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Abstract

Paracoccidioides brasiliensis, a causative agent of paracoccidioidomycosis (PCM), should be able to adapt to dramatic
environmental changes inside the infected host after inhalation of air-borne conidia and transition to pathogenic yeasts.
Proteins with antioxidant functions may protect fungal cells against reactive oxygen (ROS) and nitrogen (RNS) species
generated by phagocytic cells, thus acting as potential virulence factors. Ras GTPases are involved in stress responses, cell
morphology, and differentiation in a range of organisms. Ras, in its activated form, interacts with effector proteins and can
initiate a kinase cascade. In lower eukaryotes, Byr2 kinase represents a Ras target. The present study investigated the role of
Ras in P. brasiliensis after in vitro stimulus with ROS or RNS. We have demonstrated that low concentrations of H2O2 (0.1 mM)
or NO2 (0.1–0.25 mM) stimulated P. brasiliensis yeast cell proliferation and that was not observed when yeast cells were pre-
incubated with farnesyltransferase inhibitor. We constructed an expression plasmid containing the Byr2 Ras-binding domain
(RBD) fused with GST (RBD-Byr2-GST) to detect the Ras active form. After stimulation with low concentrations of H2O2 or
NO2, the Ras active form was observed in fungal extracts. Besides, NO2 induced a rapid increase in S-nitrosylated Ras levels.
This alternative posttranslational modification of Ras, probably in residue Cys123, would lead to an exchange of GDP for GTP
and consequent GTPase activation in P. brasiliensis. In conclusion, low concentrations of H2O2 or NO2 stimulated P.
brasiliensis proliferation through Ras activation.
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Introduction

Paracoccidioides brasiliensis is a thermo-dependent dimorphic

fungus responsible for paracoccidioidomycosis (PCM), a systemic

mycosis that is prevalent in Latin America. The major protective

host immune response against P. brasiliensis is mediated by cells, as

evidenced by granuloma formation [1]. The interaction between

P. brasiliensis and alveolar macrophages is a crucial step for the

establishment and progression of infection in susceptible hosts.

The yeast pathogenic phase of P. brasiliensis is a facultative

intracellular pathogen that is able to survive and replicate within

the phagosome of inactivated murine and human macrophages

[2]. By contrast, macrophages can engulf this microorganism and

confine it within phagosomes where, by action of microbicidal

molecules and/or by restriction of essential nutrients, the pathogen

can be destroyed. Among the molecules that exert fungicidal

action in phagosomes are hydrogen peroxide (H2O2), nitric oxide

(NO) and their derivatives. These are generated by NADPH

oxidase and inducible nitric oxide synthase (iNOS), respectively

[3,4]. Immune system cells activate the NADPH oxidase complex

to generate radical superoxide (O2
2), which is subsequently

converted into H2O2. Macrophages express iNOS with activation

of the L-arginine-nitric oxide pathway, and subsequent NO

production.

The ability of pathogenic fungi to cause disease is related to their

ability to survive in the host. Many microorganisms evolved

strategies to survive in hostile conditions, like those within

phagocytic cells. While studying P. brasiliensis transcriptional

responses after internalization by murine macrophages, Tavares

et al. [5] showed an increase in the expression of genes encoding

antioxidant molecules like SOD, and proteins like Hsp60 involved

in thermal stress. This work has clearly demonstrated that the

parasite has antioxidant mechanisms and responds to oxidative and

nitrosative stress [5]. Evidence has increased to support the idea that

reactive oxygen species (ROS) and reactive nitrogen species (RNS)

may have an important role as regulators of signal transduction,

being able to participate in signaling pathways associated with

physiological and pathophysiological processes [6,7].
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Signaling pathways that control morphological changes, cell

proliferation and stress response in P. brasiliensis are largely

unknown, but in other dimorphic fungi the involvement of cAMP

(cyclic adenosine 39, 59-monophosphate) and MAPK (mitogen-

activated protein kinase) is known to be an important factor in this

process [8]. Modulation of MAP kinases is an important and

highly conserved event in eukaryotes. It is composed of a series of

protein kinases, which can sequentially phosphorylate other

proteins so that the signal transmissions from the point of origin

(typically the cell membrane) to the nucleus can occur [9]. As a

result, the target molecules (including transcription factors) are

phosphorylated [10,11]. In this context, the Ras protein is

prominent in the regulation of signal transduction pathways that

mediate adaptive changes. Ras belongs to a large family of low

molecular-weight proteins (21 kDa) with GTPase activity. Ras

GTPases are molecular switches that are active when GTP-bound

and inactive when GDP-bound. Both processes are regulated by

enzymatic reactions. Guanine nucleotide exchange factors (GEFs)

catalyze the release of GDP from the guanine nucleotide-binding

pocket, mediating the exchange of GDP for GTP. The activation

state of Ras is self-limited by its intrinsic GTPase activity, which is

enhanced to critical regulatory levels by GTPase-activating

enzymes (GAPs) [12]. Ras is involved in signal transduction

pathways connecting events from many cell surface receptors to

intracellular processes [13]. In mammals, depending on the

cellular context, Ras activation can stimulate cell division cycle,

morphogenesis, differentiation, or apoptosis [13].

In microorganisms, the Ras protein is similarly involved in

growth and development processes, morphological changes, and

stress responses. In Saccharomyces cerevisiae, Cryptococcus neoformans,

and Aspergillus fumigatus, among other fungi, two Ras isoforms

(Ras1 and Ras2) have been identified [8]. Waugh et al. [14]

demonstrated that C. neoformans Ras proteins share some degree of

functional redundancy, since both Ras1 and Ras2 mutants were

viable and phenotypically similar to wild type. In Trichoderma reesei,

both Ras1 and Ras2 play similar roles in morphogenesis and

adjusting cAMP level, but Ras2 is also involved in regulation of

cellulase gene expression [15]. Differential functions of Ras1 and

Ras2 were also described in Beauveria bassiana [16]. In Schizosacchar-

omyces pombe only Ras1 was identified, which controls two different

downstream signaling pathways [17]. However, endomembrane

Ras activates a Cdc42 pathway to mediate cell polarity, while

plasma membrane Ras selectively regulates a MAP kinase

pathway to mediate mating pheromone signalling [18].

Ras proteins are conserved at the N-termini, but differ

substantially at the C-termini, where 10–20 amino acids form

the hypervariable region. Ras proteins are anchored to the

membranes by a series of post-translational modifications occur-

ring at the C-terminus. Anchoring of Ras in membranes is believed

to be absolutely required for biological activity. Ras proteins

contain a CAAX motif at the C-terminus (C = cysteine, A = ali-

phatic amino acid, and X = any amino acid), where farnesyl

transferase-mediated cysteine farnesylation occurs in the cytosol.

This posttranslational modification prompts Ras association with

the endoplasmatic reticulum (ER). Farnesylation is followed by the

cleavage of the three C-terminal residues (AAX) and subsequent

carboxymethylation of the farnesyl-cysteine [19,20].

In P. brasiliensis, two Ras isoforms were characterized with

important roles during fungal dimorphism, thermal stress, and in

parasite-host interactions [21]. The prenylation site (CAAX) was

detected in both isoforms, but with variable sequences (CVIM in

Ras1 and CLIL in Ras2) [21]. Nevertheless, nothing is known

about GTPases functions in P. brasiliensis for adaptive responses to

oxidative and nitrosative stress. In the present study, we

investigated the importance of P. brasiliensis Ras GTPase after in

vitro stimulation with ROS and RNS. Using a novel probe that

detects activated Ras (Ras-GTP), we showed that low concentra-

tions of NO and H2O2 mediate cell signaling triggered with the

participation of Ras, leading to cell proliferation in P. brasiliensis.

Furthermore, we showed that Ras is S-nitrosylated in our test

conditions. Therefore, this work shows the beneficial role of Ras

activation by low levels of ROS and RNS in P. brasiliensis cell

proliferation.

Materials and Methods

2.1. Fungal strain and growth conditions
We used P. brasiliensis, isolate Pb18, in our experiments. Unless

otherwise mentioned, cells were cultured and maintained at 37uC
in modified YPD medium (0.5% yeast extract, 0.5% casein

peptone, and 1.5% glucose, pH 6.5). CFU count was performed in

supplemented BHI plates (Becton Dickinson Company) containing

4% fetal calf serum, 5% spent medium, ampicillin (100 IU/mL)

and streptomycin (100 mg/mL).

2.2. NO and H2O2 stimulation and quantification of P.
brasiliensis CFU

In experiments involving oxidative and nitrosative stress, P.

brasiliensis cells were cultivated in modified YPD for 5 days at

37uC. Yeast cells (16105) were seeded in a 6-well culture plate

subjected to a 24-h period of starvation with F12 medium, to

reduce or stop fungal growth until starting the treatment. This

strategy was used to verify the role of H2O2 or NO2 stimulus on

fungal growth and cell signaling. Yeast cells were exposed to

different concentrations of H2O2 or NaNO2 (in culture medium

mildly acidic, pH 5.5; in this condition NaNO2 releases NO), for

5 h at 37uC [22,23,24]. Then yeast cells were washed and

incubated for 24 h at 37uC under shaking in fresh culture media.

Finally, 100 mL were plated in supplemented BHI plates for 7 days

at 37uC. The experiment was repeated three times. Cell

proliferation was evaluated by colony formation unit counts

(CFU).

Growth curves were performed by evaluating fungal counts

during different days of growth. For that, yeast cell suspension

aliquots (100 ml) were stained with equal volumes of Trypan Blue

vital dye and counted in a Neubauer chamber (for 4, 8 and 12

days), where viable cells did not stain by the vital dye.

2.3. Plasmid construction
The Ras Binding Domain (RBD) coding sequence of P.

brasiliensis Byr2 kinase (GenBank accession number EEH46080,

Ste11 S. cereviseae homolog) was obtained by PCR, as described

previously [25]. Briefly, the RBD region was synthetized by using

the primer sense, 59 CCCTTCCTCCAAATTGGCC 39, con-

taining an EcoRI site, and the downstream primer anti-sense, 59

GTGGCTGTCTAATGTT 39, bearing a XhoI site. The PCR

fragment generated was cloned using the pJET vector kit

(Fermentas). The RBD region (502 bp) was obtained by EcoRI

and XhoI restriction and cloned into a pGEX-4T2 vector (GE

Healthcare) in same restriction sites. DNA sequencing confirmed

the open reading frame in the expression vector. The expression of

RBD(Byr2)-GST fusion protein in E. coli was induced with 1 mM

1-thio-b-D-galactopyranoiside (IPTG) for 3 h at 30uC and the

fusion protein was purified in glutathione-Sepharose beads. The

beads were washed with PBS containing protease and phosphatase

inhibitors, suspended in PBS containing 10% glycerol and

protease inhibitors, and stored at 280uC.

ROS/RNS Induce of P. brasiliensis Proliferation
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2.4. Ras activation in P. brasiliensis
Ras activation was determined using the RBD(Byr2)-GST

fusion protein, which tightly binds to the GTP-associated Ras

form. After stimulus, yeast cells were collected by centrifugation,

washed (3 times), and disrupted with glass beads in ice-cold lysis

buffer (25 mM HEPES, pH 7.5, 150 mM NaCl, 1% (w/v)

Nonidet P-40, 0.25% (w/v) sodium deoxycholate, 10% (w/v)

glycerol, 25 mM NaF, 10 mM MgCl2, 1 mM EDTA, 1 mM

sodium vanadate, one tablet of Protease Inhibitor, Roche

Diagnostic, Mannheim, Germany, in 50 mL of extraction

medium). The solubilized extract was centrifuged at 14,0006 g

for 15 min, and the supernatant was used in pull-down assays. The

protein content of the cell extract was determined with Bradford

reagent (Bio-Rad, Hercules, CA, USA). A protein sample (1 mg)

was incubated with glutathione-Sepharose beads associated with

RBD(Byr2)-GST for 3 h with gentle rocking. The samples were

spun at 7,2006 g for 10–20 sec, and the resin was washed three

times with lysis/binding/wash buffer (7,2006 g for 30 sec). The

final pull-down was assayed by Western blot probed with mouse

monoclonal anti-Ras antibody (Oncogene, Research Products).

The remaining lysate was probed with the same antibody to

determine the levels of total and endogenous Ras. The ratio

between Ras signal intensity bound to RBD(Byr2)-GST beads and

that obtained from total Ras, determined by densitometry, is

proportional to Ras activity [26,27].

A control for probe RBD(Byr2)-GST specificity was performed

as described Colombo et al. [27], with some modifications. Pb18

total extracts (1 mg) were incubated in PBS containing protease

inhibitor (one tablet of Protease Inhibitor, Roche Diagnostic,

Mannheim, Germany, in 50 mL of extraction medium) with

1 mM GTP (Sigma) or GDP (Sigma) at room temperature for 1 h

with gentle rocking. Samples (bound either to GTP or to GDP)

were incubated with glutathione-Sepharose beads containing

cross-linked RBD(Byr2)-GST for 3 h with gentle rocking and

detected by Western blotting using anti-Ras antibodies.

2.5. Western blotting
For Western blotting, proteins (25–50 mg) were separated in 10

or 12% polyacrylamide gels and transferred to nitrocellulose

membranes. After blocking, the membranes were incubated

overnight at 4uC with primary anti-Ras antibody. A secondary

antibody (anti-mouse) conjugated with horseradish peroxidase was

used in the second step of the procedure (room temperature

incubation for 1 h). Immunoblots were developed using the Super

SignalH (Pierce, Rockford, USA) system.

2.6. Detection of Ras S-nitrosylation
The biotin switch technique (BST) was performed to detect Ras

S-nitrosylation, as described by Forrester et al. [28]. To detect Ras

S-nitrosylation in P. brasiliensis after H2O2 or nitrite treatment,

yeasts were cultured in F12 medium for 24 h (starvation), then

treated with H2O2 or nitrite for increasing time periods, and then

yeasts were disrupted with glass beads in buffer containing 25 mM

HEPES, 50 mM NaCl, 0.1 mM EDTA, 1% NP-40, 0.5 mM

PMSF, and protease inhibitors (Roche Diagnostic, Mannheim,

Germany), pH 7.4. Cell debris was removed by centrifugation,

and samples (1 – 0.6 mg protein extract) were diluted to 1.8 mL

with HEN buffer (100 mM Hepes, 1 mM EDTA, 0.1 mM

neocuproine, pH 8.0); SDS and MMTS were added to final

concentrations of 2.5 and 0.1%, respectively. Following frequent

vortex and incubation at 50uC in the dark for 20 min, lysates were

precipitated with 3 volumes of acetone at 220uC for 1 h. Proteins

were centrifuged at 2,0006 g for 15 min, and the protein pellet

was gently washed with 70% acetone (four times). The pellets were

suspended in 240 mL HENS (HEN buffer added 1% SDS).

Samples were further incubated with 30 mL biotin-HPDP

(2.5 mg/ml) in the presence or absence of 20 mM ascorbate at

room temperature, in the dark for 1 h. After acetone precipitation,

proteins were resuspended in 250 mL HENS, followed by addition

of 750 mL of neutralization buffer (25 mM HEPES, 100 mM

NaCl, 1 mM EDTA, 0.5% Triton X-100, pH 7.5). Fifty

microliters of streptavidin-agarose beads (pre-washed) were added

to each sample and incubated overnight at 4uC. Beads were

washed with washing buffer (neutralization buffer with 600 mM

NaCl) four times. To detect S-nitrosylated proteins, 50 mL of 26
SDS sample buffer were added to the beads and tested by

immunoblotting with anti-Ras antibody.

2.7. Statistical analysis
Data are expressed as means 6 SD. The statistical analysis of

significance was assessed by one-way analysis of variance using the

Student’s t-test for comparison. p,0.05 was considered statistically

significant.

Results

3.1. Low concentrations of ROS and RNS induced cell
proliferation in P. brasiliensis

It is known that different levels of H2O2 or NO can induce

distinct responses within a cell [29]. For example, different

transcriptional responses are induced by low (sub-toxic) or high

(toxic) levels of H2O2 or NO in mammalian cells, S. cerevisiae, and

S. pombe [30,31]. To better understand this type of stimulus in P.

brasiliensis, logarithmic growing yeast cells, were cultured in F12

medium for 24 h and subsequently treated in vitro with different

concentrations of H2O2 (0.05–30 mM) and NO2 (0.1–1000 mM)

for 5 h at 37uC and the CFU count was assessed (Figure 1). For

cells pre-incubated for 5 h with higher concentrations of H2O2

(10, 15 and 30 mM) and NO2 (1, 10, 100 and 1000 mM), a typical

dose-response curve with decreased cell viability was observed

(Figure 1). For intermediate concentrations of H2O2 (0.5 and

1 mM) and NO2 (0.5 mM) there was no change in cell viability

(Figure 1). However, yeast cells pre-incubated with low concen-

trations H2O2 (0.1 mM) and NO2 (0.25 mM) responded with

significant cell proliferation (3.760.166103 and 1.86

0.176103 CFU, respectively) when compared to unstimulated

controls (2.1360.196103 and 1.3560.786103 CFU, respectively).

Maximum stimulation of fungal proliferation was observed after

incubation with 0.1 mM H2O2 and 0.25 mM NO2. These data

suggested that P. brasiliensis may benefit from low concentrations of

ROS and RNS to proliferate.

3.2. Ras participates in P. brasiliensis proliferation
dependent on low concentrations of ROS or RNS

In mammals, one of the major components involved in cell

proliferation triggered by ROS and RNS is Ras [32,33]. Ras must

undergo carboxyterminal farnesylation before localizing at the

cytoplasmatic side of the plasma membrane [34]. FPT III, a

potent and selective inhibitor of the enzyme farnesyl transferase

(FTase), efficiently prevents Ras farnesylation [35]. To determine

if redox-stimulated cell proliferation is dependent on Ras

activation, yeast cells were preincubated for 24-h with FPT III

before H2O2 or NO2 exposure. As shown in Figure 2, the growth

stimulatory effect with 0.1 mM H2O2 and 0.25 mM NO2 was

blocked in presence of this inhibitor (Figure 2A). These results

suggested that Ras participates in the cellular proliferation process

induced by low concentrations of ROS or RNS.

ROS/RNS Induce of P. brasiliensis Proliferation
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We also tested the effect of low concentrations of H2O2 and

NO2 during fungal growth. P. brasiliensis was incubated with or

without stimulus in the presence or absence of Ras inhibitor. We

observed significant increase in the number of cells growing in the

presence of 0.1 mM H2O2 (5.83760.8256106 cells) and 0.25 mM

of NO2 (3.6160.0826106 cells) after 4 days when compared to

controls (260.836106 cells and 1.6360.2886106 cells, respec-

tively) (Figure 2B), however this effect was abolished in the

presence of FPT III. We observed similar results after 8 days of

growth (data not shown). However, on the twelfth day there was

no statistical difference between the experimental samples and

controls (data not shown). Therefore, these results confirm that low

concentrations (sub-toxic) of ROS and RNS can lead to P.

brasiliensis cell proliferation and that Ras farnesylation is required

for this event.

3.3. Low concentrations of ROS or RNS promote Ras
activation in P. brasiliensis

To understand the contribution of Ras on P. brasiliensis redox-

dependent proliferation, we evaluated its activation after stimula-

tion with low concentrations of H2O2 and NO2. In order to do

that, we constructed a probe that detects Ras active form (Ras-

GTP). In fungi, the serine/threonine kinase Byr2 (Ste11 homo-

logue in S. cereviseae) is known to be responsible for the interaction

with activated Ras. In P. brasiliensis, the Byr2 gene is composed of

four exons separated by three introns. BYR2 has 2,685 bp and

encodes a protein of 894 amino acids. The Ras Binding Domain

(RBD) shows conserved Ras interaction regions (Figure 3A), as

observed in the alignment of Byr2-RBD with its fungal homo-

logues from A. niger, S. cerevisiae and S. pombe, and with human Raf-

1. The RBD is located in a regulatory region at the N-terminal,

between amino acids 216 and 395. According to Scheffzek et al.

[36], the Byr2-RBD amino acid residues from S. pombe responsible

for the interaction with Ras would be Arg74, Lys101, Ala84,

Arg83, Thr82, Gln81, and Arg160. All residues are preserved in P.

brasiliensis Byr2-RBD, suggesting that the intermolecular interac-

tion with activated Ras may also occur (Figure 3A).

The use of a RBD-GST probe in studies on cell signaling is

widespread to detect Ras activity in mammalian cells [33,37,38];

however, in fungi there are only few studies using this strategy

[27,39,18]. We constructed an expression plasmid containing

approximately 537 pb of the Byr2-RBD gene fragment subcloned

into EcoRI and XhoI sites of the pGEX-4T-2 vector. The cloned

fragment corresponds to Byr2 amino acids 216–395 (179 amino

acids) that include the whole RBD. For expression of the

recombinant protein (RBD-GST probe), the expression vector

was introduced into E. coli BL21 and induced with 1 mM of IPTG

at 37uC or 30uC. After 3 hours of induction in both temperatures

a component of approximately 43 kDa was expressed, which is

consistent with the expected molecular mass of the recombinant

protein (Figure 3B). The solubility of recombinant RBD(Byr2)-

GST was evaluated and we observed that at 37uC most of the

fusion protein was expressed as insoluble inclusion bodies

(Figure 3C). However, at 30uC we observed that a greater

proportion of the RBD(Byr2)-GST recombinant protein was

found in the bacterial extract soluble fraction (Figure 3C). To

determine specificity of the probe RBD(Byr2)-GST in detecting

Ras-GTP we performed in vitro exchange experiments. We

incubated Pb18 total extract with high amounts of GTP or

GDP, probed it with RBD(Byr2)-GST and immunoblotted the

Figure 1. Low concentrations of H2O2 or nitrite promoted cell proliferation in P. brasiliensis. Pb18 yeast cells were seeded in a 6-well
culture plate subjected to a 24-h period of starvation with F12 medium and treated with different concentrations of H2O2 (A) or nitrite (B) at pH 5.6
for 5 h at 37uC. Treated cells were plated in BHI and incubated at 37uC for 7–10 days (n = 6 at each point). The graph shows the means 6 SD of total
CFU before and after treatment with H2O2 or nitrite for each concentration. Statistically significant samples are indicated (p,0.05). The results are
representative of three independent experiments.
doi:10.1371/journal.pone.0069590.g001

ROS/RNS Induce of P. brasiliensis Proliferation
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precipitate with anti-Ras. Only activated Ras (Ras-GTP) was able

to bind to the probe RBD(Byr2)-GST (Figure 3D), indicating that

the assay is specific for Ras-GTP.

We next used the RBD(Byr2)-GST probe to assess the ability of

low concentrations of ROS and RNS to activate Ras. Ras activity was

determined in P. brasiliensis yeasts exposed to 0.1 mM H2O2 and

0.25 mM NO2 for increasing periods of time. Early Ras activation

was observed after 15 min of stimulation with ROS and RNS

(Figure 4A). Maximum Ras activation was observed after 60 min of

incubation (Figure 4A), and at latter timepoints (180 and 300 min) we

observed decrease of Ras activation. Also, the fungal protein extract

was incubated with Glutathione-Sepharose beads alone (negative

control) and analyzed by Western blot, but no reaction was observed

(data not shown). The protein loading of the samples used in the Ras

activity assay observed in SDS-PAGE gel stained Coomassie blue

proved to be fairly homogeneous (data not shown). We also evaluated

by RT-PCR the transcription levels of RAS1 and RAS2 in P. brasiliensis

after incubation with 0.1 mM H2O2 or 0.25 mM NO2, but no

significant changes were observed (data not shown). Therefore, low

concentrations of ROS and RNS promoted guanine nucleotide

exchanges in the critical cellular signaling protein Ras.

We also investigated the inhibitory effect of farnesyl transferase

in Ras activity. Yeast cells were cultivated for 24 h in the presence

or absence of 250 mM FPT III, followed by treatment for 1 h with

0.1 mM H2O2 or 0.25 mM nitrite. As shown in Figure 4B, FPT III

substantially inhibited Ras activation in yeast cells of P. brasiliensis

treated with low concentration of ROS or RNS, as compared with

controls without inhibitor.

3.4. NO2 promotes Ras S-nitrosylation in P. brasiliensis
It has been shown that NO stimulates guanine nucleotide

exchange in Ras and that this event is dependent on S-

nitrosylation, which occurs in the active thiol group Cys118

[40]. Initially we checked whether nitrosylable Cys was conserved

in P. brasiliensis. By aligning a small fragment of the C-terminal

region from different fungi and human Ras, we observed that in P.

brasiliensis Ras1 there is a Cys homologue at position 123, whereas

in Ras2 there is a serine at this position (Figure 5A). Then we used

a computer program (http://dbSNO.mbc.nctu.edu.tw, [41]) to

predict putative S-nitrosylation sites in P. brasiliensis Ras and

detected that Cys123 would be a likely S-nitrosylation site with

95% prediction specificity (Figure 5B). Cys123 is localized in the

Ras GTP binding and interaction site (G3) (Figure 5A). Ras2 also

showed probable S-nitrosylation sites at Cys55 and Cys176;

however, these sites are located elsewhere in the molecule (data

not shown). We also evaluated whether Cys123 would be located

in Ras hydrophobic region. According to Hess et al. [6] local

hydrophobicity might promote specific S-nitrosylation. Analysis of

the deduced P. brasiliensis Ras1 and Ras2 sequences showed that

Cys123 is inserted in Ras1 hydrophobic domain with low surface-

probability in the protein (Figure 5C). Moreover, this feature was

not observed in the equivalent Ras2 region. These results suggested

Figure 2. Cell proliferation of P. brasiliensis stimulated by low concentrations of H2O2 or nitrite is suppressed in the presence of FPT
III inhibitor. (A) Pb18 yeast cells were seeded in a 6-well culture plate subjected to a 24-h period of starvation with F12 medium and pretreated with
250 mM FPT III and stimulated with 0.1 mM H2O2 or 0.25 mM nitrite at pH 5.6 for 5 h at 37uC. Cells were plated in BHI medium at 37uC for 10 days
(n = 6 at each point) and CFU were counted. (B) Same as in (A), but cells (1.56105) were cultured in the YPD medium (n = 4 each point) and after 4
days the fungal growth was determined by counting in a Neubauer chamber. The graphs show the mean CFU or number of cells 6 SD for each
sample. The results represent three independent experiments. Statistically significant samples are indicated (p,0.01 or 0.05).
doi:10.1371/journal.pone.0069590.g002

ROS/RNS Induce of P. brasiliensis Proliferation
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Figure 3. Plasmid construction and production of the RBD(Byr2)-GST probe. (A) Schematic representation of Byr2 showing the localization
of conserved domains, highlighting in red the localization of the Ras Binding Domain (RBD). RBD sequences from P. brasiliensis (Pb – EEH46080),
Blastomyces dermatitidis (Bd – EGE86103), H. capsulatum (Hc – EGC48892), Coccidioides immitis (Ci – XP 001242119), S. cerevisiae (Sc – AAB67571), and
RBD-Raf-1 of Homo sapiens (Hs – AGC09606) were aligned with ClustalW (module MegAlign, DNAstar Inc). Conserved sequences are boxed, the
residues directly involved in the interaction with activated Ras (Ras-GTP) are indicated in red boxes and key amino acids involved in the interaction
with Ras-GTP are shown in yellow. (B) Coomassie blue-stained 10% SDS-PAGE gels showing total bacterial extracts from recombinant bacteria
expressing RBD(Byr2)-GST (arrow) stimulated (3 h) or not (0 h) with 1 mM IPTG. (C) Ten microliters of total (T), soluble (S) and insoluble (I) fractions
were assayed in Western blots probed with anti-GST antibody. The migration of molecular mass standards (MW) is shown on the left. (D) Pb18 total
extract (1 mg) was bound either to GTP (1 mM) or GDP (1 mM) and incubated with RBD(Byr2)-GST fusion protein linked to glutathione-Sepharose.
Ras-GTP and total Ras (50 mg total protein) eluted with SDS-PAGE sample buffer were loaded in an SDS-PAGE gel. Ras was detected by
immunoblotting with anti-Ras antibody.
doi:10.1371/journal.pone.0069590.g003
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that Ras1 Cys123 bears S-nitrosylation features. Therefore, we

verified if Ras1 was possibly S-nitrosylated by the biotin switch test

[28], which introduces a biotin molecule in the S-nitrosylated Cys

(Figure 6A). The detection of S-nitrosylated protein by the biotin

switch method is dependent on treatment with ascorbate, consistent

with the reduction dependent on ascorbate from nitrosothiol bonds

(Figure 6A). For that, we studied whether lower concentrations of

NO2 (0.25 mM) or H2O2 (0.1 mM) would be able to induce Ras1 S-

nitrosylation. We found that NO2 induced rapid increase in S-

nitrosylated Ras levels, with a peak at 30 min (Figure 6B). On the

other hand, no change in the level of S-nitrosylation was observed

after treatment with H2O2 (Figure 6B). These findings suggested

that NO probably plays an important role in the process of Ras

activation through its S-nitrosylation.

Discussion

The ability of pathogenic fungi to resist the deleterious effects of

ROS and/or RNS is foreseen as an important virulence

mechanism, particularly in relation to its contact with phagocytic

host cells. We have here demonstrated that sub-toxic concentra-

tions of ROS and RNS are capable of stimulating P. brasiliensis cell

proliferation in a Ras GTPase activation-dependent manner. In

addition, we observed that stimulation with NO2 evoked Ras S-

nitrosylation, which has not been observed after stimulation with

H2O2. Cell proliferation upon ROS and RNS stimulation have

not been reported before in fungi; however, it remains to be

clarified if this phenomenon would occur in P. brasiliensis isolates

from other phylogenetic groups [42], or even in isolates of the

recently separated species P. lutzii [43], apart from virulent Pb18

presently tested. Pb18 represents the main S1 phylogenetic P.

brasiliensis group [42].

It has frequently been observed that high concentrations of both

ROS and RNS are cytotoxic to fungal cells, causing cell death,

and this is an effector mechanism of the immune system cells [44].

However, NADPH oxidase knockout mice (deficient for ROS

production) showed decreased fungal spread when intratracheally

infected with C. neoformans, and were also protected against

Figure 4. Low concentrations of H2O2 or nitrite induce Ras activation. (A) Pb18 yeast cells were cultivated in modified YPD for 5 days at
37uC, subjected to a 24-h period of starvation with F12 medium and incubated with 0.1 mM H2O2 or 0.25 mM NO2 at pH 5.6 for different timepoints
at 37uC. (B) Pb18 yeast cells were cultivated in modified YPD for 5 days at 37uC, subjected to a 24-h period of starvation with F12 medium and
cultured with or without 250 mM FPT III inhibitor followed by treatment with 0.1 mM H2O2 or 0.25 mM NO2 at pH 5.6 for 1 h at 37uC. After yeast cells
lysis (A) and (B), Ras activation was determined using the GST-RBD(Byr2) fusion protein, which binds with high affinity to the GTP-associated form of
Ras. Ras-GTP (active) and total Ras (50 mg total protein) were assayed by western blots probed with anti-Ras antibody. Relative densitometric values
of bands are shown in the bar graphs.
doi:10.1371/journal.pone.0069590.g004
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pulmonary infection [45]. This event, which seems to contradict

the literature, may suggest that the microorganisms could

somehow benefit from ROS/RNS derived from immune system

cells. Our data suggests that one possible mechanism would be by

direct contact of the fungus with sub-toxic concentrations of NO2

and H2O2, but that remains to be tested in C. neoformans. Despite

the proliferation induced by low doses of ROS and RNS having

been previously demonstrated in mammalian cells [32,33,46], this

is the first report of stimulation of fungal cell growth by ROS/

RNS. Recently, Srinivasa et al. [47] showed that both low

(,1 mM) and high (4–10 mM) concentrations of exogenous H2O2

induce filamentous growth with distinct cell morphology and

growth rate in C. albicans, which suggests a differential transcrip-

tional response. The authors demonstrated that sub-toxic doses of

H2O2 induce the formation of pseudohyphae.

In experimental PCM, NO has dual roles. Brummer et al. [1]

have demonstrated that activation of mouse (BALB/c) peritoneal

macrophages by IFN-c enhances the fungicidal activity. In

Figure 5. P. brasiliensis Ras1 has a putative nitrosilable Cys. (A) Ras1 and Ras2 sequences from P. brasiliensis (Pb – EEH22637 and EEH22450), B.
dermatitidis (Bd – XP002628159 and EEQ83443), H. capsulatum (Hc – EEH06649 and EEH07767), C. posadasii (Cp – XP 001246878 and XP 001247157),
S. cerevisiae (Sc – AAA34958 and CAA95974) and H. sapiens (Hs – AAH14261) were aligned by ClustalW (module MegAlign, DNAstar Inc). (B) Analysis
of putative motifs of S-nitrosylation in Pb18 Ras1 using the computer program dbSNO (http://dbSNO.mbc.nctu.edu.tw, [37]). (C) Kyte-Doolittle
hydrophilicity and Emini Surface Probability plots (Protean module; DNAstar Inc.) of Pb18 Ras1 and Ras2. Red boxes indicate the location of Ras1
Cys123 and Ras2 Ser144, respectively.
doi:10.1371/journal.pone.0069590.g005
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contrast, macrophages from A/J mice were poorly activated by

low doses of IFN-c, and secreted only low amounts of IL-12, NO,

thus showing poor fungicidal ability [48]. Nascimento et al. [49]

showed that NO is essential for host resistance to infection by P.

brasiliensis. The authors found that mice genetically deficient for

iNOS (inducible nitric oxide synthase) were susceptible to infection

by the fungus. On the other hand, the persistent production of NO

was correlated with increased infection by P. brasiliensis [49]. Our

in vitro data suggests that one possible alternatively mechanism of

fungal proliferation in vivo would be by direct contact of the fungus

with sub-toxic concentrations of NO2 and H2O2.

In our study we observed that there was decrease in Ras activity

after incubation with FPT III (Fig. 4B). Previous results with the P.

brasiliensis showed that farnesylation blockage interfered with

vegetative growth of yeast cells and stimulated germinative tube

production even at 37uC [21]. Since the farnesylation inhibitor is

not specific for Ras incorporation into the membrane, the effects

observed in our work could be result from the inhibition of the

other Ras-related proteins that are also farnesylated [50].

However, several studies reported the strong involvement of Ras

protein in fungal growth and differentiation after different stimuli

[17,51,52]. Furthermore, it is known that ROS and RNS are

involved in Ras-dependent cell proliferation [32,33,46,53] and

fungal conidiation [52]. Thus, it is possible speculate that the FPT

III effect on fungal growth and Ras activity were dependent on

decreasing Ras activity in the same cell (Figure 4A and 4B).

By using a probe developed to detect active Ras, we also

demonstrated that, as in mammal cells, P. brasiliensis Ras may

participate in cell proliferation in a redox-dependent manner.

Thus, GTPase Ras is a highly preserved signaling protein that

transmits receptor signals from the cell surface to a variety of

effectors, thereby regulating important physiological processes

such as growth, morphology, and survival in eukaryotes from yeast

to humans. Moreover, it can regulate virulence in human

pathogenic fungi [54,55,56]. Ras can be activated by different

stimuli, and it is known that ROS and RNS can induce this

process [33,46,53]. It is known, for example, that NO, a free

radical with signaling properties [57], stimulates human Ras

activity by S-nitrosylation of the Cys118 residue [40]. S-

nitrosylation is a reversible posttranslational modification derived

from the interaction of NO with the thiol group of specific

cysteines [58]. Redox regulation of Ras GTPases occurs in a

redox-active cysteine (X) present in a conserved NKXD motif

[59]. This Cys homologue was identified only in P. brasiliensis Ras1

(Cys123), which was also identified as a putative S-nitrosylation

site. GTPases with a redox-sensitive NKCD motif can be activated

by NO2 and other RIs (reactive intermediates). Several cell-based

and in vitro studies have shown that NO2 reacts with Ras through

Cys118 to promote nucleotide exchange and Ras activation [60].

Raines et al. [61] speculated that NO2-mediated guanine

nucleotide release occurs through a radical propagation mecha-

nism involving Ras thiyl radical conversion to a Ras-GDP guanine

radical. The guanine base is particularly sensitive to reaction with

free radicals [59] and formation of a guanine radical is likely to

alter interactions with Ras, resulting in the release of Ras-bound

GDP [62]. Thus, NO can increase Ras downstream signaling

through the mitogen-activated kinase pathway [63].

On the basis of the above observations, we believe that low

levels of NO could lead to Ras S-nitrosylation (probably in residue

Cys123), which would lead to exchange of GDP for GTP, and

Figure 6. Low concentrations of nitrite induce Ras S-nitrosylation in P. brasiliensis. (A) Schematic diagram of the S-nitrosylation assay. A
cysteine is indicated with a free thiol, disulfide, or nitrosothiol conformation. The free thiols are made unreactive by methylthiolation with MMTS. Next
step, nitrosothiols are selectively reduced with ascorbate to reform the thiol, which then reacts with the thiol-modifying reagent biotin-HPDP. (B) In
vitro S-nitrosylation of P. brasiliensis extracts after stimulus with 0.1 mM H2O2 or 0.25 mM NO2 at pH 5.6 for increasing periods at 37uC. Cell extracts
were analyzed by the biotin-switch technique (see the Materials and Methods sections for details), and Western blots were probed with anti-Ras
antibody.
doi:10.1371/journal.pone.0069590.g006
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consequent GTPase activation in P. brasiliensis. That would trigger

the Ras-dependent downstream cell-signalling pathway. Recently,

protein S-nitrosylation has drawn attention as an event capable of

inducing biological responses in microorganisms. Seth et al. [64]

demonstrated that the transcription factor OxyR from E. coli,

which is activated by oxidation under aerobic conditions, can also

be activated by S-nitrosylation under anaerobic conditions, thus

inducing gene expression through alternative PTM.

On the other hand, it is known that oxidative modifications

trigged by H2O2 leads to Ras activation [65], and this radical is

involved in Ras signal transduction to the nucleus, mediating Ras-

induced cell cycle progression [66,67]. However, the mechanisms

by which ROS carries the Ras signal to the nucleus are still

unclear.

Testing Ras activity was only possible because of the use of a

RBD(Byr2)-GST probe, which detects Ras active form (Ras-GTP).

Byr2 from P. brasiliensis (in Pb18 this gene was annotated as a dual-

specificity mitogen-activated protein kinase - dSOR1) is also

known as Ste11, homologous to mammalian Raf1, and it is a

target for regulating Ras [36,68]. In S. pombe, the structure of Ras-

Byr2-RBD complex revealed that Byr2-RBD shows essentially the

same folding structure as that verified in the RBD of Raf-1 [36].

When comparing the Byr2-RBD region of P. brasiliensis with that

of S. pombe, we observed that all major amino acid residues that

participate in the intermolecular interaction with Ras are

preserved (Figure 3A). We also observed that the residues of

interaction with Byr2 corresponding to amino acids Asp33, Glu37,

Asp38, Ser39, Arg41 and Asp54, which were detected by

Scheffzek et al. [36], are preserved in the Ras1 and Ras2 from

P. brasiliensis. Thus, we believe that the Byr2-RBD protein from P.

brasiliensis would be able to interact with the activated Ras form

(Ras1 and Ras2); that was actually confirmed by pull-down testing.

Our probe has become an important tool to verify Ras activity and

it may be further used in other conditions and even with other

fungal systems.

In summary, this study demonstrated that in P. brasiliensis low

concentrations of ROS and RNS can switch the Ras-GDP for

Ras-GTP with consequent activation and triggering of a mitogenic

signal transduction. This event is interesting because it has been

shown that resistance to ROS and RNS is an important virulence

factor in pathogenic fungi. In our model, the fungus used sub-toxic

concentrations of ROS and RNS to proliferate. In these

conditions, in addition to survive, we believe the fungus would

grow and develop within low ROS-producer macrophages. It has

been proposed that the intracellular parasitism would be an

important event for the establishment and progression of PCM in

a susceptible host [69]. Thus, a more detailed characterization of

these signaling cascades that allow microorganisms to cause

disease would be crucial to understand fungal pathogenesis.
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