate between the locations
of two adjacent identical stimuli often referred to as pattern
separation has been well documented in both humans (Yassa
and Stark, 2011; Holden and Gilbert, 2012) and animal models
(Gracian et al., 2013; Johnson et al., 2017; Ces et al., 2018;
Smith et al., 2020). Experimental evidence supports a role for the
dentate gyrus and CA3 subregions of the hippocampus in pattern
separation (Wilson et al., 2006; Creer et al., 2010; Wu et al., 2015;
Ces et al., 2018; Ray et al., 2018; Smith et al., 2020). Additionally,
the dentate exhibits early markers of aging including altered
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synaptic plasticity and a decline in neurogenesis. Currently,
we are unaware of any longitudinal studies to determine the
onset and trajectory of pattern separation impairment in an
animal model.

PREFRONTAL CORTEX BASED TASKS

The prefrontal cortex mediates executive functions, a
comprehensive term used to describe several cognitive abilities
required to accomplish goal-directed behavior (Bizon et al., 2012;
Burke and Foster, 2019). The set of cognitive processes include
sustained attention, working memory, behavioral inhibition,
impulse control, and cognitive flexibility. In the case of aging,
deficits in basic cognitive processes (e.g., processing speed or
attention) may emerge early and contribute to impairments in
executive processes, while other basic cognitive components,
such as signal detection or maintenance of information in
short-term memory remain intact (Goh et al., 2012; McAvinue
et al., 2012). In humans and animal models, age-related deficits in
prefrontal tasks are observed as attentional demand is increased.

Sustained attention involves the maintenance of vigilance
over time. Older humans exhibit little or no decrement for
tasks that require the selection of relevant stimuli (Glisky,
2007). However, impairments are observed for tasks that require
dividing or switching of attention among multiple inputs as
conditions are changing. In this case, improvement in sustained
attention is observed during the maturation of adults, into
their 30 s, and deficits begin to appear starting in middle-age
(McAvinue et al., 2012; Fortenbaugh et al., 2015). Similarly,
longitudinal studies indicate that aging rodents can maintain
selective attention on some tasks (Burk et al., 2002).

Age-related and pathology related deficits are reported for
the 5-choice serial reaction time task (5-CSRTT). For this task,
attention is focused on lighted ports such that attention is
spatially divided among five different locations. The animal must
respond to the light (nose poke) to obtain a reward (Burke and
Foster, 2019) For this task, vigilance is measured as responses
(accuracy, response latency, omissions) to multiple cue/response
ports, and attentional demand is increased by shortening the
cue duration (0.5–0.25 s). The 5-CSRTT has been employed to
longitudinally track vigilance in AD mouse models (Lambourne
et al., 2007; Bharmal et al., 2015) and a Huntington’s disease
mouse model (Yhnell et al., 2016). Also, longitudinal 5-CSRTT
studies in rats have examined an age-related decline in vigilance
(Muir et al., 1999). Similar to cross-sectional studies, longitudinal
studies indicate that impairment emerges in middle-age when
the attentional load is increased by decreasing the cue duration
(Muir et al., 1999). For a cue of 0.5 s the young and aged animal’s
performance was ∼≥70% correct. Both groups exhibited a
decrease in performance as the duration decreased to 0.25 s
with greater impairment in older animals. Impairment was not
due to sensory-motor function as response latency was not
different and performance was not affected by changing the
cue brightness. In contrast, another longitudinal study found
no decline in vigilance during aging (Grilly et al., 2000). In
this case, rats were initially trained at 10–11 months and
retrained every 8–10 months until they were 34–35 months.

Several important differences may explain the absence of an
age-related impairment. First, animals were maintained on food
restriction for the duration of the study; although, the role
of caloric restriction in cognitive decline is debatable (Ingram
and de Cabo, 2017). More importantly, the cue duration (>1 s
on average) was adjusted to maintain correct responses within
75–88%. Compared to animals that initially learned the task
(10–11months) or were retrained inmiddle-age (18–19months),
older animals (24–25 and 34–35 months) appear to require twice
as many training sessions to reach criteria. Thus, aged animals
were able to reach the criteria by adjusting for a bias against
slower learning in older animals. Finally, the use of a longer
duration cue may have reduced the attentional demand to within
the threshold for aged animals. As noted above, age-related
impairments are observed as the attentional demand is increased
by decreasing the cue duration to below 1 s. Together, the results
support the idea that age-related impairment in vigilance can be
observed as attentional demand is increased (i.e., reducing the
cue duration).

Cognitive flexibility, examined by the attentional set-shifting
task, refers to the ability to alter behavior in response to
changes in goals or environmental cues, permitting the rapid
adaptation of behavior to a change in contingencies. For example,
the ability to shift from responding with a nose poke to a
port signaled by light cue, regardless of port position (left or
right), to respond to a rewarded position (right port) regardless
of the presence or absence of the previously rewarded light
cue (Burke and Foster, 2019). Attentional s, et-shifting was
shown to decline with age (6–14 months) in a longitudinal
study in mice (Zhuo et al., 2007). Also, these same animals
exhibited spatial working memory deficits on the T-maze,
but no spatial reference memory impairment, examined on
the watermaze.

Working memory involves several component processes
including encoding, maintenance of information for short
intervals (seconds), and the manipulation of information. For
aging humans, deficits are minimal or non-existent for passive
maintenance of information (e.g., forward digit span) and
robust deficits are observed for the task that examines the
capacity of working memory, consistent with the idea that
deficits are observed as attentional demand is increased (Bopp
and Verhaeghen, 2005; Glisky, 2007; Alexander et al., 2012;
Brockmole and Logie, 2013; McNab et al., 2015). Due to
difficulties in isolating the prefrontal cortex and hippocampal
contributions to spatial working memory examined on the T-
maze, Y-maze, radial arm maze, and DMTP tasks, operant-
based paradigms have been employed to focus on visual
discrimination and minimize spatial discrimination (Burke and
Foster, 2019).

Delayed Response
For animal models, maintenance of information in working
memory is examined using delayed-response tasks. In this
case, mnemonic demand is increased by increasing the delay
between the sample and choice trials. In a delayed non-matching
to position task, F344 × BN rats were tested each month
from 28 to 34 months (Blokland et al., 2004). This task
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involved an operant box with two levers. During the sample
phase, one lever was presented and a response (lever press)
resulted in a reward. After a delay, both levers were presented
during the choice phase and a response to the lever in
the sample phase resulted in a reward. A clear decrease
in correct responses was observed as the delay increased;
however, performance did not decline over the 6 months
of testing.

Span Task
Examination of working memory capacity provides another
method for increasing mnemonic demand. Working memory
capacity is examined using span tasks in which the animal
must remember a series of stimuli; mnemonic demand is taxed
by increasing the number of memoranda to be encoded into
and maintained by working memory stores. For non-spatial
tasks, working memory capacity, rather than the length of time
that information can be maintained in memory is important
in contributing to general cognitive function (Kolata et al.,
2005, 2007). In this case, animals respond to a stimulus (e.g.,
digging in a scented bowl). With each subsequent trial, another
novel stimulus is added to the array of previous stimuli. The
novel stimulus is the only one rewarded for a response. The
trials continue until the animal makes an error, responding
to a previous stimulus. The number of stimuli remembered
(i.e., before an error) provides a measure of working memory
capacity (Dudchenko et al., 2000). Few studies in rodents
have examined age-related changes in the capacity of working
memory, with the possible exception of spatial working memory
on the radial arm maze. As noted above, increasing the number
of arms from 8 to 12 may increase the demand for spatial
working memory (Sabolek et al., 2004). Longitudinal studies in
monkeys indicate that the decline in working memory capacity,
is highly variable and in some cases, the influence of practice
effects cannot be ruled out (Moss, 1993; Koo et al., 2018;
Ibanez et al., 2019).

Delay Discounting
Delay discounting is a measure of impulsivity and cross-
sectional studies indicate impairment with age (Simon et al.,
2010; Hernandez et al., 2017). This task usually involves an
operant chamber. A signal indicates that the two response
levers or ports are active. A response one port (immediate)
results in an immediate, yet small reward. In contrast,
a delayed response (e.g., 5 s to the port designated as
the delayed port results in a much larger reward. We
are unaware of longitudinal animal studies examining delay
discounting; however, it is important to note considerable
genetic differences in the ability of rats and mice to tolerate
a delay (Isles et al., 2004; Anderson and Woolverton, 2005;
Wilhelm and Mitchell, 2009). Importantly, delay discounting
distinguishes impulsive choices from impulsive actions. While
enhanced ability to delay gratification is not in and of
itself evidence of behavioral impairment, at least one cross-
sectional study (Hernandez et al., 2017) revealed that enhanced
delay discounting among aged rats is also associated with
maintained working memory, diminished cognitive flexibility,

and greater break-points (or willingness to work for food
rewards) on a progressive-ratio task. The relationship of delay
discounting with the maintenance or decline in other prefrontal-
mediated cognitive processes, suggests that longitudinal studies
of delay discounting may provide an opportunity to predict
the onset and trajectory of cognitive decline in specific
prefrontal functions.

PERIRHINAL CORTEX BASED TASKS

Novel Object Recognition
The novel object recognition task (NOR) depends on an
animal’s propensity to explore novel objects and is used
as a measure of recognition memory. The task consists of
two phases, a familiarization phase in which the animal is
allowed to explore duplicate copies of an object (e.g., miniature
figure). The animal is then removed from the apparatus.
Following a delay (30 s to 24 h) the animal is returned to the
apparatus for the test phase, in which one of the objects has
been replaced with a novel object (Burke and Foster, 2019).
Depending on the task parameters, NOR performance may
differentially involve the perirhinal cortex, prefrontal cortex,
and/or hippocampus (Hammond et al., 2004; Albasser et al.,
2009, 2015; Barker and Warburton, 2011; Cohen et al., 2013).
A longitudinal study found that environmental enrichment
improved performance on the NOR task and prevented an
age-related decline in object recognition (Birch and Kelly,
2019). Several longitudinal studies indicate that previous training
on the task can influence performance throughout aging. In
a mouse study, NOR with a 1 h delay was examined at
6, 12, and 18 months (Chaney et al., 2018). For wild-type
mice, memory performance appeared to increase from 6 to
12 months indicating a savings effect due to previous training.
However, the performance was not different from the chance
at 18 months, indicating impaired recognition, despite no
age-related difference in time exploring the objects. Similarly,
other longitudinal studies find improvements due to previous
training (Chiquita et al., 2019; Marshall et al., 2019). Thus,
previous experience influences performance possibly due to
positive transfer.

OTHER CONSIDERATIONS

Food Restriction
For some tasks, food restriction is employed to motivate animals
to perform. Food restriction or intermittent feeding raises a
potential confound because the caloric restriction is known
to influence the rate of aging, decreasing inflammation, and
improving healthspan and can modify brain markers of aging
(Fontana et al., 2018; Mattson et al., 2018). Several studies have
examined longitudinal food restriction on learning and memory
in animal models of aging. In general, improvement is observed
for motor function; however, the effect of food restriction on
cognitive function, including learning is unclear, with little or
no benefit observed for memory, and in some cases impairment
(Ingram and de Cabo, 2017). Thus, there appears to be an
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interesting and important disconnect between the effects of
lifelong caloric restriction on health and biological markers of
aging and cognitive decline. Other studies suggest that di, et
influences brain aging and cognitive relationships in middle-age
(Adams et al., 2008; Granholm et al., 2008; Li et al., 2013;
Yegla and Foster, 2019) and any benefit may decline in the
oldest animals (Stewart et al., 1989). Finally, the effects of food
restriction on biomarkers and behavior are confounded by an
increase in general motor activity, as the foraging behavior of
hungry animals is converted into increased locomotor activity
(Cui et al., 2009). Besides, food restriction can also modify
locomotor activity on tasks that involve spontaneous exploration
(Y-maze, novel object recognition). In this case, animals may
be motivated to explore/forage due to their fasted status
(Carter et al., 2009).

Important for longitudinal studies is research that employed
food restriction as a motivation for spatial episodic/working
memory (Ando and Ohashi, 1991; Chrobak et al., 1995; Dellu
et al., 1997; Sabolek et al., 2004; Templer et al., 2019), vigilance
(Muir et al., 1999; Lambourne et al., 2007; Bharmal et al., 2015;
Yhnell et al., 2016), and set-shifting (Zhuo et al., 2007), which
continue to find age-related cognitive decline. Furthermore,
it is possible that once the animals acquire the task in their
youth, reinstatement of behavior in middle-age animals will
be facilitated, reducing the time of food restriction required
to accomplish the testing. Thus, it may be possible to have
short periods of food restriction only during times of testing.
In this case, researchers may want to also include a task
that declines with age but does not require food deprivation
(e.g., Y-maze, DMTP on the watermaze) to determine if food
restriction has a general effect on the rate of brain aging and
cognitive decline.

Health Status
The trajectory of cognitive decline depends on health status
(Anstey and Christensen, 2000; Stewart et al., 2000; Wahlin
et al., 2006) and undetected health problems may add to
variability in behavior (Spangler and Ingram, 1996; Febo
et al., 2020). Cardiovascular disease (Bink et al., 2013),
kidney disease (Vlassara et al., 2009), and metabolic diseases,
diabetes and insulin resistance (Biessels and Gispen, 2005;
Greenwood and Winocur, 2005; Mattson and Arumugam,
2018), as well as the history of systemic inflammation,
can have a negative impact; accelerating cognitive decline.
However, examining the relationship between cognition and
mortality may be difficult as the identification of a moribund
state may be problematic if animals do not show obvious
clinical signs of disease (Snyder et al., 2016). Interestingly,
a cross-sectional study examining behavior/cognition
concerning pathology indicated that morbidity determined
by gross necropsy does not contribute to cognitive decline
(Spangler et al., 1994).

Order of Behavioral Tests
For studies that involve multiple behavioral tests, the order of
behavioral testing may result in qualitatively and quantitatively
different outcomes. For the watermaze, aged animals may exhibit

a poor initial strategy and delayed acquisition of the procedural
aspects of the task. Thus, initial testing of visual vs. spatial
discrimination can facilitate subsequent performance on the
other task, minimizing age differences in visual discrimination
(Rapp et al., 1987; Guidi et al., 2015) or spatial discrimination
(Guidi and Foster, 2012). Also, some tests are sensitive to
stress, such that disruption may occur if a stress-sensitive
test is preceded by a test that involves considerable stress.
One recommendation is to order the test from least stressful
to most stressful. For example, initially testing spontaneous
behavior, Y-maze, NOR, or the open field, followed by more
stressful tests (e.g., watermaze visual discrimination followed
by spatial discrimination) and behaviors that require food
restriction. Also, the number and duration of tests will
determine how often testing can be repeated. This is a likely
consideration for tasks that involve food restriction and extensive
behavioral shaping.

Behavior as a Predictor of Brain
Maintenance and Cognitive Reserve
An important question for longitudinal studies is
whether physiological, psychological/affective, or early
behavioral/cognitive measures can predict the onset and
trajectory of cognitive decline. Early predictors may reflect
innate differences that promote brain maintenance or
brain reserve mechanisms. For example, performance
on the reference memory task at 12 months predicted
performance at 18 months (Markowska and Savonenko,
2002), suggesting the presence of pre-existing, baseline
differences as animals matured from adulthood to early
middle-age. A baseline difference, before brain aging or
pathology, which results from genetics, sex, or differential
experiences in youth that modifies the brain and associated
cognitive processes, would suggest the involvement of a brain
or biological reserve mechanism. As such, this brain/biological
reserve mechanism may delay the onset of brain aging and
cognitive decline. Indeed, differences in genetic makeup
are likely to play a large role in maintaining the brain and
determining susceptibility to age-related cognitive decline and
neurodegenerative diseases of aging (Neuner et al., 2019c; Dunn
et al., 2020).

Related to the question of whether behavior can predict
cognitive decline and associated maintenance or reserve
mechanisms, is the idea that different cognitive functions
or networks might decline in parallel or that different
strategies involving different brain circuits may be employed
to compensate for cognitive/network deficits. Many age-related
changes are not independent of each other. The underlying
direct or shared causality that is implicated by observed
correlations is difficult to untangle. Here, data from longitudinal
animal cohort studies combined with advanced multivariate and
non-linear modeling (e.g., structure equation modeling, SEM)
will allow progress, as has been the case in human studies,
but with much greater control of independent variables and
experimental parameters.

Several longitudinal studies found that impulsivity or an
increased locomotor response to novelty, measured in young
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adult rats, predicted poorer memory during aging (Dellu
et al., 1994; Dellu-Hagedorn et al., 2004; Febo et al., 2020).
Also, the performance of young animals on the 1-day version
of the watermaze (Hullinger and Burger, 2015) or rate of
learning on a T-maze (Talboom et al., 2014) predicted better
performance at older ages, and better spontaneous alternation
in middle-age predicted better inhibitory avoidance memory
with advanced age (Stone et al., 1997). In many cases, the
tasks involve delay-dependent memory, suggesting that the
predictive behavior and impaired cognitive function depend
on the same network or process. In contrast, a decline in
working memory on the T-maze (Muir et al., 1999; Zhuo
et al., 2007) and impaired vigilance on the 5-CSRTT did
not predict reference memory deficits on the watermaze,
suggesting dissimilarities in cognitive processes and brain
networks or differences in cognitive demand across tasks.
Additional predictive factors and their combinations likely exist
and multivariate cohort studies would have the power to identify
these factors.

Existing studies tend to restrict the range for possible
predictors to the variable immediately at hand. However,
some tasks have substantial carryover effects, such that these
tasks may not be suitable for repeated testing in longitudinal
studies. As noted above, different conclusions may be drawn
among cross-sectional and longitudinal studies that examine
the reference memory version of the watermaze, the radial
arm maze, or NOR performance. One possibility may be
to use different tasks that theoretically measure the same
cognitive process at different time points. For example,
acquisition of a spatial reference memory can be measured
on the watermaze and the Barnes maze, and both tasks
exhibit carryover effects associated with the acquisition of
procedures for spatial reference memory. However, cross-
sectional studies indicate little predictability between tasks
(Gallagher and Burwell, 1989; Markowska et al., 1989; Arendash
and King, 2002; Leighty et al., 2004). In contrast, aged female
C57BL/6J mice exhibited impairment for the watermaze and
poorer retention of inhibitory avoidance (Benice et al., 2006).
However, others report no relationship between learning on the
watermaze and inhibitory avoidance in aging rats (Markowska
et al., 1989; Blokland and Raaijmakers, 1993). The results
emphasize that individual differences do not always correlate
across tasks due to dissimilarities in cognitive demand or
the sensitivity of each task for a specific cognitive process
(Foster, 2012b).

Better correspondence may be observed when both tasks
focus on delay-dependent retention or forgetting. It should be
noted that for these tasks, cognitive demand (i.e., the duration
of the delay) can be manipulated to equate difficulty across
tasks and maximize individual variability. Aged (26 months)
Wistar rats exhibited deficits for retention of inhibitory
avoidance and retention of a spatial reference memory
when retention was examined 6 days following the end of
watermaze training (Miettinen et al., 1993). Similarly, retention
of spatial memory on the 1-day version of the watermaze
task correlated with retention of inhibitory avoidance in aged
(18–23 month) F344 rats (Foster and Kumar, 2007). In a

study of middle-aged (12 months) Long-Evans female rats,
poor retention was observed for the watermaze, inhibitory
avoidance, and object recognition (Paris et al., 2011). Finally,
for middle-age (14 months) and aged (24 months) male
F344 rats, impaired retention 24 h following a single day
of watermaze training was related to the 24 h retention
performance on a novel object recognition task (Blalock
et al., 2003). The correspondences across multiple tasks that
measure the same theoretical construct provide some validity
for the idea that the tasks involve the same neural network
or process.

Treatments or Interventions to Influence
Brain Maintenance and Cognitive Reserve
In addition to relevant variables (age, sex, and strain) and
measures of brain aging or pathology (see below), and cognitive
function (physical, psychological and cognitive), longitudinal
studies are likely to address the role of independent variables
and positive or negative modifiers, which could underlie the
individual differences in age-related cognitive decline and
resilience or plasticity mechanisms that preserve cognitive
function. An important aspect of longitudinal studies will be the
determination of when treatments are viable and likely to bemost
effective in modifying aging trajectories. Treatments delivered
during developmentally sensitive periods may influence the
behavior of adults and have long-term positive effects to
maintain the brain and cognition or negative effects that increase
susceptibility to aging and pathology. Lifelong environmental
enrichment was associated with preserved recognition memory,
spatial working memory, and longer-term (24 h) spatial memory
(Birch and Kelly, 2019). Longitudinal training, starting at
3 months, on tasks that tax prefrontal function through increased
attentional demand and working memory, was associated with
preserved working memory and learning with advancing age
(Matzel et al., 2011).

Furthermore, plastic processes triggered by aging or
pathology may shift with advancing age such that beneficial
treatments delivered in youth or adulthood may not induce
resilient, adaptive, or compensatory cognitive reserve
mechanisms in aged animals. Several studies have reported
that late-life environmental enrichment improved learning
and memory, suggesting that cognitive reserve mechanisms
that are sensitive to the environment are intact with age
(Kumar et al., 2012; Speisman et al., 2013; Sampedro-Piquero
et al., 2014, 2015; Neidl et al., 2016; Cortese et al., 2018;
Balietti et al., 2019). It should be noted that in most cases, the
environmental enrichment also decreased anxiety suggesting a
link between psychological and cognitive measures. However,
one study examined middle-aged (17 months) female rats,
previously characterized as impaired or unimpaired on the
reference memory version of the watermaze. In this case,
environmental enrichment for 6 months preserved long-term
memory (10 days post-training) examined at 24 months only in
animals characterized as unimpaired at 17 months (Fuchs et al.,
2016), suggesting an inability for environmental enrichment
to access cognitive reserve mechanisms in animals that already
exhibit cognitive decline on this task.
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ASSESSMENT OF BIOMARKERS
OF AGING

In addition to characterizing cognitive variability in terms
of the trajectory of cognitive performance, and determining
when treatments are effective in promoting cognitive reserve,
it will be important to define markers of biological aging,
particularly within brain networks for cognitive processes of
interest. Biomarkers can be employed to understand individual
variability in the onset and trajectory of brain/cognitive
aging and to differentiate normal aging from diseases that
affect cognition. The development of sound biomarkers
of biological or functional aging is required to determine
whether preserved cognition for a specific chronological age
is due to brain maintenance (i.e., an absence or delay in
brain aging) or plastic changes that preserve cognition in the
face of brain aging (i.e., cognitive reserve). For longitudinal
studies, minimally invasive measures are preferable, since
these measures are nominally disruptive to the study
and can be translated across species. An understanding
of the relationship between cognition and biomarkers of
aging/cognition that are translatable across species could be
employed to determine who might be helped from a specific
intervention. Minimally invasive measures include neural
imaging and biomarkers found in blood samples; although,
other measures (e.g., microbiome) are being developed. The
development of valid noninvasive biomarkers will permit the
examination of cellular, molecular, and epigenetic mechanisms
of brain aging and cognitive reserve. Thus, correlations
between cognition and neuroimaging during aging could be
employed to determine when and where to examine cellular
and molecular changes. This paradigm could bridge a localized
cellular/molecular phenomenon with systems neuroimaging and
cognition measures.

Brain Imaging
Among the various noninvasive techniques, magnetic resonance
imaging (MRI) and magnetic resonance spectroscopy (MRS) of
the brain, are uniquely suited for longitudinal measurements;
providing in-depth assessments of neural activity, relatively high
resolution of tissue microstructural organization and chemistry
linked to neurons, glia, and oxidative stress in the aging brain
(Febo and Foster, 2016). Thus, an understanding of the time
course for changes in cognition and in functional connectivity
or brain structures can provide information concerning possible
cognitive reserve mechanisms, and determine when and where
to examine molecular mechanisms. Structural imaging studies
indicate that whole-brain volume reaches maximal levels by
about 14 months in mice (Maheswaran et al., 2009) and
rats (Sullivan et al., 2006). Longitudinal studies of aging
and mouse models of neurodegenerative disease can track
changes in brain metabolism, and brain volume and the
effect of interventions (Holmes et al., 2016; Peng et al., 2018;
Birch and Kelly, 2019). In an AD mouse model, an early
(4 months) decrease in hippocampal volume was associated
with impaired NOR performance (Chiquita et al., 2019). In

contrast, a longitudinal study of normal aging indicated that
memory impairment observed in middle-aged mice predicted
accelerated dorsal hippocampal volume loss in older animals
(Reichel et al., 2017). In this case, it is likely that senescent
physiology underlies cognitive impairment and contributes to
later volume loss.

Animal imaging approaches combining functional MRI
(fMRI) with behavioral characterization may be used to
investigate the relationship between regional changes in
senescent physiology (i.e., neural activity) and structural
connectivity, bringing us closer to localizing changes in neural
circuits that underlie cognitive impairment or that represent
compensation and altered efficiency to adjust to pathology/aging
within brain networks. In rodents, studies of functional
connectivity have focused on the resting state due to technical
limitations in examining behaving animals. Altered resting-state
functional connectivity between the hippocampus and several
other brain regions, including increased connectivity with the
retrosplenial cortex (RSC), was associated with the emergence
of impaired watermaze DMTP performance in middle-age
(Febo et al., 2020). In humans, an increase in functional
connectivity, which is observed early in association with memory
impairment, may predict further cognitive decline, reduced
functional connectivity, and loss of brain volume with more
advanced age (Reuter-Lorenz and Cappell, 2008; Wang et al.,
2011; Staffaroni et al., 2018; Zheng et al., 2018). Similarly, in
a rat model of AD, higher dorsal hippocampal connectivity
in middle-age progressed to reduced dorsal hippocampus-RSC
connectivity with age (Parent et al., 2017) and older rats
characterized as impaired on a spatial reference memory task
exhibited decreased dorsal hippocampus-RSC connectivity (Ash
et al., 2016). The latter study also reported altered functional
connectivity specifically associated with preserved memory in
aged rats. Finally, it will be important to determine whether the
relationship between functional connectivity, loss of volume, and
cognitive decline are linked to other relevant variables that might
influence the preservation of cognition including anxiety and the
response to stress or novelty (Magalhaes et al., 2018, 2019).

While rodents can be acclimated to the fMRI recording
procedures, to provide recordings from awake animals (King
et al., 2005; Zhang et al., 2010; Becerra et al., 2011; Upadhyay
et al., 2011; Jonckers et al., 2014), most rodent studies use
anesthesia protocols to minimize movement and physiological
variations across subjects during scanning (Liu et al., 2013;
Jonckers et al., 2014; Ash et al., 2016; Febo and Foster,
2016; Huang et al., 2016; Parent et al., 2017; Magalhaes
et al., 2019). In this case, it is important to consider the
level of anesthesia during scanning when interpreting fMRI
results in rodents. For resting-state functional connectivity,
isoflurane is employed and the level is below that which
reduces the sensitivity of spontaneous BOLD activity and
the use of seed-based correlations to reveal functionally
connected networks similar to that observed in humans. These
parallels between human and rodent resting-state networks
hold promise for the use of functional connectivity to track
age-associated cognitive network changes. Finally, it should
be acknowledged that there may be the potential concerns
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of repeated anesthesia effects, in addition to anesthesia ×
age interactions.

Blood Biomarkers
Currently, there is considerable effort to identify blood
biomarkers to estimate biological age, track the progression of
cognitive decline, and monitor the effectiveness of treatments.
Repeated measures of blood-based biomarkers in rodents may be
limited due to the amount of blood required/available. Previous
longitudinal studies in rodents have mainly focused on markers
of longevity (Acuna-Castillo et al., 2006; Ho et al., 2019). Thus, a
blood-based biomarker concerning cognitive function represents
an important area for exploration in future longitudinal studies.

While the exact nature and mechanisms for aging continue
to be debated, important markers of biological age might include
blood measures of genomic instability, epigenetics, and cellular
senescence (Lidzbarsky et al., 2018; Niedernhofer et al., 2018;
Aristizabal et al., 2020), telomere length (Vera et al., 2013;
Stauffer et al., 2018), inflammation and the proinflammatory
secr, etory profile designated the senescence-associated secretory
phenotype (SASP; Boersma et al., 1985; Heller et al., 1998;
Guayerbas et al., 2002; Moeller et al., 2014; Martinez de Toda
et al., 2016), hormone levels (Gee et al., 1983; Matt et al., 1986;
Smith et al., 1992; Fentie et al., 2004), mitochondrial function,
redox state, and antioxidant defense (Heller et al., 1998; Stauffer
et al., 2018; Jain et al., 2019). For example, levels of corticosterone
in the blood have been associated with memory function during
aging (McQuail et al., 2018; Huzard et al., 2020).

Brain-specific proteins and microRNAs (miRNAs) found
in the circulation can act as biomarkers for brain injury and
diseases of aging. In blood, brain proteins and miRNA are found
packaged into small (50 nm to 1 µm) extracellular vesicles
that are released from cells into the extracellular environment.
Some (e.g., exosomes) can cross cell membranes and deliver
their contents to influence cell health (Barter and Foster, 2018;
White et al., 2019). Intercellular communication from tissue
to tissue by exosomes is a potential mechanism that would
connect peripheral activity, exercise, and systemic inflammation,
to overall brain health. In turn, exosomes produced by
and released from the brain may represent biomarkers of
brain function.

Cellular and Molecular Markers
Due to the invasive nature of studies that examine cellular
and molecular mechanisms, cross-sectional studies in inbred or
isogenic lines, involving the same environmental background,
are considered pseudo-longitudinal and have been used to
examine cellular and molecular mechanisms associated with age
and cognitive decline. In some cases, subsets of animals, selected
at specific ages can be used for terminal sampling of molecular
and cellular measures in the brain and blood (Achin et al., 2018).
In the case of brain function, studies have focused on senescent
physiology involving a shift in synaptic plasticity and altered
cellular and neuronal network activity, dysregulation of Ca2+

homeostasis, oxidative stress, inflammation, and neurogenesis
(Gray and Barnes, 2015; Haberman et al., 2017; Mattson
and Arumugam, 2018; Dunn and Kaczorowski, 2019; Foster,

2019; Oh and Disterhoft, 2020). As discussed below, the
relationship between cellular andmolecular markers of aging and
cognitive decline may define aspects of brain maintenance and
cognitive reserve.

MECHANISMS FOR THE PRESERVATION
OF COGNITIVE FUNCTION: BRAIN
MAINTENANCE AND COGNITIVE
RESERVE IN ANIMAL MODELS

There are at least two ways to preserve cognitive function
during aging: brain maintenance and cognitive reserve and
these processes are not mutually exclusive (Table 2). Brain
maintenance relates to factors (genes, sex, early life intervention,
or differential experiences), that delay or prevents both cognitive
decline and brain changes associated with aging and pathology.
In contrast, cognitive reserve preserves cognition by initiating
plastic or compensatory processes, in many cases, triggered
by aging or pathology. Thus, for brain maintenance, larger
differences in biological measures are observed between young
and aged-impaired, with minimal differences in biological
measures of aging between young and aged-unimpaired. In
contrast, cognitive reserve may involve a response to aging
such that larger differences in biological measures are revealed
between young and aged-unimpaired. Implicit in the definitions
is the idea that brain maintenance occurs before aging or
pathology to delay aging, while the cognitive reserve is activated
during aging as a plastic response to the stressors of aging or
pathology. However, brain maintenance and cognitive reserve
likely involve similar underlying mechanisms. For example,
treatments delivered during aging that can act to rejuvenate the
brain and rescue cognition would promote brain maintenance.
Similarly, cellular resilience, a protective cellular response
triggered by aging or pathology, while considered a reserve
mechanism, could delay markers of brain aging. Thus, similar life
exposures can impact different measures of brain maintenance
and mechanisms of cognitive reserve; however, the relationship
between cognitive reserve and maintenance will depend on
the measures employed. Finally, it is likely that the plasticity
mechanisms of cognitive reserve decline with advancing age or
become overwhelmed by aging and pathology.

Brain Maintenance
Brain maintenance relates to factors (genes, sex, early life
intervention, or differential experiences), that slow or prevent
both cognitive decline and brain changes associated with aging
and pathology. The emphasis lies on change over time. Thus,
brain maintenance may be defined as the preservation of
cognitive function associated with minimal changes in brain
markers of aging or pathology. In this case, aged-impaired
animals are expected to exhibit biological measures of the effects
of aging or pathology that are different from young animals.
However, these age differences are not as marked between
young and aged unimpaired animals. Thus, brain maintenance
represents an absence of or resistance to develop age-related
brain changes or pathology. Perfect brain maintenance would
result in no cognitive decline and no age-related brain changes.
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TABLE 2 | Strategies of preservation of cognitive function.

Domain Feature Characteristics related to the preservation of cognitive function

Brain maintenance (slowing/prevention
of decline and pathology)

Resting-state functional
connectivity

Maintained CA3 > CA1 connectivity (Liang et al., 2020).

Gene expression changes Maintenance of immune, synaptic, cholesterol/lipid metabolism
pathways (Burger, 2010; Smith et al., 2020).

Cognitive reserve (adaptation/plasticity
to maintain cognitive function in the
presence of aging and pathology)

Cellular resilience Regulation of Ca2+ homeostasis, inflammation, oxidative stress, cellular
waste disposal pathways (Blalock et al., 2003; Neuner et al., 2016,
2019a,c; Mattson and Arumugam, 2018; Foster, 2019; Smith et al.,
2020).

Network efficiency Increased efficiency (i.e., less activation) in CA1, mPFC (Kelly and
Deadwyler, 2002; Paban et al., 2013; Sampedro-Piquero et al., 2015;
Tomas Pereira et al., 2015; Ianov et al., 2016; Yagi et al., 2016;
Hernandez et al., 2018; Smith et al., 2020).

Network capacity Increased capacity (greater activation) in the dentate gyrus during
spatial memory tasks (Yau et al., 1996; Vann et al., 2000; He et al.,
2002; Blalock et al., 2003; Colombo et al., 2003; Palop et al., 2003;
Small et al., 2004; Rowe et al., 2007; Deipolyi et al., 2008; VanElzakker
et al., 2008; Penner et al., 2011; Marrone et al., 2012; Gheidi et al.,
2013; Fletcher et al., 2014; Benito et al., 2015; Weber et al., 2015;
Bernstein et al., 2019).

Network
compensation/flexibility

Shift to non-hippocampal memory systems to compl, ete task
(allocentric > egocentric, CA1 > basal ganglia, amygdala activation;
Cabeza et al., 2002; Burger et al., 2007; Deipolyi et al., 2008; Grady,
2008; Epp and Galea, 2009; Steffener et al., 2009; Morris et al., 2012;
Olvera-Cortés et al., 2012; Steffener and Stern, 2012; Zelikowsky et al.,
2013; Snigdha et al., 2017; Cabeza et al., 2018; Pignataro et al., 2019;
Smith et al., 2020).

In practice, this is observed as a decrease in the rate of
brain aging (Rapp et al., 2020). For example, preserved
learning associated with maintenance of resting-state functional
connectivity (Liang et al., 2020), In this case, aged impaired
animals exhibited reduced hippocampal CA3 connectivity with
region CA1 and its connectivity with the infralimbic prefrontal
cortex compared to young animals. In aged animals with
preserved learning, connectivity was more akin to that of
young animals. Similarly, gene expression studies have identified
region-specific age changes (i.e., aging genes), in which the
largest changes are observed for animals that are impaired on
tasks that depend on the specific region examined (Burger,
2010; Smith et al., 2020). In many cases, the expression
is related to specific biological processes that change with
age. Animals with preserved cognition appear to have better
maintenance of gene expression within molecular pathways
that mediate the inflammation/immune response, maintain
synaptic structure and function, cholesterol/lipid metabolism
and preserve neurogenesis. In addition to changes associated
with aging, variability in biological measuresmay be secondary to
cognitive differences. Thus, aged animals that are unable to form
new memories are likely to exhibit differences in measures of
synaptic structure, signaling (e.g., CREB phosphorylation), and
gene transcription normally induced by learning.

Several cross-sectional studies have examined
behavioral/cognitive, dietary, and pharmacological interventions
to test the idea that treatments that preserve cognition are
associated with minimal age-related changes in neural circuits,
gene expression, and physiological function, particularly
synaptic plasticity. For example, synaptic plasticity correlates
with cognitive function in models of aging, stress, and
neurodegenerative disease. The weight of evidence supports
the idea that interventions associated with better cognitive
function are also associated with the maintenance of synaptic
plasticity. A handful of longitudinal studies, testing the same
animals at multiple ages, indicate beneficial effects on cognition
observed for a hypocaloric diet (Algeri et al., 1991) and social
housing (Templer et al., 2019). However, these longitudinal
studies did not examine biological markers of brain aging.
Environmental enrichment and cognitive stimulation can induce
clear differences in cognitive function, in some cases reversing
age-related cognitive deficits (Milgram et al., 2006; de Villers-
Sidani et al., 2010; Kumar et al., 2012; Birch and Kelly, 2019;
Gelfo, 2019; Kempermann, 2019), improving disease-related
phenotypes (Wood et al., 2011; Wassouf and Schulze-Hentrich,
2019) and reversing some aging markers (Kumar et al., 2012;
Speisman et al., 2013; Park et al., 2015; Stein et al., 2016; Birch
and Kelly, 2019). Lifelong environmental enrichment and
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increased locomotor activity are associated with an increase in
neurogenesis that normally declines with age (Freund et al., 2013;
Birch and Kelly, 2019). Nevertheless, it is unclear which aspects
of environmental enrichment; social interaction, cognitive
stimulation, exposure to novelty, and increased motor activity,
contribute to improved cognitive function (Kumar et al., 2012).
Also, it is not clear what cognitive process could be influenced
by changes in neurogenesis during aging (Bizon and Gallagher,
2005; Martinez-Canabal et al., 2013; Speisman et al., 2013;
McGuiness et al., 2017; Ray et al., 2018; Toda and Gage, 2018;
Smith et al., 2020). Moreover, how these manipulations work to
counteract the mechanisms of aging and pathology may remain
to be determined; although, it is likely that these factors act on
aging processes, decreasing oxidative stress and inflammation,
and improving metabolism (Foster, 2006).

Brain reserve may represent a subcategory of brain
maintenance in that the genetic, or treatment factors that
delay cognitive and brain changes also influence cognition in
adults. Thus, for brain reserve, better cognition is associated with
baseline differences in adults. In turn, behavioral differences
in adults may predict the trajectory of cognitive decline (Dellu
et al., 1994; Markowska and Savonenko, 2002; Dellu-Hagedorn
et al., 2004; Talboom et al., 2014; Hullinger and Burger, 2015;
Febo et al., 2020).

Cognitive Reserve
The research aimed at further elucidating cognitive reserve
requires the inclusion of three components: the status of the
brain (reflecting age-related brain change or pathology), clinical
or cognitive performance changes/outcomes, and a measure of
reserve. The cognitive reserve represents plasticity properties
of the brain that allow for sustained cognitive performance in
the face of age-related brain changes or pathology that would
normally be associated with cognitive impairment. Here the
emphasis is on potential, not on actual change over time.
Thus, processes related to cognitive reserve are operationally
identified as measures that explain individual variability in
cognition that are not due to chronological age or pathology
alone. Ideally, the aim is to demonstrate that the proposed
cognitive reserve measure moderates the relationship between
an indicator of brain aging, abnormality, or pathology and
clinical/cognitive status. That is, cognitive performance should
be predicted by the interaction between that proposed factor and
brain/pathology status. It can also be sufficient to demonstrate
that a hypothesized cognitive reserve measure is associated
with cognitive performance after parceling out the effects of
brain change, pathology, or insult. For example, in human
studies, a multiple regression analysis predicting cognition that
includes brain atrophy/pathology measures and a hypothesized
cognitive reserve proxy, the proxy should account for additional
predictive variance (Steffener and Stern, 2012; Hohman et al.,
2016). In this analysis, the new cognitive reserve proxy adds
predictive information (a protective factor). Below we discuss
possible cognitive reserve mechanisms at different levels of
biology. However, in each case, the cognitive reserve mechanism
represents a form of plasticity that is initiated by aging processes
and helps to preserve cognitive function, which might otherwise

be impaired by aging or pathology. The plasticity can occur at
themolecular/cellular level in response tomolecular mechanisms
of aging, structural/functional adaptation at the circuit level, or
the recruitment of brain networks, not normally employed to
perform a task, to compensate for the disruption of the network
that normally underlies task performance.

Cellular Resilience in Response to Aging
Cellular resilience is triggered early in the course of aging or
pathology and represents attempts to mitigate the molecular
processes of brain aging: mitochondrial dysfunction, oxidative
stress, the need for increased cellular waste disposal, Ca2+

dysregulation, and inflammation (Mattson and Arumugam,
2018). As such, measures of cellular resilience associated with
preserved cognition may signify cognitive reserve. In contrast
to brain maintenance, in which there is little difference in
biological measures between young and cognitively unimpaired,
cellular resilience is likely to involve differences that distinguish
cognitively unimpaired animals from young, as well as
cognitively impaired aged animals that are not able to mount a
cellular response. Transcriptional profiling early in aging or early
in the progression of neurodegenerative disease, suggests that
preserved cognition involves transcription of genes that regulate
biological processes of aging including the regulation of Ca2+

homeostasis and cell excitability, regulation of inflammation or
cellular damage, oxidoreductase enzymes, and specific organelles
for waste disposal (lysosome, exosome, mitochondria; Blalock
et al., 2003; Neuner et al., 2016, 2019a,c; Foster, 2019; Smith
et al., 2020). However, with more advanced age or increasing
pathology, cellular resilience mechanisms may fail to preserve
cognition (Hargis and Blalock, 2017; Foster, 2019).

Treatments that tap into cellular resilience to preserve
cognition could include hormesis, an adaptive response to a
low-level stressor, which protects against the stressors of aging
or pathology (Calabrese, 2013; Brose et al., 2018). For example,
mild metabolic or oxidative stress can trigger the induction
of genes that increase stress resistance and improve cognition
(Brose et al., 2018; Mattson and Arumugam, 2018). Exercise
or environmental enrichment is associated with transcriptional
changes related to processes that change with age (Tong et al.,
2001; Park et al., 2015; Grinan-Ferre et al., 2016; Huttenrauch
et al., 2016; Berchtold et al., 2019). Again, the effectiveness of
some treatmentsmay decline with advanced age, suggesting a loss
of biological plasticity (Kuhla et al., 2013). Agents that mimic the
effects of exercise or caloric restriction, in addition to providing a
potential treatment, could provide means for measuring cellular
resilience and predicting the cognitive trajectory.

Local Circuit/Network Implementation of
Cognitive Reserve
In human studies, a goal of longitudinal studies has been the
identification of functional networks or circuits, either resting
or task-related, whose expression moderates the relationship
of brain senescence or pathology to cognition. In considering
these mechanisms, a distinction might be made between the
adaptation of the typically used local circuits and the recruitment
of additional networks. For circuit adaptation, the same circuit
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is employed by young and aged animals; however, differences in
the efficiency or capacity of the circuit underlies the variability in
cognition. In contrast, network compensation involves the use of
alternative networks, and strategies to compensate for deficits in
the circuit normally employed for the task.

Circuit/Network Adaptation
The idea that cognitive reserve may be based on the differential
efficiency/capacity of a circuit is largely based on neuroimaging
in humans, examining brain activation as cognitive demand is
varied (Stern, 2009). Efficiency/capacity is defined by the level
of neural activity in a brain region that underlies the cognitive
process of interest. Young individuals likely can modulate
the efficiency/capacity of a circuit and this plastic property
is diminished with age or pathology. Testing these ideas in
animals with parallel methods is limited by the fact that behaving
animals are not readily amenable to neuroimaging (Febo and
Foster, 2016). However, animal models permit the examination
of cellular and molecular markers of neural activity. Thus, neural
activity related to task performance can be measured using
electrodes, localized to specific synapses and circuits to measure
local field potential, electroencephalographic recordings, and the
discharge activity of neurons in behaving animals. Molecular
signatures of neural activity include expression of activity-
dependent immediate-early genes (Fos, Arc, Zif-268).

Efficiency can be defined as the degree to which a given
task-related brain circuit must become activated to accomplish
said task. A more efficient network will show less activation
to produce the same (or better) level of performance. Thus,
an individual with greater efficiency will show less task-related
neural activity at a given level of task demand. Interestingly,
for animal studies that involve extensive exposure to the same
environment, use of an allocentric spatial strategy, superior
spatial memory, and preserved cognitive flexibility are associated
with decreased Fos (Yagi et al., 2016; Smith et al., 2020) and
Arc expression (Kelly and Deadwyler, 2002; Tomas Pereira et al.,
2015) in region CA1 of the hippocampus, suggesting that prior
experience increased efficiency of the system, facilitating spatial
memory. Within the medial prefrontal cortex of young rodents,
enhanced performance on a radial arm watermaze, following
environmental enrichment, was associated with decreased Fos
expression in the infralimbic region of the prefrontal cortex
(Sampedro-Piquero et al., 2015), again suggesting the possibility
that training or experience can increase the efficiency of the
circuit, observed as a lower activity linked to better performance.
One prediction might be that variability in the cognitive function
of older animals will be linked to the ability to harness this form
of plasticity. Interestingly, in aged animals, increased expression
of immediate early genes in the medial prefrontal cortex is
associated with decreased cognitive flexibility, impaired working
memory, and a slower rate of learning (Paban et al., 2013; Tomas
Pereira et al., 2015; Ianov et al., 2016; Hernandez et al., 2018). The
results are consistent with the idea that the impairment is due to
an inability to access plastic properties for increased efficiency
within a circuit that underlies the behavior.

Capacity can be defined as the maximum degree to which a
task-related brain network can be activated to perform a task in

the face of increasing demands. For several tasks described above,
altering cognitive/attentional demand can reveal variability in
age-related cognitive impairment; however, the link between
task demand and biological parameters is rarely measured in
animals. In contrast, several studies have examined immediate-
early genes to determine the difference in baseline activity or the
level of activity induced by learning in impaired and unimpaired
animals. Expression of the activity marker Fos, either the mRNA
or the protein, in various hippocampal regions is increased as
animals learn about novel environments and novel objects (He
et al., 2002; VanElzakker et al., 2008; Bernstein et al., 2019)
and as the requirement for spatial memory is increased (Vann
et al., 2000; Colombo et al., 2003). In AD mouse models that
exhibit impaired use of a spatial strategy, basal levels of Fos
are decreased in the dentate gyrus (Palop et al., 2003; Deipolyi
et al., 2008). Similarly, basal Fos levels and induction of Fos
by a novel environment was decreased in the dentate gyrus
with age (Weber et al., 2015). Likewise, for other immediate
early genes, early growth response gene, Zif-268 (Yau et al.,
1996; Blalock et al., 2003; Rowe et al., 2007; Gheidi et al., 2013;
Benito et al., 2015) and the activity-related immediate-early gene
Arc (Blalock et al., 2003; Small et al., 2004; Rowe et al., 2007;
Penner et al., 2011; Marrone et al., 2012; Fletcher et al., 2014),
induction following exposure to a novel environment, as well as
training-related expression are decreased in aged or age-memory
impaired animals. The results suggest that cognitive reserve can
be associated withmechanisms that regulate the ability to activate
the system.

Local circuit adaptation can be observed at other levels of
analysis and the response will depend on the stimulus (Gray and
Barnes, 2015; Rapp et al., 2020). For example, aging and AD
are associated with synaptic loss and local circuits may invoke
plastic processes such as increasing the strength of remaining
synapses (Barnes and McNaughton, 1980; Foster et al., 1991;
Scheff et al., 1996; Chen and Hillman, 1999; Burke and Barnes,
2006; Neuman et al., 2015). Behavioral discrepancies are linked to
plastic properties that depend on learning-induced and activity-
dependent signaling cascades (i.e., CREB phosphorylation)
to influence cell excitability (Dunn and Kaczorowski, 2019;
Foster, 2019; Montaron et al., 2020; Oh and Disterhoft, 2020).
Task-specific changes in local amygdala electroencephalogram
recordings, selectively within the beta range (15–30 Hz),
developed with training, selectively in aged rats, possibly as an
adaptive mechanism to preserve learning (Samson et al., 2017).
Also, differences in resting-state connectivity between impaired
and unimpaired animals could represent a local response as
an adaptation to altered input or compensation due to the
recruitment of different networks (Small et al., 2004; Ash et al.,
2016; Febo et al., 2020).

Network Compensation
While cellular resilience or local adaptation in the face of age
or pathological stressors can be described for tissues other than
the brain, network compensation is a particularly brain-centric
cognitive reserve mechanism. In response to the local disruption
of a neural circuit due to aging or pathology, individuals may
recruit other brain structures or networks (and thus cognitive
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strategies) not normally used by individuals with ‘‘intact’’
brains (Steffener and Stern, 2012). Compensation can result
in improved performance (Cabeza et al., 2002; Grady, 2008).
Alternately it could result in maintenance of performance, but
perhaps at a lower level than when compensation is not required
(Steffener et al., 2009). Given a specific level of aging or brain
pathology; several possibilities underlie network compensation
as a cognitive reserve mechanism. The greater cognitive reserve
could be associated with the lack of compensation (while
compensation is seen at lower levels of cognitive reserve).
Alternately individuals with a higher cognitive reserve may
compensate more successfully to maintain function, albeit at a
lower level. The advantage of nonhuman studies is that these
functional underpinnings to performance can be more directly
evaluated and understood.

For animal models, compensation is well characterized for
hippocampal impairments, which result in a shift in strategy
and reliance on neural circuits within other memory systems. A
decline in allocentric memory, linked to brain aging in region
CA1 and the dentate gyrus of the hippocampus, results in
a greater reliance on egocentric memory involving the basal
ganglia or prefrontal cortex (Burger et al., 2007; Deipolyi et al.,
2008; Olvera-Cortés et al., 2012). Similarly, an impairment in the
ability to perform a pattern separation task due to damage to the
dentate gyrus, decreased neurogenesis, or aging of the dentate
gyrus can be compensated for, at least in part, by the use of
allocentric or egocentric strategies that depend on other brain
regions, including other subregions of the hippocampus (Epp
and Galea, 2009; Morris et al., 2012; Snigdha et al., 2017; Smith
et al., 2020). Similar to human studies, the use of compensatory
cognitive processes or strategies is usually less than optimal
relative to those employed by younger or intact individuals
(Cabeza et al., 2018).

Several recent animal studies provide descriptions of plastic
properties involved in the recruitment of different circuits to
compensate for brain aging and pathology of the hippocampus
(Zelikowsky et al., 2013; Pignataro et al., 2019). Contextual fear
conditioning normally depends on the hippocampus and in an
ADmodel, preserved memory was observed despite a decrease in
hippocampal activation (Pignataro et al., 2019). Rather, increased
activation and dendritic spine growth were observed in the
amygdala. These results provide an example of how dysfunction

of one element of the neural network may be compensated by
recruitment of other elements to preserve memory performance.
In general, the mechanism for compensation involves a shift in
brain activity between different networks.

CONCLUSIONS

Differences in the onset and trajectory of age-related cognitive
decline result from factors related to the characteristics of
the individual (genetics, sex, and epigenetic dispositions), the
environment, and lifestyle factors, as well as behavioral activity,
which interact to influence the brain. It is hoped that an
understanding of how these many factors interact across the
lifespan will enable interventions to maintain the brain and
promote the formation of cognitive reserve, a property of
the brain that allows for sustained cognitive performance in
the face of age-related changes, brain insult, or disease. The
current review highlights relevant variables (age, sex, and strain)
and appropriates dependent variables emphasizing physical,
psychological, and cognitive measures that can be examined
longitudinally. Also, it will be important for future studies to
identify biological markers that predict the onset or trajectory
of cognitive decline. Finally, we suggest ways of operationally
defining measures of brain maintenance and cognitive reserve.

AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported in part by an Alzheimer’s Association
Research Fellowship AARF-18-565506 (to AD); National
Institute on Aging grant AG061263 (to JM); AG063755,
AG057914, and AG054180 (to CK); AG061421 (to YS and
CB); AG003376 (to CB); AG037984 and AG052258 (to TF);
the University of Florida Claude D. Pepper Older American
Independence Center (P30-AG028740), the Evelyn F. McKnight
Brain Research Foundation, and by the Intramural Research
Program of the National Institute on Aging.

REFERENCES

Achin, N. A., Kit, T. J., Ngah, W. Z. W., Makpol, S., Mazlan, M., Hamezah, H. S.,
et al. (2018). Behavioral assessment and blood oxidative status of aging sprague
dawley rats through a longitudinal analysis. Curr. Aging Sci. 11, 182–194.
doi: 10.2174/1874609811666181019141217

Ackert-Bicknell, C. L., Anderson, L. C., Sheehan, S., Hill, W. G., Chang, B.,
Churchill, G. A., et al. (2015). Aging research using mouse models.
Curr. Protoc. Mouse Biol. 5, 95–133. doi: 10.1002/9780470942390.
mo140195

Acuna-Castillo, C., Leiva-Salcedo, E., Gomez, C. R., Perez, V., Li, M., Torres, C.,
et al. (2006). T-kininogen: a biomarker of aging in Fisher 344 rats with possible
implications for the immune response. J. Gerontol. A Biol. Sci. Med. Sci. 61,
641–649. doi: 10.1093/gerona/61.7.641

Adams, M. M., Shi, L., Linville, M. C., Forbes, M. E., Long, A. B., Bennett, C.,
et al. (2008). Caloric restriction and age affect synaptic proteins in hippocampal

CA3 and spatial learning ability. Exp. Neurol. 211, 141–149. doi: 10.1016/j.
expneurol.2008.01.016

Albasser, M. M., Davies, M., Futter, J. E., and Aggleton, J. P. (2009). Magnitude of
the object recognition deficit associated with perirhinal cortex damage in rats:
effects of varying the lesion extent and the duration of the sample period. Behav.
Neurosci. 123, 115–124. doi: 10.1037/a0013829

Albasser, M. M., Olarte-Sanchez, C. M., Amin, E., Brown, M. W., Kinnavane, L.,
and Aggleton, J. P. (2015). Perirhinal cortex lesions in rats: novelty
detection and sensitivity to interference. Behav. Neurosci. 129, 227–243.
doi: 10.1037/bne0000049

Alexander, G. E., Ryan, L., Bowers, D., Foster, T. C., Bizon, J. L., Geldmacher, D. S.,
et al. (2012). Characterizing cognitive aging in humans with links to
animal models. Front. Aging Neurosci. 4:21. doi: 10.3389/fnagi.2012.
00021

Algeri, S., Biagini, L., Manfridi, A., and Pitsikas, N. (1991). Age-related ability of
rats kept on a life-long hypocaloric diet in a spatial memory test. Longitudinal

Frontiers in Aging Neuroscience | www.frontiersin.org 21 January 2021 | Volume 12 | Article 607685

https://doi.org/10.2174/1874609811666181019141217
https://doi.org/10.1002/9780470942390.mo140195
https://doi.org/10.1002/9780470942390.mo140195
https://doi.org/10.1093/gerona/61.7.641
https://doi.org/10.1016/j.expneurol.2008.01.016
https://doi.org/10.1016/j.expneurol.2008.01.016
https://doi.org/10.1037/a0013829
https://doi.org/10.1037/bne0000049
https://doi.org/10.3389/fnagi.2012.00021
https://doi.org/10.3389/fnagi.2012.00021
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

observations. Neurobiol. Aging 12, 277–282. doi: 10.1016/0197-4580(91)
90003-3

Altun, M., Bergman, E., Edstrom, E., Johnson, H., and Ulfhake, B. (2007).
Behavioral impairments of the aging rat. Physiol. Behav. 92, 911–923.
doi: 10.1016/j.physbeh.2007.06.017

Anderson, K. G., and Woolverton, W. L. (2005). Effects of clomipramine on
self-control choice in Lewis and Fischer 344 rats. Pharmacol. Biochem. Behav.
80, 387–393. doi: 10.1016/j.pbb.2004.11.015

Ando, S., and Ohashi, Y. (1991). Longitudinal study on age-related changes
of working and reference memory in the rat. Neurosci. Lett. 128, 17–20.
doi: 10.1016/0304-3940(91)90750-n

Andrade, M. M., Tome, M. F., Santiago, E. S., Lucia-Santos, A., and de
Andrade, T. G. (2003). Longitudinal study of daily variation of rats’ behavior
in the elevated plus-maze. Physiol. Behav. 78, 125–133. doi: 10.1016/s0031-
9384(02)00941-1

Andrews, J. S. (1996). Possible confounding influence of strain, age and gender on
cognitive performance in rats. Cogn. Brain Res. 3, 251–267. doi: 10.1016/0926-
6410(96)00011-0

Anstey, K., and Christensen, H. (2000). Education, activity, health, blood pressure
and apolipoprotein E as predictors of cognitive change in old age: a review.
Gerontology 46, 163–177. doi: 10.1159/000022153

Antoniou, K., Papathanasiou, G., Papalexi, E., Hyphantis, T., Nomikos, G. G.,
Spyraki, C., et al. (2008). Individual responses to novelty are associated with
differences in behavioral and neurochemical profiles. Behav. Brain Res. 187,
462–472. doi: 10.1016/j.bbr.2007.10.010

Arendash, G. W., and King, D. L. (2002). Intra- and intertask relationships in a
behavioral test battery given to Tg2576 transgenic mice and controls. Physiol.
Behav. 75, 643–652. doi: 10.1016/s0031-9384(02)00640-6

Aristizabal, M. J., Anreiter, I., Halldorsdottir, T., Odgers, C. L., McDade, T. W.,
Goldenberg, A., et al. (2020). Biological embedding of experience: a primer on
epigenetics. Proc. Natl. Acad. Sci. U S A 117, 23261–23269. doi: 10.1073/pnas.
1820838116

Ash, J. A., Lu, H., Taxier, L. R., Long, J. M., Yang, Y., Stein, E. A., et al. (2016).
Functional connectivity with the retrosplenial cortex predicts cognitive aging
in rats. Proc. Natl. Acad. Sci. U S A 113, 12286–12291. doi: 10.1073/pnas.
1525309113

Asiminas, A., Jackson, A. D., Louros, S. R., Till, S. M., Spano, T., Dando, O., et al.
(2019). Sustained correction of associative learning deficits after brief, early
treatment in a rat model of fragile X syndrome. Sci. Transl. Med. 11:eaao0498.
doi: 10.1126/scitranslmed.aao0498

Bair, W. N., Petr, M., Alfaras, I., Mitchell, S. J., Bernier, M., Ferrucci, L., et al.
(2019). Of aging mice and men: gait speed decline is a translatable trait, with
species-specific underlying properties. J. Gerontol. A Biol. Sci. Med. Sci. 74,
1413–1416. doi: 10.1093/gerona/glz015

Balietti, M., Pugliese, A., Fabbietti, P., Di Rosa, M., and Conti, F. (2019). Aged
rats with different performances at environmental enrichment onset display
different modulation of habituation and aversive memory. Neurobiol. Learn.
Mem. 161, 83–91. doi: 10.1016/j.nlm.2019.04.001

Barha, C. K., Falck, R. S., Davis, J. C., Nagamatsu, L. S., and Liu-Ambrose, T.
(2017). Sex differences in aerobic exercise efficacy to improve cognition:
a systematic review and meta-analysis of studies in older rodents. Front.
Neuroendocrinol. 46, 86–105. doi: 10.1016/j.yfrne.2017.06.001

Barker, G. R., and Warburton, E. C. (2011). When is the hippocampus involved in
recognition memory? J. Neurosci. 31, 10721–10731. doi: 10.1523/JNEUROSCI.
6413-10.2011

Barnes, C. A. (1979). Memory deficits associated with senescence: a
neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol.
93, 74–104. doi: 10.1037/h0077579

Barnes, C. A., and McNaughton, B. L. (1980). Physiological compensation for
loss of afferent synapses in rat hippocampal granule cells during senescence.
J. Physiol. 309, 473–485. doi: 10.1113/jphysiol.1980.sp013521

Barter, J. D., and Foster, T. C. (2018). Aging in the brain: new roles of epigenetics
in cognitive decline. Neuroscientist 24, 516–525. doi: 10.1177/10738584187
80971

Barter, J., Kumar, A., Stortz, J. A., Hollen, M., Nacionales, D., Efron, P. A.,
et al. (2019). Age and sex influence the hippocampal response and recovery
following sepsis. Mol. Neurobiol. 56, 8557–8572. doi: 10.1007/s12035-019-
01681-y

Bean, L. A., Kumar, A., Rani, A., Guidi, M., Rosario, A. M., Cruz, P. E., et al.
(2015). Re-opening the critical window for estrogen therapy. J. Neurosci. 35,
16077–16093. doi: 10.1523/JNEUROSCI.1890-15.2015

Beatty, W. W., Bierley, R. A., and Boyd, J. G. (1985). Preservation of accurate
spatial memory in aged rats. Neurobiol. Aging 6, 219–225. doi: 10.1016/0197-
4580(85)90053-3

Becerra, L., Pendse, G., Chang, P. C., Bishop, J., and Borsook, D. (2011). Robust
reproducible resting state networks in the awake rodent brain. PLoS One
6:e25701. doi: 10.1371/journal.pone.0025701

Bell, J. A., Livesey, P. J., and Meyer, J. F. (2009). Environmental enrichment
influences survival rate and enhances exploration and learning but produces
variable responses to the radial maze in old rats. Dev. Psychobiol. 51, 564–578.
doi: 10.1002/dev.20394

Benice, T. S., Rizk, A., Kohama, S., Pfankuch, T., and Raber, J. (2006). Sex-
differences in age-related cognitive decline in C57BL/6J mice associated
with increased brain microtubule-associated protein 2 and synaptophysin
immunoreactivity. Neuroscience 137, 413–423. doi: 10.1016/j.neuroscience.
2005.08.029

Benito, E., Urbanke, H., Ramachandran, B., Barth, J., Halder, R., Awasthi, A.,
et al. (2015). HDAC inhibitor-dependent transcriptome and memory
reinstatement in cognitive decline models. J. Clin. Invest. 125, 3572–3584.
doi: 10.1172/JCI79942

Beraldo, F. H., Palmer, D., Memar, S., Wasserman, D. I., Lee, W. V., Liang, S.,
et al. (2019). MouseBytes, an open-access high-throughput pipeline and
database for rodent touchscreen-based cognitive assessment. eLife 8:e49630.
doi: 10.7554/eLife.49630

Berchtold, N. C., Prieto, G. A., Phelan, M., Gillen, D. L., Baldi, P., Bennett, D. A.,
et al. (2019). Hippocampal gene expression patterns linked to late-life physical
activity oppose age and AD-related transcriptional decline. Neurobiol. Aging
78, 142–154. doi: 10.1016/j.neurobiolaging.2019.02.012

Berdugo-Vega, G., Arias-Gil, G., Lopez-Fernandez, A., Artegiani, B.,
Wasielewska, J. M., Lee, C. C., et al. (2020). Increasing neurogenesis
refines hippocampal activity rejuvenating navigational learning strategies
and contextual memory throughout life. Nat. Commun. 11:135.
doi: 10.1038/s41467-019-14026-z

Bergado, J. A., Almaguer, W., Rojas, Y., Capdevila, V., and Frey, J. U. (2011).
Spatial and emotional memory in aged rats: a behavioral-statistical analysis.
Neuroscience 172, 256–269. doi: 10.1016/j.neuroscience.2010.10.064

Berkowitz, L. E., Harvey, R. E., Drake, E., Thompson, S. M., and Clark, B. J.
(2018). Progressive impairment of directional and spatially precise trajectories
by TgF344-Alzheimer’s disease rats in the morris water task. Sci. Rep. 8:16153.
doi: 10.1038/s41598-018-34368-w

Bernstein, H. L., Lu, Y. L., Botterill, J. J., and Scharfman, H. E. (2019).
Novelty and novel objects increase c-Fos immunoreactivity in mossy cells in
the mouse dentate gyrus. Neural Plast. 2019:1815371. doi: 10.1155/2019/18
15371

Bharmal, A. V., Kent, B. A., Bussey, T. J., and Saksida, L. M. (2015).
Performance of transgenic TgTau-P301L mice in a 5-choice serial reaction
time task (5-CSRTT) as a model of Alzheimer’s disease. Psychiatr. Danub. 27,
S515–S525.

Bierley, R. A., Rixen, G. J., Troster, A. I., and Beatty, W. W. (1986). Preserved
spatial memory in old rats survives 10 months without training. Behav. Neural.
Biol. 45, 223–229. doi: 10.1016/s0163-1047(86)90794-6

Biessels, G. J., and Gispen,W. H. (2005). The impact of diabetes on cognition: what
can be learned from rodent models? Neurobiol. Aging 26, 36–41. doi: 10.1016/j.
neurobiolaging.2005.08.015

Billings, L. M., Oddo, S., Green, K. N., McGaugh, J. L., and LaFerla, F. M.
(2005). Intraneuronal Aβ causes the onset of early Alzheimer’s disease-related
cognitive deficits in transgenic mice. Neuron 45, 675–688. doi: 10.1016/j.
neuron.2005.01.040

Bink, D. I., Ritz, K., Aronica, E., van der Weerd, L., and Daemen, M. J.
(2013). Mouse models to study the effect of cardiovascular risk factors on
brain structure and cognition. J. Cereb. Blood Flow Metab. 33, 1666–1684.
doi: 10.1038/jcbfm.2013.140

Birch, A. M., and Kelly, A. M. (2019). Lifelong environmental enrichment
in the absence of exercise protects the brain from age-related cognitive
decline. Neuropharmacology 145, 59–74. doi: 10.1016/j.neuropharm.2018.
03.042

Frontiers in Aging Neuroscience | www.frontiersin.org 22 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1016/0197-4580(91)90003-3
https://doi.org/10.1016/0197-4580(91)90003-3
https://doi.org/10.1016/j.physbeh.2007.06.017
https://doi.org/10.1016/j.pbb.2004.11.015
https://doi.org/10.1016/0304-3940(91)90750-n
https://doi.org/10.1016/s0031-9384(02)00941-1
https://doi.org/10.1016/s0031-9384(02)00941-1
https://doi.org/10.1016/0926-6410(96)00011-0
https://doi.org/10.1016/0926-6410(96)00011-0
https://doi.org/10.1159/000022153
https://doi.org/10.1016/j.bbr.2007.10.010
https://doi.org/10.1016/s0031-9384(02)00640-6
https://doi.org/10.1073/pnas.1820838116
https://doi.org/10.1073/pnas.1820838116
https://doi.org/10.1073/pnas.1525309113
https://doi.org/10.1073/pnas.1525309113
https://doi.org/10.1126/scitranslmed.aao0498
https://doi.org/10.1093/gerona/glz015
https://doi.org/10.1016/j.nlm.2019.04.001
https://doi.org/10.1016/j.yfrne.2017.06.001
https://doi.org/10.1523/JNEUROSCI.6413-10.2011
https://doi.org/10.1523/JNEUROSCI.6413-10.2011
https://doi.org/10.1037/h0077579
https://doi.org/10.1113/jphysiol.1980.sp013521
https://doi.org/10.1177/1073858418780971
https://doi.org/10.1177/1073858418780971
https://doi.org/10.1007/s12035-019-01681-y
https://doi.org/10.1007/s12035-019-01681-y
https://doi.org/10.1523/JNEUROSCI.1890-15.2015
https://doi.org/10.1016/0197-4580(85)90053-3
https://doi.org/10.1016/0197-4580(85)90053-3
https://doi.org/10.1371/journal.pone.0025701
https://doi.org/10.1002/dev.20394
https://doi.org/10.1016/j.neuroscience.2005.08.029
https://doi.org/10.1016/j.neuroscience.2005.08.029
https://doi.org/10.1172/JCI79942
https://doi.org/10.7554/eLife.49630
https://doi.org/10.1016/j.neurobiolaging.2019.02.012
https://doi.org/10.1038/s41467-019-14026-z
https://doi.org/10.1016/j.neuroscience.2010.10.064
https://doi.org/10.1038/s41598-018-34368-w
https://doi.org/10.1155/2019/1815371
https://doi.org/10.1155/2019/1815371
https://doi.org/10.1016/s0163-1047(86)90794-6
https://doi.org/10.1016/j.neurobiolaging.2005.08.015
https://doi.org/10.1016/j.neurobiolaging.2005.08.015
https://doi.org/10.1016/j.neuron.2005.01.040
https://doi.org/10.1016/j.neuron.2005.01.040
https://doi.org/10.1038/jcbfm.2013.140
https://doi.org/10.1016/j.neuropharm.2018.03.042
https://doi.org/10.1016/j.neuropharm.2018.03.042
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Bizon, J. L., Foster, T. C., Alexander, G. E., and Glisky, E. L. (2012).
Characterizing cognitive aging of working memory and executive function
in animal models. Front. Aging Neurosci. 4:19. doi: 10.3389/fnagi.2012.
00019

Bizon, J. L., and Gallagher, M. (2005). More is less: neurogenesis and age-related
cognitive decline in long-evans rats. Sci. Aging Knowl. Environ. 2005:re2.
doi: 10.1126/sageke.2005.7.re2

Blalock, E. M., Chen, K. C., Sharrow, K., Herman, J. P., Porter, N. M., Foster, T. C.,
et al. (2003). Gene microarrays in hippocampal aging: statistical profiling
identifies novel processes correlated with cognitive impairment. J. Neurosci. 23,
3807–3819. doi: 10.1523/JNEUROSCI.23-09-03807.2003

Blokland, A., and Raaijmakers, W. (1993). Age-related changes in correlation
between behavioral and biochemical parameters in Lewis rats. Behav. Neural.
Biol. 60, 52–61. doi: 10.1016/0163-1047(93)90716-u

Blokland, A., Sik, A., and van der Staay, F. J. (2004). Delayed non-matching to
position performance in aged hybrid Fischer 344 × Brown Norway rats: a
longitudinal study. Brain Res. Bull. 64, 39–46. doi: 10.1016/j.brainresbull.2004.
04.017

Boersma, W. J., Steinmeier, F. A., and Haaijman, J. J. (1985). Age-related
changes in the relative numbers of Thy-1- and Lyt-2-bearing peripheral blood
lymphocytes in mice: a longitudinal approach. Cell. Immunol. 93, 417–430.
doi: 10.1016/0008-8749(85)90146-7

Boguszewski, P., and Zagrodzka, J. (2002). Emotional changes related to age in
rats—a behavioral analysis. Behav. Brain Res. 133, 323–332. doi: 10.1016/s0166-
4328(02)00018-9

Bopp, K. L., and Verhaeghen, P. (2005). Aging and verbal memory span:
a meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, P223–P233.
doi: 10.1093/geronb/60.5.p223

Boss, B. D., Turlejski, K., Stanfield, B. B., and Cowan, W. M. (1987). On
the numbers of neurons in fields CA1 and CA3 of the hippocampus of
Sprague–Dawley and Wistar rats. Brain Res. 406, 280–287. doi: 10.1016/0006-
8993(87)90793-1

Bowden, J. B., Abraham, W. C., and Harris, K. M. (2012). Differential effects
of strain, circadian cycle and stimulation pattern on LTP and concurrent
LTD in the dentate gyrus of freely moving rats. Hippocampus 22, 1363–1370.
doi: 10.1002/hipo.20972

Brockmole, J. R., and Logie, R. H. (2013). Age-related change in visual working
memory: a study of 55,753 participants aged 8–75. Front. Psychol. 4:12.
doi: 10.3389/fpsyg.2013.00012

Brose, R. D., Lehrmann, E., Zhang, Y., Reeves, R. H., Smith, K. D., and
Mattson, M. P. (2018). Hydroxyurea attenuates oxidative, metabolic and
excitotoxic stress in rat hippocampal neurons and improves spatial memory
in a mouse model of Alzheimer’s disease. Neurobiol. Aging 72, 121–133.
doi: 10.1016/j.neurobiolaging.2018.08.021

Buechel, H. M., Popovic, J., Staggs, K., Anderson, K. L., Thibault, O., and
Blalock, E. M. (2014). Aged rats are hypo-responsive to acute restraint:
implications for psychosocial stress in aging. Front. Aging Neurosci. 6:13.
doi: 10.3389/fnagi.2014.00013

Burger, C. (2010). Region-specific genetic alterations in the aging
hippocampus: implications for cognitive aging. Front. Aging Neurosci.
2:140. doi: 10.3389/fnagi.2010.00140

Burger, C., Lopez, M. C., Feller, J. A., Baker, H. V., Muzyczka, N., andMandel, R. J.
(2007). Changes in transcription within the CA1 field of the hippocampus
are associated with age-related spatial learning impairments. Neurobiol. Learn.
Mem. 87, 21–41. doi: 10.1016/j.nlm.2006.05.003

Burk, J. A., Herzog, C. D., Porter, M. C., and Sarter, M. (2002).
Interactions between aging and cortical cholinergic deafferentation on
attention. Neurobiol. Aging 23, 467–477. doi: 10.1016/s0197-4580(01)
00315-3

Burke, S. N., and Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nat.
Rev. Neurosci. 7, 30–40. doi: 10.1038/nrn1809

Burke, S. N., and Foster, T. C. (2019). Animal models of cognitive
aging and circuit-specific vulnerability. Handb. Clin. Neurol. 167, 19–36.
doi: 10.1016/B978-0-12-804766-8.00002-9

Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., et al.
(2018). Maintenance, reserve and compensation: the cognitive neuroscience
of healthy ageing. Nat. Rev. Neurosci. 19, 701–710. doi: 10.1038/s41583-018
-0068-2

Cabeza, R., Anderson, N. D., Locantore, J. K., and McIntosh, A. R. (2002).
Aging gracefully: compensatory brain activity in high-performing older adults.
NeuroImage 17, 1394–1402. doi: 10.1006/nimg.2002.1280

Calabrese, E. J. (2013). Hormesis: toxicological foundations and role in aging
research. Exp. Gerontol. 48, 99–102. doi: 10.1016/j.exger.2012.02.004

Caprioli, A., Ghirardi, O., Giuliani, A., Ramacci, M. T., and Angelucci, L. (1991).
Spatial learning and memory in the radial maze: a longitudinal study in rats
from 4 to 25 months of age. Neurobiol. Aging 12, 605–607. doi: 10.1016/0197-
4580(91)90093-y

Carter, C. S., Leeuwenburgh, C., Daniels, M., and Foster, T. C. (2009). Influence
of calorie restriction on measures of age-related cognitive decline: role of
increased physical activity. J. Gerontol. A Biol. Sci. Med. Sci. 64, 850–859.
doi: 10.1093/gerona/glp060

Ces, A., Burg, T., Herbeaux, K., Heraud, C., Bott, J. B., Mensah-Nyagan, A. G.,
et al. (2018). Age-related vulnerability of pattern separation in C57BL/6J
mice. Neurobiol. Aging 62, 120–129. doi: 10.1016/j.neurobiolaging.2017.
10.013

Chaney, A., Bauer, M., Bochicchio, D., Smigova, A., Kassiou, M., Davies, K. E.,
et al. (2018). Longitudinal investigation of neuroinflammation and metabolite
profiles in the APPswe × PS1∆e9 transgenic mouse model of Alzheimer’s
disease. J. Neurochem. 144, 318–335. doi: 10.1111/jnc.14251

Chen, S., and Hillman, D. E. (1999). Dying-back of Purkinje cell
dendrites with synapse loss in aging rats. J. Neurocytol. 28, 187–196.
doi: 10.1023/a:1007015721754

Chiquita, S., Ribeiro, M., Castelhano, J., Oliveira, F., Sereno, J., Batista, M., et al.
(2019). A longitudinal multimodal in vivo molecular imaging study of the
3xTg-AD mouse model shows progressive early hippocampal and taurine loss.
Hum. Mol. Genet. 28, 2174–2188. doi: 10.1093/hmg/ddz045

Chrobak, J. J., Hanin, I., Lorens, S. A., and Napier, T. C. (1995). Within-subject
decline in delayed-non-match-to-sample radial arm maze performance in
aging Sprague–Dawley rats. Behav. Neurosci. 109, 241–245. doi: 10.1037/0735-
7044.109.2.241

Clark, A. S., Magnusson, K. R., and Cotman, C. W. (1992). In vitro
autoradiography of hippocampal excitatory amino acid binding in aged Fischer
344 rats: relationship to performance on the Morris water maze. Behav.
Neurosci. 106, 324–335. doi: 10.1037/0735-7044.106.2.324

Cohen, S. J., Munchow, A. H., Rios, L. M., Zhang, G., Asgeirsdottir, H. N.,
and Stackman, R. W., Jr. (2013). The rodent hippocampus is essential for
nonspatial object memory. Curr. Biol. 23, 1685–1690. doi: 10.1016/j.cub.2013.
07.002

Collier, T. J., Greene, J. G., Felten, D. L., Stevens, S. Y., and Collier, K. S. (2004).
Reduced cortical noradrenergic neurotransmission is associated with increased
neophobia and impaired spatial memory in aged rats. Neurobiol. Aging 25,
209–221. doi: 10.1016/s0197-4580(03)00042-3

Colombo, P. J., Brightwell, J. J., and Countryman, R. A. (2003). Cognitive strategy-
specific increases in phosphorylated cAMP response element-binding protein
and c-Fos in the hippocampus and dorsal striatum. J. Neurosci. 23, 3547–3554.
doi: 10.1523/JNEUROSCI.23-08-03547.2003

Colombo, P. J., and Gallagher, M. (2002). Individual differences in spatial
memory among aged rats are related to hippocampal PKCγ immunoreactivity.
Hippocampus 12, 285–289. doi: 10.1002/hipo.10016

Cortese, G. P., Olin, A., O’Riordan, K., Hullinger, R., and Burger, C. (2018).
Environmental enrichment improves hippocampal function in aged rats
by enhancing learning and memory, LTP and mGluR5-Homer1c activity.
Neurobiol. Aging 63, 1–11. doi: 10.1016/j.neurobiolaging.2017.11.004

Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H., and Bussey, T. J. (2010).
Running enhances spatial pattern separation in mice. Proc. Natl. Acad. Sci.
U S A 107, 2367–2372. doi: 10.1073/pnas.0911725107

Cui, L., Hofer, T., Rani, A., Leeuwenburgh, C., and Foster, T. C. (2009).
Comparison of lifelong and late life exercise on oxidative stress in the
cerebellum. Neurobiol. Aging 30, 903–909. doi: 10.1016/j.neurobiolaging.2007.
09.005

Dawson, K. A., and Crowne, D. P. (1988). Longitudinal development of activity
rhythms in long evans rats. J. Gerontol. 43, P85–P86. doi: 10.1093/geronj/
43.3.p85

Deipolyi, A. R., Fang, S., Palop, J. J., Yu, G. Q., Wang, X., and Mucke, L. (2008).
Altered navigational strategy use and visuospatial deficits in hAPP transgenic
mice. Neurobiol. Aging 29, 253–266. doi: 10.1016/j.neurobiolaging.2006.10.021

Frontiers in Aging Neuroscience | www.frontiersin.org 23 January 2021 | Volume 12 | Article 607685

https://doi.org/10.3389/fnagi.2012.00019
https://doi.org/10.3389/fnagi.2012.00019
https://doi.org/10.1126/sageke.2005.7.re2
https://doi.org/10.1523/JNEUROSCI.23-09-03807.2003
https://doi.org/10.1016/0163-1047(93)90716-u
https://doi.org/10.1016/j.brainresbull.2004.04.017
https://doi.org/10.1016/j.brainresbull.2004.04.017
https://doi.org/10.1016/0008-8749(85)90146-7
https://doi.org/10.1016/s0166-4328(02)00018-9
https://doi.org/10.1016/s0166-4328(02)00018-9
https://doi.org/10.1093/geronb/60.5.p223
https://doi.org/10.1016/0006-8993(87)90793-1
https://doi.org/10.1016/0006-8993(87)90793-1
https://doi.org/10.1002/hipo.20972
https://doi.org/10.3389/fpsyg.2013.00012
https://doi.org/10.1016/j.neurobiolaging.2018.08.021
https://doi.org/10.3389/fnagi.2014.00013
https://doi.org/10.3389/fnagi.2010.00140
https://doi.org/10.1016/j.nlm.2006.05.003
https://doi.org/10.1016/s0197-4580(01)00315-3
https://doi.org/10.1016/s0197-4580(01)00315-3
https://doi.org/10.1038/nrn1809
https://doi.org/10.1016/B978-0-12-804766-8.00002-9
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1038/s41583-018-0068-2
https://doi.org/10.1006/nimg.2002.1280
https://doi.org/10.1016/j.exger.2012.02.004
https://doi.org/10.1016/0197-4580(91)90093-y
https://doi.org/10.1016/0197-4580(91)90093-y
https://doi.org/10.1093/gerona/glp060
https://doi.org/10.1016/j.neurobiolaging.2017.10.013
https://doi.org/10.1016/j.neurobiolaging.2017.10.013
https://doi.org/10.1111/jnc.14251
https://doi.org/10.1023/a:1007015721754
https://doi.org/10.1093/hmg/ddz045
https://doi.org/10.1037/0735-7044.109.2.241
https://doi.org/10.1037/0735-7044.109.2.241
https://doi.org/10.1037/0735-7044.106.2.324
https://doi.org/10.1016/j.cub.2013.07.002
https://doi.org/10.1016/j.cub.2013.07.002
https://doi.org/10.1016/s0197-4580(03)00042-3
https://doi.org/10.1523/JNEUROSCI.23-08-03547.2003
https://doi.org/10.1002/hipo.10016
https://doi.org/10.1016/j.neurobiolaging.2017.11.004
https://doi.org/10.1073/pnas.0911725107
https://doi.org/10.1016/j.neurobiolaging.2007.09.005
https://doi.org/10.1016/j.neurobiolaging.2007.09.005
https://doi.org/10.1093/geronj/43.3.p85
https://doi.org/10.1093/geronj/43.3.p85
https://doi.org/10.1016/j.neurobiolaging.2006.10.021
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Dellu, F., Mayo, W., Vallee, M., Le Moal, M., and Simon, H. (1994). Reactivity
to novelty during youth as a predictive factor of cognitive impairment in the
elderly: a longitudinal study in rats. Brain Res. 653, 51–56. doi: 10.1016/0006-
8993(94)90371-9

Dellu, F., Mayo, W., Vallee, M., Le Moal, M., and Simon, H. (1997). Facilitation of
cognitive performance in aged rats by past experience depends on the type of
information processing involved: a combined cross-sectional and longitudinal
study. Neurobiol. Learn. Mem. 67, 121–128. doi: 10.1006/nlme.1996.3750

Dellu-Hagedorn, F., Trunet, S., and Simon, H. (2004). Impulsivity in youth
predicts early age-related cognitive deficits in rats. Neurobiol. Aging 25,
525–537. doi: 10.1016/j.neurobiolaging.2003.06.006

de Villers-Sidani, E., Alzghoul, L., Zhou, X., Simpson, K. L., Lin, R. C., and
Merzenich, M. M. (2010). Recovery of functional and structural age-related
changes in the rat primary auditory cortex with operant training. Proc. Natl.
Acad. Sci. U S A 107, 13900–13905. doi: 10.1073/pnas.1007885107

Dhabhar, F. S., McEwen, B. S., and Spencer, R. L. (1997). Adaptation to
prolonged or repeated stress—comparison between rat strains showing
intrinsic differences in reactivity to acute stress. Neuroendocrinology 65,
360–368. doi: 10.1159/000127196

Diamond, M. C. (1990). ‘‘An optimistic view of the aging brain,’’ in Biomedical
Advances in Aging, ed A. L. Goldstein (Boston, MA: Springer), 441–449.

Dickson, P. E., Calton, M. A., andMittleman, G. (2014). Performance of C57BL/6J
and DBA/2J mice on a touchscreen-based attentional set-shifting task. Behav.
Brain Res. 261, 158–170. doi: 10.1016/j.bbr.2013.12.015

Diniz, D. G., Foro, C. A., Rego, C. M., Gloria, D. A., de Oliveira, F. R.,
Paes, J. M., et al. (2010). Environmental impoverishment and aging alter object
recognition, spatial learning and dentate gyrus astrocytes. Eur. J. Neurosci. 32,
509–519. doi: 10.1111/j.1460-9568.2010.07296.x

Dudchenko, P. A., Wood, E. R., and Eichenbaum, H. (2000). Neurotoxic
hippocampal lesions have no effect on odor span and little effect
on odor recognition memory but produce significant impairments on
spatial span, recognition and alternation. J. Neurosci. 20, 2964–2977.
doi: 10.1523/JNEUROSCI.20-08-02964.2000

Dunn, A. R., Hadad, N., Neuner, S. M., Zhang, J.-G., Philip, V. M., Dumitrescu, L.,
et al. (2020). Identifying mechanisms of normal cognitive aging using
a novel mouse genetic reference panel. Front. Cell Dev. Biol. 8:562662.
doi: 10.3389/fcell.2020.562662

Dunn, A. R., and Kaczorowski, C. C. (2019). Regulation of intrinsic excitability:
roles for learning and memory, aging and Alzheimer’s disease and genetic
diversity. Neurobiol. Learn. Mem. 164:107069. doi: 10.1016/j.nlm.2019.107069

Dunn, A. R., O’Connell, K. M. S., and Kaczorowski, C. C. (2019). Gene-by-
environment interactions in Alzheimer’s disease and Parkinson’s disease.
Neurosci. Biobehav. Rev. 103, 73–80. doi: 10.1016/j.neubiorev.2019.06.018

Epp, J. R., and Galea, L. A. (2009). Hippocampus-dependent strategy choice
predicts low levels of cell proliferation in the dentate gyrus. Neurobiol. Learn.
Mem. 91, 437–446. doi: 10.1016/j.nlm.2009.01.001

Febo, M., and Foster, T. C. (2016). Preclinical magnetic resonance imaging and
spectroscopy studies of memory, aging and cognitive decline. Front. Aging
Neurosci. 8:158. doi: 10.3389/fnagi.2016.00158

Febo, M., Rani, A., Yegla, B., Barter, J. D., Kumar, A., Wolff, C. A., et al. (2020).
Longitudinal characterization and biomarkers of age and sex differences in the
decline of spatial memory. Front. Aging Neurosci. 12:34. doi: 10.3389/fnagi.
2020.00034

Fentie, I. H., Greenwood, M. M., Wyss, J. M., and Clark, J. T. (2004). Age-related
decreases in gonadal hormones in long-evans rats: relationship to rise in arterial
pressure. Endocrine 25, 15–22. doi: 10.1385/ENDO:25:1:15

Festing, M. F. (1976). Phenotypic variability of inbred and outbred mice. Nature
263, 230–232. doi: 10.1038/263230a0

Finch, C. E. (2014). The menopause and aging, a comparative perspective.
J. Steroid Biochem. Mol. Biol. 142, 132–141. doi: 10.1016/j.jsbmb.2013.03.010

Fischer, K. E., Gelfond, J. A., Soto, V. Y., Han, C., Someya, S., Richardson, A., et al.
(2015). Health effects of long-term rapamycin treatment: the impact on mouse
health of enteric rapamycin treatment from four months of age throughout life.
PLoS One 10:e0126644. doi: 10.1371/journal.pone.0126644

Flagel, S. B., Waselus, M., Clinton, S. M., Watson, S. J., and Akil, H. (2014).
Antecedents and consequences of drug abuse in rats selectively bred for high
and low response to novelty. Neuropharmacology 76, 425–436. doi: 10.1016/j.
neuropharm.2013.04.033

Fletcher, B. R., Hill, G. S., Long, J. M., Gallagher,M., Shapiro,M. L., and Rapp, P. R.
(2014). A fine balance: regulation of hippocampal Arc/Arg3.1 transcription,
translation and degradation in a rat model of normal cognitive aging.
Neurobiol. Learn. Mem. 115, 58–67. doi: 10.1016/j.nlm.2014.08.007

Fontana, L., Nehme, J., and Demaria, M. (2018). Caloric restriction and cellular
senescence.Mech. Ageing Dev. 176, 19–23. doi: 10.1016/j.mad.2018.10.005

Fortenbaugh, F. C., DeGutis, J., Germine, L., Wilmer, J. B., Grosso, M.,
Russo, K., et al. (2015). Sustained attention across the life span in a sample
of 10,000: dissociating ability and strategy. Psychol. Sci. 26, 1497–1510.
doi: 10.1177/0956797615594896

Foster, T. C. (2006). Biological markers of age-related memory deficits: treatment
of senescent physiology. CNS Drugs 20, 153–166. doi: 10.2165/00023210-
200620020-00006

Foster, T. C. (2012a). Challenges and opportunities in characterizing cognitive
aging across species. Front. Aging Neurosci. 4:6. doi: 10.3389/fnagi.2012.00006

Foster, T. C. (2012b). Dissecting the age-related decline on spatial learning and
memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-
dependent Ca2+ channels in senescent synaptic plasticity. Prog. Neurobiol. 96,
283–303. doi: 10.1016/j.pneurobio.2012.01.007

Foster, T. C. (2019). Senescent neurophysiology: Ca2+ signaling from the
membrane to the nucleus. Neurobiol. Learn. Mem. 164:107064. doi: 10.1016/j.
nlm.2019.107064

Foster, T. C., Barnes, C. A., Rao, G., and McNaughton, B. L. (1991). Increase in
perforant path quantal size in aged F-344 rats. Neurobiol. Aging 12, 441–448.
doi: 10.1016/0197-4580(91)90071-q

Foster, T. C., Defazio, R. A., and Bizon, J. L. (2012). Characterizing cognitive aging
of spatial and contextual memory in animal models. Front. Aging Neurosci.
4:12. doi: 10.3389/fnagi.2012.00012

Foster, T. C., and Kumar, A. (2007). Susceptibility to induction of long-term
depression is associated with impaired memory in aged Fischer 344 rats.
Neurobiol. Learn. Mem. 87, 522–535. doi: 10.1016/j.nlm.2006.12.009

Fox, C., Merali, Z., and Harrison, C. (2006). Therapeutic and protective effect of
environmental enrichment against psychogenic and neurogenic stress. Behav.
Brain Res. 175, 1–8. doi: 10.1016/j.bbr.2006.08.016

Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Kruger, A.,
et al. (2013). Emergence of individuality in genetically identical mice. Science
340, 756–759. doi: 10.1126/science.1235294

Fuchs, F., Herbeaux, K., Aufrere, N., Kelche, C., Mathis, C., Barbelivien, A., et al.
(2016). Late enrichment maintains accurate recent and remote spatial memory
only in aged rats that were unimpaired when middle aged. Learn. Mem. 23,
303–312. doi: 10.1101/lm.041236.115

Galani, R., Berthel, M. C., Lazarus, C., Majchrzak, M., Barbelivien, A.,
Kelche, C., et al. (2007). The behavioral effects of enriched housing are
not altered by serotonin depletion but enrichment alters hippocampal
neurochemistry. Neurobiol. Learn. Mem. 88, 1–10. doi: 10.1016/j.nlm.2007.
03.009

Gallagher, M., and Burwell, R. D. (1989). Relationship of age-related decline across
several behavioral domains. Neurobiol. Aging 10, 691–708. doi: 10.1016/0197-
4580(89)90006-7

Gallagher, M., Burwell, R., and Burchinal, M. (2015). Severity of spatial learning
impairment in aging: development of a learning index for performance in the
Morris water maze. Behav. Neurosci. 129, 540–548. doi: 10.1037/bne0000080

Garthe, A., Roeder, I., and Kempermann, G. (2016). Mice in an enriched
environment learn more flexibly because of adult hippocampal neurogenesis.
Hippocampus 26, 261–271. doi: 10.1002/hipo.22520

Gee, D. M., Flurkey, K., and Finch, C. E. (1983). Aging and the regulation of
luteinizing hormone in C57BL/6J mice: impaired elevations after ovariectomy
and spontaneous elevations at advanced ages. Biol. Reprod. 28, 598–607.
doi: 10.1095/biolreprod28.3.598

Gelfo, F. (2019). Does experience enhance cognitive flexibility? An overview of
the evidence provided by the environmental enrichment studies. Front. Behav.
Neurosci. 13:150. doi: 10.3389/fnbeh.2019.00150

Gentry, R. T., andWade, G. N. (1976). Sex differences in sensitivity of food intake,
body weight and running-wheel activity to ovarian steroids in rats. J. Comp.
Physiol. Psychol. 90, 747–754. doi: 10.1037/h0077246

Gerall, A. A., Napoli, A. M., and Cooper, U. C. (1973). Daily and hourly estrous
running in intact, spayed and estrone implanted rats. Physiol. Behav. 10,
225–229. doi: 10.1016/0031-9384(73)90302-8

Frontiers in Aging Neuroscience | www.frontiersin.org 24 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1016/0006-8993(94)90371-9
https://doi.org/10.1016/0006-8993(94)90371-9
https://doi.org/10.1006/nlme.1996.3750
https://doi.org/10.1016/j.neurobiolaging.2003.06.006
https://doi.org/10.1073/pnas.1007885107
https://doi.org/10.1159/000127196
https://doi.org/10.1016/j.bbr.2013.12.015
https://doi.org/10.1111/j.1460-9568.2010.07296.x
https://doi.org/10.1523/JNEUROSCI.20-08-02964.2000
https://doi.org/10.3389/fcell.2020.562662
https://doi.org/10.1016/j.nlm.2019.107069
https://doi.org/10.1016/j.neubiorev.2019.06.018
https://doi.org/10.1016/j.nlm.2009.01.001
https://doi.org/10.3389/fnagi.2016.00158
https://doi.org/10.3389/fnagi.2020.00034
https://doi.org/10.3389/fnagi.2020.00034
https://doi.org/10.1385/ENDO:25:1:15
https://doi.org/10.1038/263230a0
https://doi.org/10.1016/j.jsbmb.2013.03.010
https://doi.org/10.1371/journal.pone.0126644
https://doi.org/10.1016/j.neuropharm.2013.04.033
https://doi.org/10.1016/j.neuropharm.2013.04.033
https://doi.org/10.1016/j.nlm.2014.08.007
https://doi.org/10.1016/j.mad.2018.10.005
https://doi.org/10.1177/0956797615594896
https://doi.org/10.2165/00023210-200620020-00006
https://doi.org/10.2165/00023210-200620020-00006
https://doi.org/10.3389/fnagi.2012.00006
https://doi.org/10.1016/j.pneurobio.2012.01.007
https://doi.org/10.1016/j.nlm.2019.107064
https://doi.org/10.1016/j.nlm.2019.107064
https://doi.org/10.1016/0197-4580(91)90071-q
https://doi.org/10.3389/fnagi.2012.00012
https://doi.org/10.1016/j.nlm.2006.12.009
https://doi.org/10.1016/j.bbr.2006.08.016
https://doi.org/10.1126/science.1235294
https://doi.org/10.1101/lm.041236.115
https://doi.org/10.1016/j.nlm.2007.03.009
https://doi.org/10.1016/j.nlm.2007.03.009
https://doi.org/10.1016/0197-4580(89)90006-7
https://doi.org/10.1016/0197-4580(89)90006-7
https://doi.org/10.1037/bne0000080
https://doi.org/10.1002/hipo.22520
https://doi.org/10.1095/biolreprod28.3.598
https://doi.org/10.3389/fnbeh.2019.00150
https://doi.org/10.1037/h0077246
https://doi.org/10.1016/0031-9384(73)90302-8
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Gheidi, A., Azzopardi, E., Adams, A. A., and Marrone, D. F. (2013). Experience-
dependent persistent expression of zif268 during rest is preserved in the aged
dentate gyrus. BMC Neurosci. 14:100. doi: 10.1186/1471-2202-14-100

Glisky, E. L. (2007). ‘‘Changes in cognitive function in human aging,’’ in Brain
Aging: Models, Methods and Mechanisms, ed D. R. Riddle (Boca Raton, FL:
Taylor & Francis), 3–20.

Goh, J. O., An, Y., and Resnick, S. M. (2012). Differential trajectories of age-related
changes in components of executive and memory processes. Psychol. Aging 27,
707–719. doi: 10.1037/a0026715

Gracian, E. I., Shelley, L. E., Morris, A. M., and Gilbert, P. E. (2013). Age-related
changes in place learning for adjacent and separate locations. Neurobiol. Aging
34, 2304–2309. doi: 10.1016/j.neurobiolaging.2013.03.033

Grady, C. L. (2008). Cognitive neuroscience of aging. Ann. N Y Acad. Sci. 1124,
127–144. doi: 10.1196/annals.1440.009

Granholm, A. C., Bimonte-Nelson, H. A., Moore, A. B., Nelson, M. E.,
Freeman, L. R., and Sambamurti, K. (2008). Effects of a saturated fat and high
cholesterol diet on memory and hippocampal morphology in the middle-aged
rat. J. Alzheimers Dis. 14, 133–145. doi: 10.3233/jad-2008-14202

Gray, D. T., and Barnes, C. A. (2015). Distinguishing adaptive plasticity
from vulnerability in the aging hippocampus. Neuroscience 309, 17–28.
doi: 10.1016/j.neuroscience.2015.08.001

Greenwood, C. E., and Winocur, G. (2005). High-fat diets, insulin resistance
and declining cognitive function. Neurobiol. Aging 26, 42–45. doi: 10.1016/j.
neurobiolaging.2005.08.017

Grilly, D. M., Simon, B. B., and Levin, E. D. (2000). Nicotine enhances
stimulus detection performance of middle- and old-aged rats: a longitudinal
study. Pharmacol. Biochem. Behav. 65, 665–670. doi: 10.1016/s0091-3057(99)
00259-2

Grinan-Ferre, C., Puigoriol-Illamola, D., Palomera-Avalos, V., Perez-Caceres, D.,
Companys-Alemany, J., Camins, A., et al. (2016). Environmental enrichment
modified epigenetic mechanisms in SAMP8 mouse hippocampus by reducing
oxidative stress and inflammaging and achieving neuroprotection. Front. Aging
Neurosci. 8:241. doi: 10.3389/fnagi.2016.00241

Guayerbas, N., Puerto, M., Victor, V. M., Miquel, J., and De la Fuente, M.
(2002). Leukocyte function and life span in a murine model of premature
immunosenescence. Exp. Gerontol. 37, 249–256. doi: 10.1016/s0531-
5565(01)00190-5

Guidi, M., and Foster, T. C. (2012). Behavioral model for assessing cognitive
decline. Methods Mol. Biol. 829, 145–153. doi: 10.1007/978-1-61779-
458-2_8

Guidi, M., Kumar, A., Rani, A., and Foster, T. C. (2014). Assessing the emergence
and reliability of cognitive decline over the life span in Fisher 344 rats using
the spatial water maze. Front. Aging Neurosci. 6:2. doi: 10.3389/fnagi.2014.
00002

Guidi, M., Rani, A., Karic, S., Severance, B., Kumar, A., and Foster, T. C.
(2015). Contribution of N-methyl-D-aspartate receptors to attention and
episodic spatial memory during senescence. Neurobiol. Learn. Mem. 125,
36–46. doi: 10.1016/j.nlm.2015.07.015

Guitart, X., Beitner-Johnson, D., Marby, D. W., Kosten, T. A., and Nestler, E. J.
(1992). Fischer and Lewis rat strains differ in basal levels of neurofilament
proteins and their regulation by chronicmorphine in themesolimbic dopamine
system. Synapse 12, 242–253. doi: 10.1002/syn.890120310

Gyger, M., Kolly, D., and Guigoz, Y. (1992). Aging, modulation of food intake
and spatial memory: a longitudinal study. Arch. Gerontol. Geriatr. 15, 185–195.
doi: 10.1016/s0167-4943(05)80018-4

Haberman, R. P., Branch, A., and Gallagher, M. (2017). Targeting neural
hyperactivity as a treatment to stem progression of late-onset Alzheimer’s
disease. Neurotherapeutics 14, 662–676. doi: 10.1007/s13311-017-0541-z

Hall, F. S., Humby, T., Wilkinson, L. S., and Robbins, T. W. (1997). The effects of
isolation-rearing of rats on behavioural responses to food and environmental
novelty. Physiol. Behav. 62, 281–290. doi: 10.1016/s0031-9384(97)
00115-7

Hammond, R. S., Tull, L. E., and Stackman, R. W. (2004). On the delay-dependent
involvement of the hippocampus in object recognition memory. Neurobiol.
Learn. Mem. 82, 26–34. doi: 10.1016/j.nlm.2004.03.005

Hargis, K. E., and Blalock, E. M. (2017). Transcriptional signatures of brain aging
and Alzheimer’s disease: what are our rodent models telling us? Behav. Brain
Res. 322, 311–328. doi: 10.1016/j.bbr.2016.05.007

Hargis, K., Buechel, H. M., Popovic, J., and Blalock, E. M. (2018). Acute
psychosocial stress in mid-aged male rats causes hyperthermia, cognitive
decline and increased deep sleep power, but does not alter deep sleep duration.
Neurobiol. Aging 70, 78–85. doi: 10.1016/j.neurobiolaging.2018.06.009

Harrison, F. E., Hosseini, A. H., andMcDonald, M. P. (2009). Endogenous anxiety
and stress responses in water maze and Barnes maze spatial memory tasks.
Behav. Brain Res. 198, 247–251. doi: 10.1016/j.bbr.2008.10.015

Havas, D., Hutter-Paier, B., Ubhi, K., Rockenstein, E., Crailsheim, K., Masliah, E.,
et al. (2011). A longitudinal study of behavioral deficits in an AβPP
transgenic mouse model of Alzheimer’s disease. J. Alzheimers Dis. 25, 231–243.
doi: 10.3233/JAD-2011-101866

He, J., Yamada, K., and Nabeshima, T. (2002). A role of Fos expression
in the CA3 region of the hippocampus in spatial memory formation in
rats. Neuropsychopharmacology 26, 259–268. doi: 10.1016/S0893-133X(01)
00332-3

Heimer-McGinn, V. R., Wise, T. B., Hemmer, B. M., J. Dayaw, N. T., and
Templer, V. L. (2020). Social housing enhances acquisition of task set
independently of environmental enrichment: a longitudinal study in the Barnes
maze. Learn. Behav. 48, 322–334. doi: 10.3758/s13420-020-00418-5

Hellemans, K. G., Benge, L. C., and Olmstead, M. C. (2004). Adolescent
enrichment partially reverses the social isolation syndrome.Dev. Brain Res. 150,
103–115. doi: 10.1016/j.devbrainres.2004.03.003

Heller, D. A., Ahern, F. M., Stout, J. T., and McClearn, G. E. (1998). Mortality and
biomarkers of aging in heterogeneous stock (HS) mice. J. Gerontol. A Biol. Sci.
Med. Sci. 53, B217–B230. doi: 10.1093/gerona/53a.3.b217

Hernandez, A. R., Reasor, J. E., Truckenbrod, L. M., Campos, K. T., Federico, Q. P.,
Fertal, K. E., et al. (2018). Dissociable effects of advanced age on prefrontal
cortical and medial temporal lobe ensemble activity. Neurobiol. Aging 70,
217–232. doi: 10.1016/j.neurobiolaging.2018.06.028

Hernandez, C. M., Vetere, L. M., Orsini, C. A., McQuail, J. A., Maurer, A. P.,
Burke, S. N., et al. (2017). Decline of prefrontal cortical-mediated executive
functions but attenuated delay discounting in aged Fischer 344 ×
Brown Norway hybrid rats. Neurobiol. Aging 60, 141–152. doi: 10.1016/j.
neurobiolaging.2017.08.025

Herrero, A. I., Sandi, C., and Venero, C. (2006). Individual differences
in anxiety trait are related to spatial learning abilities and hippocampal
expression of mineralocorticoid receptors. Neurobiol. Learn. Mem. 86,
150–159. doi: 10.1016/j.nlm.2006.02.001

Ho, A., Sinick, J., Esko, T., Fischer, K., Menni, C., Zierer, J., et al. (2019).
Circulating glucuronic acid predicts healthspan and longevity in humans and
mice. Aging 11, 7694–7706. doi: 10.18632/aging.102281

Hohman, T. J., and Kaczorowski, C. C. (2020). Modifiable lifestyle factors
in Alzheimer disease: an opportunity to transform the therapeutic
landscape through transdisciplinary collaboration. JAMA Neurol.
doi: 10.1001/jamaneurol.2020.1114. [Epub ahead of print].

Hohman, T. J., McLaren, D. G., Mormino, E. C., Gifford, K. A., Libon, D. J.,
Jefferson, A. L., et al. (2016). Asymptomatic Alzheimer disease: defining
resilience. Neurology 87, 2443–2450. doi: 10.1212/WNL.0000000000003397

Holden, H. M., and Gilbert, P. E. (2012). Less efficient pattern separation may
contribute to age-related spatial memory deficits. Front. Aging Neurosci. 4:9.
doi: 10.3389/fnagi.2012.00009

Holmes, H. E., Colgan, N., Ismail, O., Ma, D., Powell, N. M., O’Callaghan, J. M.,
et al. (2016). Imaging the accumulation and suppression of tau pathology
using multiparametric MRI. Neurobiol. Aging 39, 184–194. doi: 10.1016/j.
neurobiolaging.2015.12.001

Hook, M., Roy, S., Williams, E. G., Bou Sleiman, M., Mozhui, K., Nelson, J. F.,
et al. (2018). Genetic cartography of longevity in humans and mice: current
landscape and horizons. Biochim. Biophys. Acta Mol. Basis Dis. 1864,
2718–2732. doi: 10.1016/j.bbadis.2018.01.026

Horner, A. E., Heath, C. J., Hvoslef-Eide, M., Kent, B. A., Kim, C. H.,
Nilsson, S. R. O., et al. (2013). The touchscreen operant platform for
testing learning and memory in rats and mice. Nat. Protoc. 8, 1961–1984.
doi: 10.1038/nprot.2013.122

Howard, K. A., and Hunter, A. S. (2019). Immediate and long-lasting cognitive
consequences of adolescent chronic sleep restriction. Behav. Neurosci. 133,
461–466. doi: 10.1037/bne0000312

Huang, S. M., Wu, Y. L., Peng, S. L., Peng, H. H., Huang, T. Y., Ho, K. C.,
et al. (2016). Inter-strain differences in default mode network: a resting state

Frontiers in Aging Neuroscience | www.frontiersin.org 25 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1186/1471-2202-14-100
https://doi.org/10.1037/a0026715
https://doi.org/10.1016/j.neurobiolaging.2013.03.033
https://doi.org/10.1196/annals.1440.009
https://doi.org/10.3233/jad-2008-14202
https://doi.org/10.1016/j.neuroscience.2015.08.001
https://doi.org/10.1016/j.neurobiolaging.2005.08.017
https://doi.org/10.1016/j.neurobiolaging.2005.08.017
https://doi.org/10.1016/s0091-3057(99)00259-2
https://doi.org/10.1016/s0091-3057(99)00259-2
https://doi.org/10.3389/fnagi.2016.00241
https://doi.org/10.1016/s0531-5565(01)00190-5
https://doi.org/10.1016/s0531-5565(01)00190-5
https://doi.org/10.1007/978-1-61779-458-2_8
https://doi.org/10.1007/978-1-61779-458-2_8
https://doi.org/10.3389/fnagi.2014.00002
https://doi.org/10.3389/fnagi.2014.00002
https://doi.org/10.1016/j.nlm.2015.07.015
https://doi.org/10.1002/syn.890120310
https://doi.org/10.1016/s0167-4943(05)80018-4
https://doi.org/10.1007/s13311-017-0541-z
https://doi.org/10.1016/s0031-9384(97)00115-7
https://doi.org/10.1016/s0031-9384(97)00115-7
https://doi.org/10.1016/j.nlm.2004.03.005
https://doi.org/10.1016/j.bbr.2016.05.007
https://doi.org/10.1016/j.neurobiolaging.2018.06.009
https://doi.org/10.1016/j.bbr.2008.10.015
https://doi.org/10.3233/JAD-2011-101866
https://doi.org/10.1016/S0893-133X(01)00332-3
https://doi.org/10.1016/S0893-133X(01)00332-3
https://doi.org/10.3758/s13420-020-00418-5
https://doi.org/10.1016/j.devbrainres.2004.03.003
https://doi.org/10.1093/gerona/53a.3.b217
https://doi.org/10.1016/j.neurobiolaging.2018.06.028
https://doi.org/10.1016/j.neurobiolaging.2017.08.025
https://doi.org/10.1016/j.neurobiolaging.2017.08.025
https://doi.org/10.1016/j.nlm.2006.02.001
https://doi.org/10.18632/aging.102281
https://doi.org/10.1001/jamaneurol.2020.1114
https://doi.org/10.1212/WNL.0000000000003397
https://doi.org/10.3389/fnagi.2012.00009
https://doi.org/10.1016/j.neurobiolaging.2015.12.001
https://doi.org/10.1016/j.neurobiolaging.2015.12.001
https://doi.org/10.1016/j.bbadis.2018.01.026
https://doi.org/10.1038/nprot.2013.122
https://doi.org/10.1037/bne0000312
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

fMRI study on spontaneously hypertensive rat and Wistar Kyoto rat. Sci. Rep.
6:21697. doi: 10.1038/srep21697

Hughes, R. N., and Collins, M. A. (2010). Enhanced habituation and decreased
anxiety by environmental enrichment and possible attenuation of these effects
by chronic alpha-tocopherol (vitamin E) in aging male and female rats.
Pharmacol. Biochem. Behav. 94, 534–542. doi: 10.1016/j.pbb.2009.11.008

Hullinger, R., and Burger, C. (2015). Learning impairments identified early in life
are predictive of future impairments associated with aging. Behav. Brain Res.
294, 224–233. doi: 10.1016/j.bbr.2015.08.004

Huttenrauch, M., Salinas, G., and Wirths, O. (2016). Effects of long-term
environmental enrichment on anxiety, memory, hippocampal plasticity and
overall brain gene expression in C57BL6 mice. Front. Mol. Neurosci. 9:62.
doi: 10.3389/fnmol.2016.00062

Huzard, D., Vouros, A., Monari, S., Astori, S., Vasilaki, E., and Sandi, C.
(2020). Constitutive differences in glucocorticoid responsiveness are related
to divergent spatial information processing abilities. Stress 23, 37–49.
doi: 10.1080/10253890.2019.1625885

Ianov, L., Rani, A., Beas, B. S., Kumar, A., and Foster, T. C. (2016).
Transcription profile of aging and cognition-related genes in the medial
prefrontal cortex. Front. Aging Neurosci. 8:113. doi: 10.3389/fnagi.2016.
00113

Ibanez, S., Luebke, J. I., Chang, W., Draguljic, D., and Weaver, C. M. (2019).
Network models predict that pyramidal neuron hyperexcitability and synapse
loss in the dlPFC lead to age-related spatial working memory impairment
in rhesus monkeys. Front. Comput. Neurosci. 13:89. doi: 10.3389/fncom.2019.
00089

Ingram, D. K., and de Cabo, R. (2017). Calorie restriction in rodents: caveats to
consider. Ageing Res. Rev. 39, 15–28. doi: 10.1016/j.arr.2017.05.008

Isles, A. R., Humby, T., Walters, E., and Wilkinson, L. S. (2004). Common
genetic effects on variation in impulsivity and activity in mice. J. Neurosci. 24,
6733–6740. doi: 10.1523/JNEUROSCI.1650-04.2004

Jagust, W. J. (2016). Early life sets the stage for aging. Proc. Natl. Acad. Sci. U S A
113, 9148–9150. doi: 10.1073/pnas.1609720113

Jain, K., Tyagi, T., Patell, K., Xie, Y., Kadado, A. J., Lee, S. H., et al. (2019). Age
associated non-linear regulation of redox homeostasis in the anucleate platelet:
implications for CVD risk patients. EBioMedicine 44, 28–40. doi: 10.1016/j.
ebiom.2019.05.022

Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F., and Zheng, Q. Y. (1997). A
major gene affecting age-related hearing loss in C57BL/6J mice.Hear. Res. 114,
83–92. doi: 10.1016/s0378-5955(97)00155-x

Johnson, S. A., Turner, S. M., Santacroce, L. A., Carty, K. N., Shafiq, L., Bizon, J. L.,
et al. (2017). Rodent age-related impairments in discriminating perceptually
similar objects parallel those observed in humans. Hippocampus 27, 759–776.
doi: 10.1002/hipo.22729

Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning
and memory: a review of behavioral and biological data. Neurosci. Biobehav.
Rev. 28, 811–825. doi: 10.1016/j.neubiorev.2004.10.006

Jonckers, E., Delgado y Palacios, R., Shah, D., Guglielmetti, C., Verhoye, M.,
and Van der Linden, A. (2014). Different anesthesia regimes modulate the
functional connectivity outcome in mice. Magn. Reson. Med. 72, 1103–1112.
doi: 10.1002/mrm.24990

Kelly, M. P., and Deadwyler, S. A. (2002). Acquisition of a novel behavior induces
higher levels of Arc mRNA than does overtrained performance. Neuroscience
110, 617–626. doi: 10.1016/s0306-4522(01)00605-4

Kempermann, G. (2019). Environmental enrichment, new neurons and
the neurobiology of individuality. Nat. Rev. Neurosci. 20, 235–245.
doi: 10.1038/s41583-019-0120-x

Kempermann, G., Kuhn, H. G., and Gage, F. H. (1997). Genetic influence on
neurogenesis in the dentate gyrus of adult mice. Proc. Natl. Acad. Sci. U S A
94, 10409–10414. doi: 10.1073/pnas.94.19.10409

King, J. A., Garelick, T. S., Brevard, M. E., Chen, W., Messenger, T. L.,
Duong, T. Q., et al. (2005). Procedure for minimizing stress for fMRI studies
in conscious rats. J. Neurosci. Methods 148, 154–160. doi: 10.1016/j.jneumeth.
2005.04.011

Kolata, S., Light, K., Grossman, H. C., Hale, G., and Matzel, L. D. (2007). Selective
attention is a primary determinant of the relationship between working
memory and general learning ability in outbred mice. Learn. Mem. 14, 22–28.
doi: 10.1101/lm.408507

Kolata, S., Light, K., Townsend, D. A., Hale, G., Grossman, H. C., andMatzel, L. D.
(2005). Variations in working memory capacity predict individual differences
in general learning abilities among genetically diverse mice. Neurobiol. Learn.
Mem. 84, 241–246. doi: 10.1016/j.nlm.2005.07.006

Koo, B. B., Calderazzo, S., Bowley, B. G. E., Kolli, A., Moss, M. B., Rosene, D. L.,
et al. (2018). Long-term effects of curcumin in the non-human primate brain.
Brain Res. Bull. 142, 88–95. doi: 10.1016/j.brainresbull.2018.06.015

Kronenberg, G., Bick-Sander, A., Bunk, E., Wolf, C., Ehninger, D., and
Kempermann, G. (2006). Physical exercise prevents age-related decline in
precursor cell activity in the mouse dentate gyrus. Neurobiol. Aging 27,
1505–1513. doi: 10.1016/j.neurobiolaging.2005.09.016

Kuhla, A., Lange, S., Holzmann, C., Maass, F., Petersen, J., Vollmar, B., et al.
(2013). Lifelong caloric restriction increases working memory in mice. PLoS
One 8:e68778. doi: 10.1371/journal.pone.0068778

Kumar, A., Rani, A., Tchigranova, O., Lee, W. H., and Foster, T. C. (2012).
Influence of late-life exposure to environmental enrichment or exercise on
hippocampal function and CA1 senescent physiology. Neurobiol. Aging 33,
828.e1–828.e17. doi: 10.1016/j.neurobiolaging.2011.06.023

Lambourne, S. L., Humby, T., Isles, A. R., Emson, P. C., Spillantini, M. G., and
Wilkinson, L. S. (2007). Impairments in impulse control in mice transgenic for
the human FTDP-17 tauV337M mutation are exacerbated by age. Hum. Mol.
Genet. 16, 1708–1719. doi: 10.1093/hmg/ddm119

Leal-Galicia, P., Castaneda-Bueno, M., Quiroz-Baez, R., and Arias, C. (2008).
Long-term exposure to environmental enrichment since youth prevents
recognition memory decline and increases synaptic plasticity markers in aging.
Neurobiol. Learn. Mem. 90, 511–518. doi: 10.1016/j.nlm.2008.07.005

Leduc, M. S., Hageman, R. S., Meng, Q., Verdugo, R. A., Tsaih, S. W.,
Churchill, G. A., et al. (2010). Identification of genetic determinants of IGF-1
levels and longevity among mouse inbred strains. Aging Cell 9, 823–836.
doi: 10.1111/j.1474-9726.2010.00612.x

Leighty, R. E., Nilsson, L. N., Potter, H., Costa, D. A., Low, M. A., Bales, K. R., et al.
(2004). Use of multimetric statistical analysis to characterize and discriminate
between the performance of four Alzheimer’s transgenic mouse lines differing
in Aβ deposition. Behav. Brain Res. 153, 107–121. doi: 10.1016/j.bbr.2003.11.
004

Li, L., Wang, Z., and Zuo, Z. (2013). Chronic intermittent fasting improves
cognitive functions and brain structures in mice. PLoS One 8:e66069.
doi: 10.1371/journal.pone.0066069

Liang, X., Hsu, L. M., Lu, H., Ash, J. A., Rapp, P. R., and Yang, Y. (2020).
Functional connectivity of hippocampal CA3 predicts neurocognitive aging via
CA1-frontal circuit. Cereb. Cortex 30, 4297–4305. doi: 10.1093/cercor/bhaa008

Lidzbarsky, G., Gutman, D., Shekhidem, H. A., Sharvit, L., and Atzmon, G.
(2018). Genomic instabilities, cellular senescence and aging: in vitro, in vivo
and aging-like human syndromes. Front. Med. 5:104. doi: 10.3389/fmed.2018.
00104

Lindner, M. D., and Gribkoff, V. K. (1991). Relationship between performance
in the Morris water task, visual acuity and thermoregulatory function in
aged F-344 rats. Behav. Brain Res. 45, 45–55. doi: 10.1016/s0166-4328(05)
80179-2

Lipman, R. D. (1997). Pathobiology of aging rodents: inbred and hybrid models.
Exp. Gerontol. 32, 215–228. doi: 10.1016/s0531-5565(96)00037-x

Liu, X., Zhu, X. H., Zhang, Y., and Chen, W. (2013). The change of functional
connectivity specificity in rats under various anesthesia levels and its neural
origin. Brain Topogr. 26, 363–377. doi: 10.1007/s10548-012-0267-5

Logan, S., Owen, D., Chen, S., Chen, W. J., Ungvari, Z., Farley, J.,
et al. (2018). Simultaneous assessment of cognitive function, circadian
rhythm and spontaneous activity in aging mice. Geroscience 40, 123–137.
doi: 10.1007/s11357-018-0019-x

Lu, K. H., Hopper, B. R., Vargo, T. M., and Yen, S. S. (1979). Chronological
changes in sex steroid, gonadotropin and prolactin secretions in aging
female rats displaying different reproductive states. Biol. Reprod. 21, 193–203.
doi: 10.1095/biolreprod21.1.193

Magalhaes, R., Barriere, D. A., Novais, A., Marques, F., Marques, P., Cerqueira, J.,
et al. (2018). The dynamics of stress: a longitudinal MRI study of rat brain
structure and connectome. Mol. Psychiatry 23, 1998–2006. doi: 10.1038/mp.
2017.244

Magalhaes, R., Novais, A., Barriere, D. A., Marques, P., Marques, F., Sousa, J. C.,
et al. (2019). A resting-state functional MR imaging and spectroscopy study

Frontiers in Aging Neuroscience | www.frontiersin.org 26 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1038/srep21697
https://doi.org/10.1016/j.pbb.2009.11.008
https://doi.org/10.1016/j.bbr.2015.08.004
https://doi.org/10.3389/fnmol.2016.00062
https://doi.org/10.1080/10253890.2019.1625885
https://doi.org/10.3389/fnagi.2016.00113
https://doi.org/10.3389/fnagi.2016.00113
https://doi.org/10.3389/fncom.2019.00089
https://doi.org/10.3389/fncom.2019.00089
https://doi.org/10.1016/j.arr.2017.05.008
https://doi.org/10.1523/JNEUROSCI.1650-04.2004
https://doi.org/10.1073/pnas.1609720113
https://doi.org/10.1016/j.ebiom.2019.05.022
https://doi.org/10.1016/j.ebiom.2019.05.022
https://doi.org/10.1016/s0378-5955(97)00155-x
https://doi.org/10.1002/hipo.22729
https://doi.org/10.1016/j.neubiorev.2004.10.006
https://doi.org/10.1002/mrm.24990
https://doi.org/10.1016/s0306-4522(01)00605-4
https://doi.org/10.1038/s41583-019-0120-x
https://doi.org/10.1073/pnas.94.19.10409
https://doi.org/10.1016/j.jneumeth.2005.04.011
https://doi.org/10.1016/j.jneumeth.2005.04.011
https://doi.org/10.1101/lm.408507
https://doi.org/10.1016/j.nlm.2005.07.006
https://doi.org/10.1016/j.brainresbull.2018.06.015
https://doi.org/10.1016/j.neurobiolaging.2005.09.016
https://doi.org/10.1371/journal.pone.0068778
https://doi.org/10.1016/j.neurobiolaging.2011.06.023
https://doi.org/10.1093/hmg/ddm119
https://doi.org/10.1016/j.nlm.2008.07.005
https://doi.org/10.1111/j.1474-9726.2010.00612.x
https://doi.org/10.1016/j.bbr.2003.11.004
https://doi.org/10.1016/j.bbr.2003.11.004
https://doi.org/10.1371/journal.pone.0066069
https://doi.org/10.1093/cercor/bhaa008
https://doi.org/10.3389/fmed.2018.00104
https://doi.org/10.3389/fmed.2018.00104
https://doi.org/10.1016/s0166-4328(05)80179-2
https://doi.org/10.1016/s0166-4328(05)80179-2
https://doi.org/10.1016/s0531-5565(96)00037-x
https://doi.org/10.1007/s10548-012-0267-5
https://doi.org/10.1007/s11357-018-0019-x
https://doi.org/10.1095/biolreprod21.1.193
https://doi.org/10.1038/mp.2017.244
https://doi.org/10.1038/mp.2017.244
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

of the dorsal hippocampus in the chronic unpredictable stress rat model.
J. Neurosci. 39, 3640–3650. doi: 10.1523/JNEUROSCI.2192-18.2019

Maheswaran, S., Barjat, H., Rueckert, D., Bate, S. T., Howlett, D. R., Tilling, L.,
et al. (2009). Longitudinal regional brain volume changes quantified in normal
aging and Alzheimer’s APP × PS1 mice using MRI. Brain Res. 1270, 19–32.
doi: 10.1016/j.brainres.2009.02.045

Markowska, A. L., and Savonenko, A. V. (2002). Protective effect of practice
on cognition during aging: implications for predictive characteristics of
performance and efficacy of practice. Neurobiol. Learn. Mem. 78, 294–320.
doi: 10.1006/nlme.2002.4064

Markowska, A. L., Stone, W. S., Ingram, D. K., Reynolds, J., Gold, P. E.,
Conti, L. H., et al. (1989). Individual differences in aging: behavioral and
neurobiological correlates. Neurobiol. Aging 10, 31–43. doi: 10.1016/s0197-
4580(89)80008-9

Marrone, D. F., Satvat, E., Shaner, M. J., Worley, P. F., and Barnes, C. A. (2012).
Attenuated long-term Arc expression in the aged fascia dentata. Neurobiol.
Aging 33, 979–990. doi: 10.1016/j.neurobiolaging.2010.07.022

Marshall, H. J., Pezze, M. A., K. Fone, C. F., and Cassaday, H. J. (2019). Age-
related differences in appetitive trace conditioning and novel object recognition
procedures. Neurobiol. Learn. Mem. 164:107041. doi: 10.1016/j.nlm.2019.
107041

Martinez-Canabal, A., Akers, K. G., Josselyn, S. A., and Frankland, P. W. (2013).
Age-dependent effects of hippocampal neurogenesis suppression on spatial
learning. Hippocampus 23, 66–74. doi: 10.1002/hipo.22054

Martinez de Toda, I., Garrido, A., Vida, C., Gomez-Cabrera, M. C., Vina, J., and
De la Fuente, M. (2018). Frailty quantified by the ‘‘valencia score’’ as a potential
predictor of lifespan in mice. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1323–1329.
doi: 10.1093/gerona/gly064

Martinez de Toda, I., Mate, I., Vida, C., Cruces, J., and De la Fuente, M.
(2016). Immune function parameters as markers of biological age
and predictors of longevity. Aging 8, 3110–3119. doi: 10.18632/aging.
101116

Matt, D. W., Lee, J., Sarver, P. L., Judd, H. L., and Lu, J. K. (1986).
Chronological changes in fertility, fecundity and steroid hormone secretion
during consecutive pregnancies in aging rats. Biol. Reprod. 34, 478–487.
doi: 10.1095/biolreprod34.3.478

Mattson, M. P., and Arumugam, T. V. (2018). Hallmarks of brain aging: adaptive
and pathological modification by metabolic states. Cell Metab. 27, 1176–1199.
doi: 10.1016/j.cmet.2018.05.011

Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M., and Cheng, A. (2018).
Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev.
Neurosci. 19, 63–80. doi: 10.1038/nrn.2017.156

Matzel, L. D., Light, K. R., Wass, C., Colas-Zelin, D., Denman-Brice, A.,
Waddel, A. C., et al. (2011). Longitudinal attentional engagement rescues mice
from age-related cognitive declines and cognitive inflexibility. Learn. Mem. 18,
345–356. doi: 10.1101/lm.2034711

McAvinue, L. P., Habekost, T., Johnson, K. A., Kyllingsbaek, S., Vangkilde, S.,
Bundesen, C., et al. (2012). Sustained attention, attentional selectivity and
attentional capacity across the lifespan. Atten. Percept. Psychophys. 74,
1570–1582. doi: 10.3758/s13414-012-0352-6

McGrath, R., Robinson-Lane, S. G., Cook, S., Clark, B. C., Herrmann, S.,
O’Connor, M. L., et al. (2019). Handgrip strength is associated with poorer
cognitive functioning in aging americans. J. Alzheimers Dis. 70, 1187–1196.
doi: 10.3233/JAD-190042

McGuiness, J. A., Scheinert, R. B., Asokan, A., Stadler, V. C., Lee, C. S., Rani, A.,
et al. (2017). Indomethacin increases neurogenesis across age groups and
improves delayed probe trial difference scores in middle-aged rats. Front. Aging
Neurosci. 9:280. doi: 10.3389/fnagi.2017.00280

McNab, F., Zeidman, P., Rutledge, R. B., Smittenaar, P., Brown, H. R.,
Adams, R. A., et al. (2015). Age-related changes in working memory and the
ability to ignore distraction. Proc. Natl. Acad. Sci. U S A 112, 6515–6518.
doi: 10.1073/pnas.1504162112

McQuail, J. A., Krause, E. G., Setlow, B., Scheuer, D. A., and Bizon, J. L. (2018).
Stress-induced corticosterone secretion covaries with working memory in
aging.Neurobiol. Aging 71, 156–160. doi: 10.1016/j.neurobiolaging.2018.07.015

Meyza, K. Z., Boguszewski, P. M., Nikolaev, E., and Zagrodzka, J. (2011). Age
increases anxiety and reactivity of the fear/anxiety circuit in Lewis rats. Behav.
Brain Res. 225, 192–200. doi: 10.1016/j.bbr.2011.07.011

Miettinen, R., Sirvio, J., Riekkinen, P., Sr, Laakso, M. P., Riekkinen, M., and
Riekkinen, P., Jr. (1993). Neocortical, hippocampal and septal parvalbumin-
and somatostatin-containing neurons in young and aged rats: correlation with
passive avoidance and water maze performance. Neuroscience 53, 367–378.
doi: 10.1016/0306-4522(93)90201-p

Milgram, N. W., Siwak-Tapp, C. T., Araujo, J., and Head, E. (2006).
Neuroprotective effects of cognitive enrichment. Ageing Res. Rev. 5, 354–369.
doi: 10.1016/j.arr.2006.04.004

Mirmiran, M., van den Dungen, H., and Uylings, H. B. (1982). Sleep patterns
during rearing under different environmental conditions in juvenile rats. Brain
Res. 233, 287–298. doi: 10.1016/0006-8993(82)91203-3

Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L., and de Cabo, R. (2015).
Animalmodels of aging research: implications for human aging and age-related
diseases. Annu. Rev. Anim. Biosci. 3, 283–303. doi: 10.1146/annurev-animal-
022114-110829

Miyagawa, H., Hasegawa, M., Fukuta, T., Amano, M., Yamada, K., and
Nabeshima, T. (1998). Dissociation of impairment between spatial memory
and motor function and emotional behavior in aged rats. Behav. Brain Res. 91,
73–81. doi: 10.1016/s0166-4328(97)00105-8

Moeller, M., Hirose, M., Mueller, S., Roolf, C., Baltrusch, S., Ibrahim, S.,
et al. (2014). Inbred mouse strains reveal biomarkers that are pro-longevity,
antilongevity or role switching. Aging Cell 13, 729–738. doi: 10.1111/acel.
12226

Montaron, M. F., Charrier, V., Blin, N., Garcia, P., and Abrous, D. N. (2020).
Responsiveness of dentate neurons generated throughout adult life is associated
with resilience to cognitive aging.Aging Cell 19:e13161. doi: 10.1111/acel.13161

Moretti, M., de Souza, A. G., de Chaves, G., de Andrade, V. M., Romao, P. R.,
Gavioli, E. C., et al. (2011). Emotional behavior in middle-aged rats:
implications for geriatric psychopathologies. Physiol. Behav. 102, 115–120.
doi: 10.1016/j.physbeh.2010.09.019

Morris, R. (1984). Developments of a water-maze procedure for studying spatial
learning in the rat. J. Neurosci. Methods 11, 47–60. doi: 10.1016/0165-
0270(84)90007-4

Morris, A. M., Churchwell, J. C., Kesner, R. P., and Gilbert, P. E. (2012). Selective
lesions of the dentate gyrus produce disruptions in place learning for adjacent
spatial locations. Neurobiol. Learn. Mem. 97, 326–331. doi: 10.1016/j.nlm.2012.
02.005

Moss, M. B. (1993). The longitudinal assessment of recognition memory in
aged rhesus monkeys. Neurobiol. Aging 14, 635–636. doi: 10.1016/0197-
4580(93)90052-d

Muir, J. L., Fischer, W., and Bjorklund, A. (1999). Decline in visual attention and
spatial memory in aged rats. Neurobiol. Aging 20, 605–615. doi: 10.1016/s0197-
4580(99)00098-6

Neidl, R., Schneider, A., Bousiges, O., Majchrzak, M., Barbelivien, A., de
Vasconcelos, A. P., et al. (2016). Late-life environmental enrichment
induces acetylation events and nuclear factor κB-dependent regulations in
the hippocampus of aged rats showing improved plasticity and learning.
J. Neurosci. 36, 4351–4361. doi: 10.1523/JNEUROSCI.3239-15.2016

Neuman, K. M., Molina-Campos, E., Musial, T. F., Price, A. L., Oh, K. J.,
Wolke, M. L., et al. (2015). Evidence for Alzheimer’s disease-linked synapse
loss and compensation in mouse and human hippocampal CA1 pyramidal
neurons. Brain Struct. Funct. 220, 3143–3165. doi: 10.1007/s00429-014-
0848-z

Neuner, S. M., Ding, S., and Kaczorowski, C. C. (2019a). Knockdown of
heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular
and molecular features of aging. Aging Cell 18:e12886. doi: 10.1111/acel.12886

Neuner, S. M., Heuer, S. E., Huentelman, M. J., O’Connell, K. M. S., and
Kaczorowski, C. C. (2019b). Harnessing genetic complexity to enhance
translatability of Alzheimer’s disease mouse models: a path toward precision
medicine. Neuron 101, 399.e5–411.e5. doi: 10.1016/j.neuron.2018.11.040

Neuner, S. M., Heuer, S. E., Zhang, J. G., Philip, V. M., and Kaczorowski, C. C.
(2019c). Identification of pre-symptomatic gene signatures that predict
resilience to cognitive decline in the genetically diverse AD-BXDmodel. Front.
Genet. 10:35. doi: 10.3389/fgene.2019.00035

Neuner, S. M., Garfinkel, B. P., Wilmott, L. A., Ignatowska-Jankowska, B. M.,
Citri, A., Orly, J., et al. (2016). Systems genetics identifies Hp1bp3 as a novel
modulator of cognitive aging. Neurobiol. Aging 46, 58–67. doi: 10.1016/j.
neurobiolaging.2016.06.008

Frontiers in Aging Neuroscience | www.frontiersin.org 27 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1523/JNEUROSCI.2192-18.2019
https://doi.org/10.1016/j.brainres.2009.02.045
https://doi.org/10.1006/nlme.2002.4064
https://doi.org/10.1016/s0197-4580(89)80008-9
https://doi.org/10.1016/s0197-4580(89)80008-9
https://doi.org/10.1016/j.neurobiolaging.2010.07.022
https://doi.org/10.1016/j.nlm.2019.107041
https://doi.org/10.1016/j.nlm.2019.107041
https://doi.org/10.1002/hipo.22054
https://doi.org/10.1093/gerona/gly064
https://doi.org/10.18632/aging.101116
https://doi.org/10.18632/aging.101116
https://doi.org/10.1095/biolreprod34.3.478
https://doi.org/10.1016/j.cmet.2018.05.011
https://doi.org/10.1038/nrn.2017.156
https://doi.org/10.1101/lm.2034711
https://doi.org/10.3758/s13414-012-0352-6
https://doi.org/10.3233/JAD-190042
https://doi.org/10.3389/fnagi.2017.00280
https://doi.org/10.1073/pnas.1504162112
https://doi.org/10.1016/j.neurobiolaging.2018.07.015
https://doi.org/10.1016/j.bbr.2011.07.011
https://doi.org/10.1016/0306-4522(93)90201-p
https://doi.org/10.1016/j.arr.2006.04.004
https://doi.org/10.1016/0006-8993(82)91203-3
https://doi.org/10.1146/annurev-animal-022114-110829
https://doi.org/10.1146/annurev-animal-022114-110829
https://doi.org/10.1016/s0166-4328(97)00105-8
https://doi.org/10.1111/acel.12226
https://doi.org/10.1111/acel.12226
https://doi.org/10.1111/acel.13161
https://doi.org/10.1016/j.physbeh.2010.09.019
https://doi.org/10.1016/0165-0270(84)90007-4
https://doi.org/10.1016/0165-0270(84)90007-4
https://doi.org/10.1016/j.nlm.2012.02.005
https://doi.org/10.1016/j.nlm.2012.02.005
https://doi.org/10.1016/0197-4580(93)90052-d
https://doi.org/10.1016/0197-4580(93)90052-d
https://doi.org/10.1016/s0197-4580(99)00098-6
https://doi.org/10.1016/s0197-4580(99)00098-6
https://doi.org/10.1523/JNEUROSCI.3239-15.2016
https://doi.org/10.1007/s00429-014-0848-z
https://doi.org/10.1007/s00429-014-0848-z
https://doi.org/10.1111/acel.12886
https://doi.org/10.1016/j.neuron.2018.11.040
https://doi.org/10.3389/fgene.2019.00035
https://doi.org/10.1016/j.neurobiolaging.2016.06.008
https://doi.org/10.1016/j.neurobiolaging.2016.06.008
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Niedernhofer, L. J., Gurkar, A. U., Wang, Y., Vijg, J., J. Hoeijmakers, H. J.,
and Robbins, P. D. (2018). Nuclear genomic instability and aging.
Annu. Rev. Biochem. 87, 295–322. doi: 10.1146/annurev-biochem-062917-
012239

Nithianantharajah, J., and Hannan, A. J. (2006). Enriched environments,
experience-dependent plasticity and disorders of the nervous system. Nat. Rev.
Neurosci. 7, 697–709. doi: 10.1038/nrn1970

Novick, A., Yaroslavsky, I., and Tejani-Butt, S. (2008). Strain differences in the
expression of dopamine D1 receptors in Wistar-Kyoto (WKY) andWistar rats.
Life Sci. 83, 74–78. doi: 10.1016/j.lfs.2008.05.006

O’Connell, K. M. S., Ouellette, A. R., Neuner, S. M., Dunn, A. R., and
Kaczorowski, C. C. (2019). Genetic background modifies CNS-mediated
sensorimotor decline in the AD-BXD mouse model of genetic diversity
in Alzheimer’s disease. Genes Brain Behav. 18:e12603. doi: 10.1111/gbb.
12603

Oh, M. M., and Disterhoft, J. F. (2020). Learning and aging affect neuronal
excitability and learning. Neurobiol. Learn. Mem. 167:107133. doi: 10.1016/j.
nlm.2019.107133

Olvera-Cortés, M. E., García-Alcántar, I., Gutierrez-Guzman, B., Hernandez-
Perez, J. J., Lopez-Vazquez, M. A., and Cervantes, M. (2012). Differential
learning-related changes in theta activity during place learning in young
and old rats. Behav. Brain Res. 226, 555–562. doi: 10.1016/j.bbr.2011.
10.019

Oveisgharan, S., Wilson, R. S., Yu, L., Schneider, J. A., and Bennett, D. A.
(2020). Association of early-life cognitive enrichment with Alzheimer
disease pathological changes and cognitive decline. JAMA Neurol. 77, 1–8.
doi: 10.1001/jamaneurol.2020.1941

Paban, V., Billard, J. M., Bouet, V., Freret, T., Boulouard, M., Chambon, C., et al.
(2013). Genomic transcriptional profiling in LOU/C/Jall rats identifies genes
for successful aging. Brain Struct. Funct. 218, 1501–1512. doi: 10.1007/s00429-
012-0472-8

Palop, J. J., Jones, B., Kekonius, L., Chin, J., Yu, G. Q., Raber, J., et al. (2003).
Neuronal depletion of calcium-dependent proteins in the dentate gyrus is
tightly linked to Alzheimer’s disease-related cognitive deficits. Proc. Natl. Acad.
Sci. U S A 100, 9572–9577. doi: 10.1073/pnas.1133381100

Parent, M. J., Zimmer, E. R., Shin, M., Kang, M. S., Fonov, V. S.,
Mathieu, A., et al. (2017). Multimodal imaging in rat model recapitulates
Alzheimer’s disease biomarkers abnormalities. J. Neurosci. 37, 12263–12271.
doi: 10.1523/JNEUROSCI.1346-17.2017

Paris, J. J., Walf, A. A., and Frye, C. A. (2011). II. Cognitive performance of
middle-aged female rats is influenced by capacity to metabolize progesterone
in the prefrontal cortex and hippocampus. Brain Res. 1379, 149–163.
doi: 10.1016/j.brainres.2010.10.099

Park, C. S., Valomon, A., and Welzl, H. (2015). Integrative transcriptome
profiling of cognitive aging and its preservation through Ser/Thr protein
phosphatase regulation. PLoS One 10:e0130891. doi: 10.1371/journal.pone.01
30891

Peng, F., Xie, F., and Muzik, O. (2018). Alteration of copper fluxes in brain aging:
a longitudinal study in rodent using 64CuCl2-PET/CT. Aging Dis. 9, 109–118.
doi: 10.14336/AD.2017.1025

Penner, M. R., Roth, T. L., Chawla, M. K., Hoang, L. T., Roth, E. D., Lubin, F. D.,
et al. (2011). Age-related changes in Arc transcription and DNA methylation
within the hippocampus. Neurobiol. Aging 32, 2198–2210. doi: 10.1016/j.
neurobiolaging.2010.01.009

Pignataro, A., Meli, G., Pagano, R., Fontebasso, V., Battistella, R., Conforto, G.,
et al. (2019). Activity-induced amyloid-beta oligomers drive compensatory
synaptic rearrangements in brain circuits controlling memory of
presymptomatic Alzheimer’s disease mice. Biol. Psychiatry 86, 185–195.
doi: 10.1016/j.biopsych.2018.10.018

Pitsikas, N., Biagini, L., and Algeri, S. (1991). Previous experience facilitates
preservation of spatial memory in the senescent rat. Physiol. Behav. 49,
823–825. doi: 10.1016/0031-9384(91)90325-i

Praetorius Bjork, M., Johansson, B., and Hassing, L. B. (2016). I forgot when I
lost my grip-strong associations between cognition and grip strength in level of
performance and change across time in relation to impending death.Neurobiol.
Aging 38, 68–72. doi: 10.1016/j.neurobiolaging.2015.11.010

Rapp, P. R., Banuelos, C., and Myrum, C. (2020). ‘‘Trajectories of healthy
mindspan: from genes to neural networks,’’ in The Cambridge Handbook of

Cognitive Aging: A Life Course Perspective, eds A. Thomas and A. Gutchess
(Cambridge: Cambridge University Press), 62–81.

Rapp, P. R., Rosenberg, R. A., and Gallagher, M. (1987). An evaluation of
spatial information processing in aged rats. Behav. Neurosci. 101, 3–12.
doi: 10.1037/0735-7044.101.1.3

Ray, S., Corenblum, M. J., Anandhan, A., Reed, A., Ortiz, F. O., Zhang, D. D., et al.
(2018). A role for Nrf2 expression in defining the aging of hippocampal neural
stem cells. Cell Transplant. 27, 589–606. doi: 10.1177/0963689718774030

Reichel, J. M., Bedenk, B. T., Czisch, M., and Wotjak, C. T. (2017). Age-related
cognitive decline coincides with accelerated volume loss of the dorsal but
not ventral hippocampus in mice. Hippocampus 27, 28–35. doi: 10.1002/hipo.
22668

Reuter-Lorenz, P. A., and Cappell, K. A. (2008). Neurocognitive aging and the
compensation hypothesis. Curr. Dir. Psychol. Sci. 17, 177–182. doi: 10.1111/j.
1467-8721.2008.00570.x

Rick, J. T., Murphy, M. P., Ivy, G. O., and Milgram, N. W. (1996). Short intertrial
intervals impair water maze performance in old Fischer 344 rats. J. Gerontol. A
Biol. Sci. Med. Sci. 51, B253–260. doi: 10.1093/gerona/51a.4.b253

Roberson, E. D., Defazio, R. A., Barnes, C. A., Alexander, G. E., Bizon, J. L.,
Bowers, D., et al. (2012). Challenges and opportunities for characterizing
cognitive aging across species. Front. Aging Neurosci. 4:6. doi: 10.3389/fnagi.
2012.00006

Rosenberg, R. S., Zepelin, H., and Rechtschaffen, A. (1979). Sleep in young and old
rats. J. Gerontol. 34, 525–532. doi: 10.1093/geronj/34.4.525

Rosenfeld, C. S. (2017). Sex-dependent differences in voluntary physical activity.
J. Neurosci. Res. 95, 279–290. doi: 10.1002/jnr.23896

Rowe, W. B., Blalock, E. M., Chen, K. C., Kadish, I., Wang, D., Barrett, J. E.,
et al. (2007). Hippocampal expression analyses reveal selective association of
immediate-early, neuroenergetic and myelinogenic pathways with cognitive
impairment in aged rats. J. Neurosci. 27, 3098–3110. doi: 10.1523/JNEUROSCI.
4163-06.2007

Rowe, W. B., Spreekmeester, E., Meaney, M. J., Quirion, R., and Rochford, J.
(1998). Reactivity to novelty in cognitively-impaired and cognitively-
unimpaired aged rats and young rats. Neuroscience 83, 669–680.
doi: 10.1016/s0306-4522(97)00464-8

Roy, U., Stute, L., Hofling, C., Hartlage-Rubsamen, M., Matysik, J., Robetaner, S.,
et al. (2018). Sex- and age-specific modulation of brain GABA levels in a mouse
model of Alzheimer’s disease. Neurobiol. Aging 62, 168–179. doi: 10.1016/j.
neurobiolaging.2017.10.015

Sabolek, H. R., Bunce, J. G., Giuliana, D., and Chrobak, J. J. (2004).
Within-subject memory decline in middle-aged rats: effects of intraseptal
tacrine. Neurobiol. Aging 25, 1221–1229. doi: 10.1016/j.neurobiolaging.2003.
12.006

Salvatore, M. F., Pruett, B. S., Spann, S. L., and Dempsey, C. (2009). Aging
reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in
locomotor activity generation. PLoS One 4:e8466. doi: 10.1371/journal.pone.
0008466

Sampedro-Piquero, P., Arias, J. L., and Begega, A. (2014). Behavioral testing-
related changes in the expression of Synapsin I and glucocorticoid receptors
in standard and enriched aged Wistar rats. Exp. Gerontol. 58, 292–302.
doi: 10.1016/j.exger.2014.09.004

Sampedro-Piquero, P., Zancada-Menendez, C., and Begega, A. (2015). Housing
condition-related changes involved in reversal learning and its c-Fos associated
activity in the prefrontal cortex. Neuroscience 307, 14–25. doi: 10.1016/j.
neuroscience.2015.08.038

Samson, R. D., Lester, A. W., Duarte, L., Venkatesh, A., and Barnes, C. A.
(2017). Emergence of beta-band oscillations in the aged rat amygdala during
discrimination learning and decision making tasks. eNeuro 4:ENEURO.0245-
17.2017. doi: 10.1523/ENEURO.0245-17.2017

Satinder, K. P. (1981). Ontogeny and interdependence of genetically selected
behaviors in rats: avoidance response and open field. J. Comp. Physiol. Psychol.
95, 175–187. doi: 10.1037/h0077754

Scheff, S. W., Sparks, D. L., and Price, D. A. (1996). Quantitative assessment of
synaptic density in the outer molecular layer of the hippocampal dentate gyrus
in Alzheimer’s disease. Dementia 7, 226–232. doi: 10.1159/000106884

Segar, T. M., Kasckow, J. W., Welge, J. A., and Herman, J. P. (2009). Heterogeneity
of neuroendocrine stress responses in aging rat strains. Physiol. Behav. 96, 6–11.
doi: 10.1016/j.physbeh.2008.07.024

Frontiers in Aging Neuroscience | www.frontiersin.org 28 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1146/annurev-biochem-062917-012239
https://doi.org/10.1146/annurev-biochem-062917-012239
https://doi.org/10.1038/nrn1970
https://doi.org/10.1016/j.lfs.2008.05.006
https://doi.org/10.1111/gbb.12603
https://doi.org/10.1111/gbb.12603
https://doi.org/10.1016/j.nlm.2019.107133
https://doi.org/10.1016/j.nlm.2019.107133
https://doi.org/10.1016/j.bbr.2011.10.019
https://doi.org/10.1016/j.bbr.2011.10.019
https://doi.org/10.1001/jamaneurol.2020.1941
https://doi.org/10.1007/s00429-012-0472-8
https://doi.org/10.1007/s00429-012-0472-8
https://doi.org/10.1073/pnas.1133381100
https://doi.org/10.1523/JNEUROSCI.1346-17.2017
https://doi.org/10.1016/j.brainres.2010.10.099
https://doi.org/10.1371/journal.pone.0130891
https://doi.org/10.1371/journal.pone.0130891
https://doi.org/10.14336/AD.2017.1025
https://doi.org/10.1016/j.neurobiolaging.2010.01.009
https://doi.org/10.1016/j.neurobiolaging.2010.01.009
https://doi.org/10.1016/j.biopsych.2018.10.018
https://doi.org/10.1016/0031-9384(91)90325-i
https://doi.org/10.1016/j.neurobiolaging.2015.11.010
https://doi.org/10.1037/0735-7044.101.1.3
https://doi.org/10.1177/0963689718774030
https://doi.org/10.1002/hipo.22668
https://doi.org/10.1002/hipo.22668
https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1093/gerona/51a.4.b253
https://doi.org/10.3389/fnagi.2012.00006
https://doi.org/10.3389/fnagi.2012.00006
https://doi.org/10.1093/geronj/34.4.525
https://doi.org/10.1002/jnr.23896
https://doi.org/10.1523/JNEUROSCI.4163-06.2007
https://doi.org/10.1523/JNEUROSCI.4163-06.2007
https://doi.org/10.1016/s0306-4522(97)00464-8
https://doi.org/10.1016/j.neurobiolaging.2017.10.015
https://doi.org/10.1016/j.neurobiolaging.2017.10.015
https://doi.org/10.1016/j.neurobiolaging.2003.12.006
https://doi.org/10.1016/j.neurobiolaging.2003.12.006
https://doi.org/10.1371/journal.pone.0008466
https://doi.org/10.1371/journal.pone.0008466
https://doi.org/10.1016/j.exger.2014.09.004
https://doi.org/10.1016/j.neuroscience.2015.08.038
https://doi.org/10.1016/j.neuroscience.2015.08.038
https://doi.org/10.1523/ENEURO.0245-17.2017
https://doi.org/10.1037/h0077754
https://doi.org/10.1159/000106884
https://doi.org/10.1016/j.physbeh.2008.07.024
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T.,
Gwin, J. T., et al. (2010). Motor control and aging: links to age-related brain
structural, functional and biochemical effects. Neurosci. Biobehav. Rev. 34,
721–733. doi: 10.1016/j.neubiorev.2009.10.005

Sheth, K. A., Iyer, C. C., Wier, C. G., Crum, A. E., Bratasz, A., Kolb, S. J., et al.
(2018). Muscle strength and size are associated with motor unit connectivity in
aged mice. Neurobiol. Aging 67, 128–136. doi: 10.1016/j.neurobiolaging.2018.
03.016

Shoji, H., and Miyakawa, T. (2019). Age-related behavioral changes from young
to old age in male mice of a C57BL/6J strain maintained under a genetic
stability program.Neuropsychopharmacol. Rep. 39, 100–118. doi: 10.1002/npr2.
12052

Shoji, H., Takao, K., Hattori, S., and Miyakawa, T. (2016). Age-related changes in
behavior in C57BL/6J mice from young adulthood to middle age. Mol. Brain
9:11. doi: 10.1186/s13041-016-0191-9

Simon, N. W., LaSarge, C. L., Montgomery, K. S., Williams, M. T., Mendez, I. A.,
Setlow, B., et al. (2010). Good things come to those who wait: attenuated
discounting of delayed rewards in aged Fischer 344 rats. Neurobiol. Aging 31,
853–862. doi: 10.1016/j.neurobiolaging.2008.06.004

Small, S. A., Chawla, M. K., Buonocore, M., Rapp, P. R., and Barnes, C. A.
(2004). Imaging correlates of brain function in monkeys and rats isolates a
hippocampal subregion differentially vulnerable to aging. Proc. Natl. Acad. Sci.
U S A 101, 7181–7186. doi: 10.1073/pnas.0400285101

Smith, G., Rani, A., Kumar, A., Barter, J., and Foster, T. C. (2020). Hippocampal
subregion transcriptomic profiles reflect strategy selection during cognitive
aging. J. Neurosci. 40, 4888–4899. doi: 10.1523/JNEUROSCI.2944-19.2020

Smith, E. R., Stefanick, M. L., Clark, J. T., and Davidson, J. M. (1992). Hormones
and sexual behavior in relationship to aging in male rats. Horm. Behav. 26,
110–135. doi: 10.1016/0018-506x(92)90035-t

Snigdha, S., Yassa, M. A., deRivera, C., Milgram, N.W., and Cotman, C.W. (2017).
Pattern separation and goal-directed behavior in the aged canine. Learn. Mem.
24, 123–131. doi: 10.1101/lm.043422.116

Snyder, J. M., Ward, J. M., and Treuting, P. M. (2016). Cause-of-death analysis in
rodent aging studies. Vet. Pathol. 53, 233–243. doi: 10.1177/0300985815610391

Spangler, E. L., and Ingram, D. K. (1996). Utilization of the rat as a model of
mammalian aging: impact of pathology on behavior. Gerontology 42, 301–311.
doi: 10.1159/000213808

Spangler, E. L., Waggie, K. S., Hengemihle, J., Roberts, D., Hess, B., and
Ingram, D. K. (1994). Behavioral assessment of aging in male Fischer 344 and
Brown Norway rat strains and their F1 hybrid. Neurobiol. Aging 15, 319–328.
doi: 10.1016/0197-4580(94)90027-2

Sparling, J. E., Baker, S. L., and Bielajew, C. (2018). Effects of combined pre-
and post-natal enrichment on anxiety-like, social and cognitive behaviours in
juvenile and adult rat offspring. Behav. Brain Res. 353, 40–50. doi: 10.1016/j.
bbr.2018.06.033

Speisman, R. B., Kumar, A., Rani, A., Pastoriza, J. M., Severance, J. E.,
Foster, T. C., et al. (2013). Environmental enrichment restores neurogenesis
and rapid acquisition in aged rats.Neurobiol. Aging 34, 263–274. doi: 10.1016/j.
neurobiolaging.2012.05.023

Staffaroni, A. M., Brown, J. A., Casaletto, K. B., Elahi, F. M., Deng, J., Neuhaus, J.,
et al. (2018). The longitudinal trajectory of default mode network connectivity
in healthy older adults varies as a function of age and is associated with
changes in episodic memory and processing speed. J. Neurosci. 38, 2809–2817.
doi: 10.1523/JNEUROSCI.3067-17.2018

Stauffer, J., Panda, B., and Ilmonen, P. (2018). Telomere length, sibling
competition and development of antioxidant defense in wild house mice.Mech.
Ageing Dev. 169, 45–52. doi: 10.1016/j.mad.2017.10.002

Steffener, J., Brickman, A. M., Rakitin, B. C., Gazes, Y., and Stern, Y. (2009). The
impact of age-related changes on working memory functional activity. Brain
Imaging Behav. 3, 142–153. doi: 10.1007/s11682-008-9056-x

Steffener, J., and Stern, Y. (2012). Exploring the neural basis of cognitive reserve in
aging. Biochim. Biophys. Acta 1822, 467–473. doi: 10.1016/j.bbadis.2011.09.012

Stein, L. R., O’Dell, K. A., Funatsu, M., Zorumski, C. F., and Izumi, Y.
(2016). Short-term environmental enrichment enhances synaptic plasticity in
hippocampal slices from aged rats. Neuroscience 329, 294–305. doi: 10.1016/j.
neuroscience.2016.05.020

Stern, Y. (2009). Cognitive reserve. Neuropsychologia 47, 2015–2028.
doi: 10.1016/j.neuropsychologia.2009.03.004

Stern, Y., Arenaza-Urquijo, E. M., Bartres-Faz, D., Belleville, S., Cantilon, M.,
Chetelat, G., et al. (2020). Whitepaper: defining and investigating cognitive
reserve, brain reserve and brain maintenance. Alzheimers Dement. 16,
1305–1311. doi: 10.1016/j.jalz.2018.07.219

Stern, J. J., and Murphy, M. (1972). The effects of thyroxine and estradiol
benzoate on wheel running activity in female rats. Physiol. Behav. 9, 79–82.
doi: 10.1016/0031-9384(72)90269-7

Stewart, J., Mitchell, J., and Kalant, N. (1989). The effects of life-long food
restriction on spatial memory in young and aged Fischer 344 rats measured in
the eight-arm radial and theMorris water mazes.Neurobiol. Aging 10, 669–675.
doi: 10.1016/0197-4580(89)90003-1

Stewart, S. T., Zelinski, E. M., and Wallace, R. B. (2000). Age, medical conditions
and gender as interactive predictors of cognitive performance: the effects
of selective survival. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, P381–383.
doi: 10.1093/geronb/55.6.p381

Stijntjes, M., Aartsen, M. J., Taekema, D. G., Gussekloo, J., Huisman, M.,
Meskers, C., et al. (2017). Temporal relationship between cognitive and physical
performance in middle-aged to oldest old people. J. Gerontol. A Biol. Sci. Med.
Sci. 72, 662–668. doi: 10.1093/gerona/glw133

Stone, W. S., Altman, H. J., Berman, R. F., Caldwell, D. F., and Kilbey, M. M.
(1989). Association of sleep parameters and memory in intact old rats and
young rats with lesions in the nucleus basalis magnocellularis. Behav. Neurosci.
103, 755–764. doi: 10.1037//0735-7044.103.4.755

Stone, W. S., Rudd, R. J., Parsons, M. W., and Gold, P. E. (1997). Memory
scores in middle-aged rats predict later deficits in memory, paradoxical
sleep and blood glucose regulation in old age. Exp. Aging Res. 23, 287–300.
doi: 10.1080/03610739708254285

Stowie, A. C., andGlass, J. D. (2015). Longitudinal study of changes in daily activity
rhythms over the lifespan in individual male and female C57BL/6J mice. J. Biol.
Rhythms 30, 563–568. doi: 10.1177/0748730415598023

Sullivan, E. V., Adalsteinsson, E., Sood, R., Mayer, D., Bell, R., McBride, W.,
et al. (2006). Longitudinal brain magnetic resonance imaging study of the
alcohol-preferring rat. Part I: adult brain growth. Alcohol. Clin. Exp. Res. 30,
1234–1247. doi: 10.1111/j.1530-0277.2006.00145.x

Sutcliffe, J. S., Marshall, K. M., and Neill, J. C. (2007). Influence of
gender on working and spatial memory in the novel object recognition
task in the rat. Behav. Brain Res. 177, 117–125. doi: 10.1016/j.bbr.2006.
10.029

Talboom, J. S., West, S. G., Engler-Chiurazzi, E. B., Enders, C. K., Crain, I.,
and Bimonte-Nelson, H. A. (2014). Learning to remember: cognitive training-
induced attenuation of age-related memory decline depends on sex and
cognitive demand and can transfer to untrained cognitive domains. Neurobiol.
Aging 35, 2791–2802. doi: 10.1016/j.neurobiolaging.2014.06.008

Templer, V. L., Wise, T. B., and Heimer-McGinn, V. R. (2019). Social
housing protects against age-related working memory decline independently
of physical enrichment in rats. Neurobiol. Aging 75, 117–125. doi: 10.1016/j.
neurobiolaging.2018.11.016

Toda, T., and Gage, F. H. (2018). Review: adult neurogenesis contributes to
hippocampal plasticity. Cell Tissue Res. 373, 693–709. doi: 10.1007/s00441-017-
2735-4

Tomas Pereira, I., Gallagher, M., and Rapp, P. R. (2015). Head west or
left, east or right: interactions between memory systems in neurocognitive
aging. Neurobiol. Aging 36, 3067–3078. doi: 10.1016/j.neurobiolaging.2015.
07.024

Tong, L., Shen, H., Perreau, V. M., Balazs, R., and Cotman, C. W. (2001). Effects
of exercise on gene-expression profile in the rat hippocampus. Neurobiol. Dis.
8, 1046–1056. doi: 10.1006/nbdi.2001.0427

Torras-Garcia, M., Costa-Miserachs, D., Coll-Andreu, M., and Portell-Cortes, I.
(2005). Decreased anxiety levels related to aging. Exp. Brain Res. 164, 177–184.
doi: 10.1007/s00221-005-2240-y

Treit, D., and Fundytus, M. (1988). Thigmotaxis as a test for anxiolytic
activity in rats. Pharmacol. Biochem. Behav. 31, 959–962. doi: 10.1016/0091-
3057(88)90413-3

Tremblay, M. E., Zettel, M. L., Ison, J. R., Allen, P. D., and Majewska, A. K. (2012).
Effects of aging and sensory loss on glial cells in mouse visual and auditory
cortices. Glia 60, 541–558. doi: 10.1002/glia.22287

Turturro, A., Witt, W. W., Lewis, S., Hass, B. S., Lipman, R. D., and Hart, R. W.
(1999). Growth curves and survival characteristics of the animals used in the

Frontiers in Aging Neuroscience | www.frontiersin.org 29 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1016/j.neubiorev.2009.10.005
https://doi.org/10.1016/j.neurobiolaging.2018.03.016
https://doi.org/10.1016/j.neurobiolaging.2018.03.016
https://doi.org/10.1002/npr2.12052
https://doi.org/10.1002/npr2.12052
https://doi.org/10.1186/s13041-016-0191-9
https://doi.org/10.1016/j.neurobiolaging.2008.06.004
https://doi.org/10.1073/pnas.0400285101
https://doi.org/10.1523/JNEUROSCI.2944-19.2020
https://doi.org/10.1016/0018-506x(92)90035-t
https://doi.org/10.1101/lm.043422.116
https://doi.org/10.1177/0300985815610391
https://doi.org/10.1159/000213808
https://doi.org/10.1016/0197-4580(94)90027-2
https://doi.org/10.1016/j.bbr.2018.06.033
https://doi.org/10.1016/j.bbr.2018.06.033
https://doi.org/10.1016/j.neurobiolaging.2012.05.023
https://doi.org/10.1016/j.neurobiolaging.2012.05.023
https://doi.org/10.1523/JNEUROSCI.3067-17.2018
https://doi.org/10.1016/j.mad.2017.10.002
https://doi.org/10.1007/s11682-008-9056-x
https://doi.org/10.1016/j.bbadis.2011.09.012
https://doi.org/10.1016/j.neuroscience.2016.05.020
https://doi.org/10.1016/j.neuroscience.2016.05.020
https://doi.org/10.1016/j.neuropsychologia.2009.03.004
https://doi.org/10.1016/j.jalz.2018.07.219
https://doi.org/10.1016/0031-9384(72)90269-7
https://doi.org/10.1016/0197-4580(89)90003-1
https://doi.org/10.1093/geronb/55.6.p381
https://doi.org/10.1093/gerona/glw133
https://doi.org/10.1037//0735-7044.103.4.755
https://doi.org/10.1080/03610739708254285
https://doi.org/10.1177/0748730415598023
https://doi.org/10.1111/j.1530-0277.2006.00145.x
https://doi.org/10.1016/j.bbr.2006.10.029
https://doi.org/10.1016/j.bbr.2006.10.029
https://doi.org/10.1016/j.neurobiolaging.2014.06.008
https://doi.org/10.1016/j.neurobiolaging.2018.11.016
https://doi.org/10.1016/j.neurobiolaging.2018.11.016
https://doi.org/10.1007/s00441-017-2735-4
https://doi.org/10.1007/s00441-017-2735-4
https://doi.org/10.1016/j.neurobiolaging.2015.07.024
https://doi.org/10.1016/j.neurobiolaging.2015.07.024
https://doi.org/10.1006/nbdi.2001.0427
https://doi.org/10.1007/s00221-005-2240-y
https://doi.org/10.1016/0091-3057(88)90413-3
https://doi.org/10.1016/0091-3057(88)90413-3
https://doi.org/10.1002/glia.22287
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

biomarkers of aging program. J. Gerontol. A Biol. Sci. Med. Sci. 54, B492–B501.
doi: 10.1093/gerona/54.11.b492

Upadhyay, J., Baker, S. J., Chandran, P.,Miller, L., Lee, Y.,Marek, G. J., et al. (2011).
Default-mode-like network activation in awake rodents. PLoS One 6:e27839.
doi: 10.1371/journal.pone.0027839

Vallee, M., MacCari, S., Dellu, F., Simon, H., Le Moal, M., and Mayo, W. (1999).
Long-term effects of prenatal stress and postnatal handling on age-related
glucocorticoid secretion and cognitive performance: a longitudinal study
in the rat. Eur. J. Neurosci. 11, 2906–2916. doi: 10.1046/j.1460-9568.1999.
00705.x

van der Staay, F. J., and Blokland, A. (1996). Behavioral differences between
outbred Wistar, inbred Fischer 344, Brown Norway and hybrid Fischer
344 × Brown Norway rats. Physiol. Behav. 60, 97–109. doi: 10.1016/0031-
9384(95)02274-0

van Duijn, S., Nabuurs, R. J., van Duinen, S. G., Natte, R., van Buchem, M. A.,
and Alia, A. (2013). Longitudinal monitoring of sex-related in vivo metabolic
changes in the brain of Alzheimer’s disease transgenic mouse using magnetic
resonance spectroscopy. J. Alzheimers Dis. 34, 1051–1059. doi: 10.3233/JAD-
122188

VanElzakker, M., Fevurly, R. D., Breindel, T., and Spencer, R. L. (2008).
Environmental novelty is associated with a selective increase in Fos expression
in the output elements of the hippocampal formation and the perirhinal cortex.
Learn. Mem. 15, 899–908. doi: 10.1101/lm.1196508

Van Gool, W. A., and Mirmiran, M. (1983). Age-related changes in the sleep
pattern of male adult rats. Brain Res. 279, 394–398. doi: 10.1016/0006-
8993(83)90217-2

van Groen, T., Kadish, I., and Wyss, J. M. (2002). Old rats remember old tricks;
memories of the water maze persist for 12 months. Behav. Brain Res. 136,
247–255. doi: 10.1016/s0166-4328(02)00137-7

Vann, S. D., Brown, M. W., Erichsen, J. T., and Aggleton, J. P. (2000). Fos imaging
reveals differential patterns of hippocampal and parahippocampal subfield
activation in rats in response to different spatial memory tests. J. Neurosci. 20,
2711–2718. doi: 10.1523/JNEUROSCI.20-07-02711.2000

Veng, L. M., Granholm, A. C., and Rose, G. M. (2003). Age-related sex differences
in spatial learning and basal forebrain cholinergic neurons in F344 rats. Physiol.
Behav. 80, 27–36. doi: 10.1016/s0031-9384(03)00219-1

Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. M., and Blasco, M. A.
(2013). Telomerase reverse transcriptase synergizes with calorie restriction
to increase health span and extend mouse longevity. PLoS One 8:e53760.
doi: 10.1371/journal.pone.0053760

Vicens, P., Redolat, R., and Carrasco, M. C. (2002). Effects of early spatial training
on water maze performance: a longitudinal study in mice. Exp. Gerontol. 37,
575–581. doi: 10.1016/s0531-5565(01)00217-0

Vlassara, H., Torreggiani, M., Post, J. B., Zheng, F., Uribarri, J., and Striker, G. E.
(2009). Role of oxidants/inflammation in declining renal function in chronic
kidney disease and normal aging.Kidney Int. Suppl. 114, S3–11. doi: 10.1038/ki.
2009.401

Volkers, K. M., and Scherder, E. J. (2011). Impoverished environment, cognition,
aging and dementia. Rev. Neurosci. 22, 259–266. doi: 10.1515/RNS.2011.026

Wahlin, A., MacDonald, S. W., deFrias, C. M., Nilsson, L. G., and Dixon, R. A.
(2006). How do health and biological age influence chronological age and sex
differences in cognitive aging: moderating, mediating, or both? Psychol. Aging
21, 318–332. doi: 10.1037/0882-7974.21.2.318

Wang, L., Cao, M., Pu, T., Huang, H., Marshall, C., and Xiao, M. (2018). Enriched
physical environment attenuates spatial and social memory impairments of
aged socially isolated mice. Int. J. Neuropsychopharmacol. 21, 1114–1127.
doi: 10.1093/ijnp/pyy084

Wang, Z., Liang, P., Jia, X., Qi, Z., Yu, L., Yang, Y., et al. (2011). Baseline
and longitudinal patterns of hippocampal connectivity in mild cognitive
impairment: evidence from resting state fMRI. J. Neurol. Sci. 309, 79–85.
doi: 10.1016/j.jns.2011.07.017

Wassouf, Z., and Schulze-Hentrich, J. M. (2019). Alpha-synuclein at the nexus of
genes and environment: the impact of environmental enrichment and stress on
brain health and disease. J. Neurochem. 150, 591–604. doi: 10.1111/jnc.14787

Weber, M., Wu, T., Hanson, J. E., Alam, N. M., Solanoy, H., Ngu, H., et al.
(2015). Cognitive deficits, changes in synaptic function, and brain pathology
in a mouse model of normal aging(1,2,3). eNeuro 2:ENEURO.0047-15.2015.
doi: 10.1523/ENEURO.0047-15.2015

Wells, A. M., Janes, A. C., Liu, X., Deschepper, C. F., Kaufman, M. J., and
Kantak, K. M. (2010). Medial temporal lobe functioning and structure
in the spontaneously hypertensive rat: comparison with Wistar-Kyoto
normotensive and Wistar-Kyoto hypertensive strains. Hippocampus 20,
787–797. doi: 10.1002/hipo.20681

White, L. R., Boyle, P. A., Foster, T. C., Gazzaley, A. H., and Disterhoft, J. F. (2019).
How do we validate approaches that aim to harness reserve to improve the
aging brain? Neurobiol. Aging 83, 145–149. doi: 10.1016/j.neurobiolaging.2019.
03.024

Wilhelm, C. J., and Mitchell, S. H. (2009). Strain differences in delay discounting
using inbred rats. Genes Brain Behav. 8, 426–434. doi: 10.1111/j.1601-183X.
2009.00484.x

Wilson, I. A., Gallagher, M., Eichenbaum, H., and Tanila, H. (2006).
Neurocognitive aging: prior memories hinder new hippocampal encoding.
Trends Neurosci. 29, 662–670. doi: 10.1016/j.tins.2006.10.002

Winocur, G. (1998). Environmental influences on cognitive decline in aged rats.
Neurobiol. Aging 19, 589–597. doi: 10.1016/s0197-4580(98)00107-9

Wolfer, D. P., and Lipp, H. P. (2000). Dissecting the behaviour of transgenic mice:
is it the mutation, the genetic background, or the environment? Exp. Physiol.
85, 627–634. doi: 10.1111/j.1469-445X.2000.02095.x

Wood, N. I., Glynn, D., and Morton, A. J. (2011). ‘‘Brain training’’ improves
cognitive performance and survival in a transgenic mouse model of
Huntington’s disease. Neurobiol. Dis. 42, 427–437. doi: 10.1016/j.nbd.2011.
02.005

Wu, M. V., Luna, V. M., and Hen, R. (2015). Running rescues a fear-based
contextual discrimination deficit in aged mice. Front. Syst. Neurosci. 9:114.
doi: 10.3389/fnsys.2015.00114

Wyss, J. M., Chambless, B. D., Kadish, I., and van Groen, T. (2000). Age-
related decline in water maze learning and memory in rats: strain differences.
Neurobiol. Aging 21, 671–681. doi: 10.1016/s0197-4580(00)00132-9

Xue, Q. L., Yang, H., Li, H. F., Abadir, P. M., Burks, T. N., Koch, L. G., et al.
(2016). Rapamycin increases grip strength and attenuates age-related decline
in maximal running distance in old low capacity runner rats. Aging 8, 769–776.
doi: 10.18632/aging.100929

Yagi, S., Chow, C., Lieblich, S. E., and Galea, L. A. (2016). Sex and strategy use
matters for pattern separation, adult neurogenesis and immediate early gene
expression in the hippocampus. Hippocampus 26, 87–101. doi: 10.1002/hipo.
22493

Yassa, M. A., and Stark, C. E. (2011). Pattern separation in the hippocampus.
Trends Neurosci. 34, 515–525. doi: 10.1016/j.tins.2011.06.006

Yau, J. L., Olsson, T., Morris, R. G., Noble, J., and Seckl, J. R. (1996). Decreased
NGFI-A gene expression in the hippocampus of cognitively impaired aged rats.
Mol. Brain Res. 42, 354–357. doi: 10.1016/s0169-328x(96)00220-3

Yegla, B., and Foster, T. (2019). Effect of systemic inflammation on rat attentional
function and neuroinflammation: possible protective role for food restriction.
Front. Aging Neurosci. 11:296. doi: 10.3389/fnagi.2019.00296

Yhnell, E., Dunnett, S. B., and Brooks, S. P. (2016). A longitudinal operant
assessment of cognitive and behavioural changes in the HdhQ111mousemodel
of Huntington’s disease. PLoS One 11:e0164072. doi: 10.1371/journal.pone.
0164072

Yilmazer-Hanke, D. M. (2008). Morphological correlates of emotional and
cognitive behaviour: insights from studies on inbred and outbred rodent
strains and their crosses. Behav. Pharmacol. 19, 403–434. doi: 10.1097/FBP.
0b013e32830dc0de

Yonker, J. E., Adolfsson, R., Eriksson, E., Hellstrand, M., Nilsson, L. G., and
Herlitz, A. (2006). Verified hormone therapy improves episodic memory
performance in healthy postmenopausal women. Neuropsychol. Dev. Cogn. B
Aging Neuropsychol. Cogn. 13, 291–307. doi: 10.1080/138255890968655

Yuan, R., Peters, L. L., and Paigen, B. (2011). Mice as a mammalian model for
research on the genetics of aging. ILAR J 52, 4–15. doi: 10.1093/ilar.52.1.4

Yuan, R., Tsaih, S. W., Petkova, S. B., Marin de Evsikova, C., Xing, S.,
Marion, M. A., et al. (2009). Aging in inbred strains of mice: study design and
interim report on median lifespans and circulating IGF1 levels. Aging Cell 8,
277–287. doi: 10.1111/j.1474-9726.2009.00478.x

Zammit, A. R., Robitaille, A., Piccinin, A. M., and G. Muniz-Terrera and
Hofer, S. M. (2019). Associations between aging-related changes in grip
strength and cognitive function in older adults: a systematic review. J. Gerontol.
A Biol. Sci. Med. Sci. 74, 519–527. doi: 10.1093/gerona/gly046

Frontiers in Aging Neuroscience | www.frontiersin.org 30 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1093/gerona/54.11.b492
https://doi.org/10.1371/journal.pone.0027839
https://doi.org/10.1046/j.1460-9568.1999.00705.x
https://doi.org/10.1046/j.1460-9568.1999.00705.x
https://doi.org/10.1016/0031-9384(95)02274-0
https://doi.org/10.1016/0031-9384(95)02274-0
https://doi.org/10.3233/JAD-122188
https://doi.org/10.3233/JAD-122188
https://doi.org/10.1101/lm.1196508
https://doi.org/10.1016/0006-8993(83)90217-2
https://doi.org/10.1016/0006-8993(83)90217-2
https://doi.org/10.1016/s0166-4328(02)00137-7
https://doi.org/10.1523/JNEUROSCI.20-07-02711.2000
https://doi.org/10.1016/s0031-9384(03)00219-1
https://doi.org/10.1371/journal.pone.0053760
https://doi.org/10.1016/s0531-5565(01)00217-0
https://doi.org/10.1038/ki.2009.401
https://doi.org/10.1038/ki.2009.401
https://doi.org/10.1515/RNS.2011.026
https://doi.org/10.1037/0882-7974.21.2.318
https://doi.org/10.1093/ijnp/pyy084
https://doi.org/10.1016/j.jns.2011.07.017
https://doi.org/10.1111/jnc.14787
https://doi.org/10.1523/ENEURO.0047-15.2015
https://doi.org/10.1002/hipo.20681
https://doi.org/10.1016/j.neurobiolaging.2019.03.024
https://doi.org/10.1016/j.neurobiolaging.2019.03.024
https://doi.org/10.1111/j.1601-183X.2009.00484.x
https://doi.org/10.1111/j.1601-183X.2009.00484.x
https://doi.org/10.1016/j.tins.2006.10.002
https://doi.org/10.1016/s0197-4580(98)00107-9
https://doi.org/10.1111/j.1469-445X.2000.02095.x
https://doi.org/10.1016/j.nbd.2011.02.005
https://doi.org/10.1016/j.nbd.2011.02.005
https://doi.org/10.3389/fnsys.2015.00114
https://doi.org/10.1016/s0197-4580(00)00132-9
https://doi.org/10.18632/aging.100929
https://doi.org/10.1002/hipo.22493
https://doi.org/10.1002/hipo.22493
https://doi.org/10.1016/j.tins.2011.06.006
https://doi.org/10.1016/s0169-328x(96)00220-3
https://doi.org/10.3389/fnagi.2019.00296
https://doi.org/10.1371/journal.pone.0164072
https://doi.org/10.1371/journal.pone.0164072
https://doi.org/10.1097/FBP.0b013e32830dc0de
https://doi.org/10.1097/FBP.0b013e32830dc0de
https://doi.org/10.1080/138255890968655
https://doi.org/10.1093/ilar.52.1.4
https://doi.org/10.1111/j.1474-9726.2009.00478.x
https://doi.org/10.1093/gerona/gly046
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


McQuail et al. Longitudinal Studies of Cognitive Reserve

Zelikowsky, M., Bissiere, S., Hast, T. A., Bennett, R. Z., Abdipranoto, A.,
Vissel, B., et al. (2013). Prefrontal microcircuit underlies contextual learning
after hippocampal loss. Proc. Natl. Acad. Sci. U S A 110, 9938–9943.
doi: 10.1073/pnas.1301691110

Zepelin, H., Whitehead, W. E., and Rechtschaffen, A. (1972). Aging and sleep in
the albino rat. Behav. Biol. 7, 65–74. doi: 10.1016/s0091-6773(72)80189-5

Zhang, Y., Fischer, K. E., Soto, V., Liu, Y., Sosnowska, D., Richardson, A., et al.
(2015). Obesity-induced oxidative stress, accelerated functional decline with
age and increased mortality in mice. Arch. Biochem. Biophys. 576, 39–48.
doi: 10.1016/j.abb.2014.12.018

Zhang, N., Rane, P., Huang, W., Liang, Z., Kennedy, D., Frazier, J. A., et al.
(2010). Mapping resting-state brain networks in conscious animals. J. Neurosci.
Methods 189, 186–196. doi: 10.1016/j.jneumeth.2010.04.001

Zheng, L. J., Su, Y. Y., Wang, Y. F., Schoepf, U. J., Varga-Szemes, A., Pannell, J.,
et al. (2018). Different hippocampus functional connectivity patterns in healthy
young adults with mutations of APP/presenilin-1/2 and APOEepsilon4. Mol.
Neurobiol. 55, 3439–3450. doi: 10.1007/s12035-017-0540-4

Zhuo, J. M., Prescott, S. L., Murray, M. E., Zhang, H. Y., Baxter, M. G., and
Nicolle, M. M. (2007). Early discrimination reversal learning impairment
and preserved spatial learning in a longitudinal study of Tg2576 APPsw
mice. Neurobiol. Aging 28, 1248–1257. doi: 10.1016/j.neurobiolaging.2006.
05.034

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021McQuail, Dunn, Stern, Barnes, Kempermann, Rapp, Kaczorowski
and Foster. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 31 January 2021 | Volume 12 | Article 607685

https://doi.org/10.1073/pnas.1301691110
https://doi.org/10.1016/s0091-6773(72)80189-5
https://doi.org/10.1016/j.abb.2014.12.018
https://doi.org/10.1016/j.jneumeth.2010.04.001
https://doi.org/10.1007/s12035-017-0540-4
https://doi.org/10.1016/j.neurobiolaging.2006.05.034
https://doi.org/10.1016/j.neurobiolaging.2006.05.034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

	Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies
	INTRODUCTION
	ADVANTAGES AND LIMITATIONS OF LONGITUDINAL STUDIES IN ANIMAL MODELS
	SEX DIFFERENCES
	MODEL DIFFERENCES
	WHEN DOES COGNITION DECLINE?
	PHYSICAL MEASURES, PSYCHOLOGICAL MEASURES, AND CIRCADIAN FUNCTION
	Physical Measures
	Body Weight
	Grip Strength
	Rotarod and Gait Analysis
	Locomotor Activity
	Visual Acuity
	Sleep

	Psychological and Affective Measures (Response to Novelty, Anxiety, Neophobia)
	Open Field
	Visual Platform Training on the Watermaze


	COGNITIVE MEASURES: HIPPOCAMPUS-DEPENDENT SPATIAL MEMORY
	T-Maze
	Radial Arm Maze
	Y-Maze
	Watermaze
	Barnes Maze
	Pattern Separation

	PREFRONTAL CORTEX BASED TASKS
	Delayed Response
	Span Task
	Delay Discounting

	PERIRHINAL CORTEX BASED TASKS
	Novel Object Recognition

	OTHER CONSIDERATIONS
	Food Restriction
	Health Status
	Order of Behavioral Tests
	Behavior as a Predictor of Brain Maintenance and Cognitive Reserve
	Treatments or Interventions to Influence Brain Maintenance and Cognitive Reserve

	ASSESSMENT OF BIOMARKERS OF AGING
	Brain Imaging
	Blood Biomarkers
	Cellular and Molecular Markers

	MECHANISMS FOR THE PRESERVATION OF COGNITIVE FUNCTION: BRAIN MAINTENANCE AND COGNITIVE RESERVE IN ANIMAL MODELS
	Brain Maintenance
	Cognitive Reserve
	Cellular Resilience in Response to Aging
	Local Circuit/Network Implementation of Cognitive Reserve
	Circuit/Network Adaptation
	Network Compensation

	CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	FUNDING
	REFERENCES




