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Abstract

Multi-regional sequencing provides new opportunities to investigate genetic heterogeneity

within or between common tumors from an evolutionary perspective. Several state-of-the-

art methods have been proposed for reconstructing cancer evolutionary trees based on

multi-regional sequencing data to develop models of cancer evolution. However, there have

been few studies on comparisons of a set of cancer evolutionary trees. We propose a clus-

tering method (phyC) for cancer evolutionary trees, in which sub-groups of the trees are

identified based on topology and edge length attributes. For interpretation, we also propose

a method for evaluating the sub-clonal diversity of trees in the clusters, which provides

insight into the acceleration of sub-clonal expansion. Simulation showed that the proposed

method can detect true clusters with sufficient accuracy. Application of the method to actual

multi-regional sequencing data of clear cell renal carcinoma and non-small cell lung cancer

allowed for the detection of clusters related to cancer type or phenotype. phyC is imple-

mented with R(�3.2.2) and is available from https://github.com/ymatts/phyC.

Author summary

Elucidating the differences between cancer evolutionary patterns among patients is valu-

able in personalized medicine, since therapeutic response mostly depends on cancer

evolution process. Recently, computational methods have been extensively studied to

reconstruct a cancer evolutionary pattern within a patient, which is visualized as a so-

called “cancer evolutionary tree” constructed from multi-regional sequencing data. How-

ever, there have been few studies on comparisons of a set of cancer evolutionary trees to

better understand the relationship between a set of cancer evolutionary patterns and

patient phenotypes. Given a set of tree objects for multiple patients, we propose an unsu-

pervised learning approach to identify subgroups of patients through clustering the

respective cancer evolutionary trees. Using this approach, we effectively identified the

patterns of different evolutionary modes in a simulation analysis, and also successfully

detected the phenotype-related and cancer type-related subgroups to characterize tree

structures within subgroups using actual datasets. We believe that the value and impact of
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our work will grow as more and more datasets for the cancer evolution of patients become

available.

Introduction

Cancer is a heterogeneous disease. The high genetic diversity is driven by several evolutionary

processes such as somatic mutation, genetic drift, migration, and natural selection. The clonal

theory of cancer [1] is based on Darwinian models of natural selection in which genetically

unstable cells acquire a somatic single nucleotide variant (SSNV), and selective pressure results

in tumors with a biological fitness advantage for survival.

The development of multi-regional sequencing techniques has provided new perspectives

of genetic heterogeneity within or between common tumors [2–6]. The read counts from

multi-region tumor and matched normal tissue sequences from each patient are then used

to infer the tumor composition and evolutionary structure from variant allele frequencies

(VAFs); i.e., the proportion of reads containing the variant allele. Using the VAF, the cancer

evolutionary histories can be reconstructed as a tree, termed a cancer evolutionary tree, which

reflects the accumulation patterns of the identified SSNVs for each patient.

A variety of cancer evolutionary trees can be considered as the consequence of the evolu-

tionary principle for the underlying tumor, which may lead to resistance to chemotherapeutics

and targeted therapies [19, 20]. Therefore, characterizing inter-tumor heterogeneity according

to the patterns of evolutionary trees is an important strategy for developing new targeted thera-

pies and for preventing the emergence of drug resistance. There are currently two types of

cancer evolutionary trees: sample tree and sub-clonal tree. A sample tree regards each multi-

region sample as being equivalent to a species in a classical tree of taxonomic phylogenetic

relationships, and infers the evolutionary trees from the binary VAF profiles using classical

phylogenetic algorithms such as the maximum parsimony method. A sub-clonal tree clusters

SSNVs into sets of mutations with common frequency and reconstructs the lineage based on

the following two assumptions [7–16]: (i) a mutation cannot recur during the course of cancer

evolution, and (ii) no mutation can be lost [17] (Fig 1A). In these trees, the root and its subse-

quent node represent a normal cell and a founder cell, respectively. Descendant sub-clones are

represented as nodes below the founder cell, and edge lengths indicate the number of SSNVs

that are newly accumulated in the descendant nodes (Fig 1B). For reviews, see [18].

Several studies have suggested specific evolutionary patterns of tumors with various, and at

times conflicting, results. For example, Gerlinger et al. [21] identified the parallel evolution of

sub-clones in clear cell renal cell carcinomas (ccRCCs), whereas no such parallel evolution

was evident in studies on non-small cell lung cancer (NSCLC) [22, 23]. Zhang et al. [23] also

showed that in a relapsed group of patients, the fraction of SSNVs in sub-clones was signifi-

cantly larger than that of founder cells. These studies indicate that both the branching patterns

and fraction of SSNVs in sub-clones are important factors for identifying the cancer type or

phenotype of related subgroups.

Although the reconstruction methods developed thus far have revealed intra-tumor hetero-

geneity by reconstructing individual evolutionary trees, there are currently no standardized

tree comparison methods for obtaining a detailed understanding of inter-tumor heterogeneity

according to evolutionary patterns with a set of reconstructed trees. Comparison of phyloge-

netic trees has long been discussed in the context of the evolution of species, and several com-

parative analytical methods have been developed, including nearest-neighbor interchanging

[25], subtree transfer distance [26], quartet distance [27], Robinson-Foulds distance [28], path
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length metrics [29], branch length scores [30], tree edit distance [31–33], and Billera-Holmes-

Vogtmann (BHV) distance [34]. However, these distances are defined for phylogenetic trees

with the same set of leaves, and therefore cannot accurately deal with the following problems,

(p1)–(p4), that are specific to the context of cancer evolutionary trees.

(p1) The parental sub-clone has one child sub-clone or more than two child sub-clones.

(p2) The number of sub-clones varies among patients.

(p3) SSNV contents differ among patients.

(p4) The number of detected SSNVs varies among patients.

(p1) and (p2) imply that a tree structure is not always binary, and the number of sub-clones

within the tree differs among patients. Various types of new sub-clones can be produced from

a common ancestral sub-clone by acquiring new sets of SSNVs, which results in complex tree

structures and tree sizes. (p3) and (p4) indicate that sub-clones are rarely identical among

Fig 1. Overview of the proposed method. (A) Example of cancer evolution. A founder cell is established after a normal cell acquires

several passenger mutations and driver mutations (founder SSNVs), and sub-clones evolve by acquiring progressor SSNVs. Each color

(purple, orange, dark blue, light blue, and green) of circles represents different sub-clones. (B) Example of a cancer evolutionary tree in the

case of (A). A root and its immediate node represent the normal cell and founder cell, respectively. Subsequent nodes indicate sub-clones

and edge lengths indicate the number of SSNVs acquired in the sub-clones. (C) Example of the registration of a tree. To resolve (p1)–(p4)

for comparison of the evolutionary trees, a sufficiently large bifurcated tree is constructed, which is the reference tree (note that we have

omitted bifurcation from the root for clearer visualization). The tree topologies and attributes are mapped to the reference tree beginning with

those with the largest depths to those with the smallest depths. In the case of a tie, the sub-trees are mapped from those with the largest

edge lengths. Zero-length edges are regarded as degenerated edges (dashed lines). Edge lengths are normalized by the sum of all edge

lengths within tumors. The resulting trees can be represented as edge length vectors zi. (D) Clustering cancer evolutionary trees to

summarize the evolutionary history of cancer for each patient. The trees are reconstructed based on the VAFs and then n cancer sub-clonal

evolutionary trees are divided into K subgroups based on tree topologies and edge attributes. Through the registration, n evolutionary trees

can be represented as m-dimensional n vectors in Euclidean space, and a standard clustering algorithm can be applied.

https://doi.org/10.1371/journal.pcbi.1005509.g001
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patients since the SSNVs within a patient are quite different from those of other patients, and

it is thus hard to match sub-clones between patients. In addition, the total number of SSNVs

can vary substantially among patients. Therefore, according to experimental conditions, it is

important to adjust for these effects to effectively compare the trees. These problems motivated

us to develop a method for the effective comparison among tree via transformation of the tree

topologies and edge attributes, a procedure we refer to as tree registration.

In this paper, we propose a new clustering method for cancer evolutionary trees based on

tree topologies and edge attributes that describe the relationships of sub-clones and the num-

ber of SSNVs that accumulate in the sub-clones. Our conceptual framework is based on

object-oriented data analysis [24], in which the observation units are non-numeric objects

such as functions and trees. The main contributions of this paper are development of (i) a tree

registration method for cancer evolutionary trees, (ii) a clustering method of the registered

trees, and (iii) an evaluation method of the clusters, which can be applied using our software

phyC in the R environment.

In the registration, we resolve the issues raised in (p1)–(p4) through development of a

method for transforming tree objects by mapping tree topologies and their attributes to make

the trees comparable (Fig 1C). The registered trees are embedded in Euclidean space, which

enables defining the distance between the cancer evolutionary trees. Based on this distance, we

divide a set of the trees into several sub-groups with a clustering method (Fig 1D). We devel-

oped two tools for interpretation of the clusters: multidimensional scaling (MDS) and a sub-

clonal diversity plot.

We evaluated the performance of phyC using simulated data that mimic the actual scenar-

ios. We also demonstrate the applicability of phyC using two actual datasets from patients with

ccRCCs [21] and NSCLC [23], respectively, to show the interpretability of the clustering

results. phyC is implemented with R(�3.2.2) and is available from https://github.com/ymatts/

phyC.

Methods

We denote n reconstructed cancer evolutionary trees as X = {xi; i = 1, 2, . . ., n}, and the

edges and edge lengths are denoted as {eij; i = 1, 2, . . ., n, j = 1, 2, . . ., mi} and {|eij|; i = 1, 2, . . ., n
j = 1, 2, . . ., mi}, respectively. Without loss of generality, {ei1; i = 1, 2, . . ., n} indicates the edge

from the normal cell to the founder cell. Given the number of terminal nodes Ni; i = 1, 2, . . ., mi,

we set depth (i.e., the number of edges in the path from the root to the terminal node) as

dik(i = 1, 2, . . ., n; k = 1, 2, . . ., Ni).

Registration

We developed a registration method for the cancer evolutionary trees. The goal of the registra-

tion is to transform the observed trees such that dissimilarities can be defined with consider-

ation of the tree topologies and edge attributes. To solve the problems (p1)–(p4), we provide

the following approaches, (q1) and (q2):

(q1) Reference tree encoding

(q2) Normalizing edge lengths

To account for different tree structures and sizes as raised in (p1), we consider a reference

tree-encoding approach that is similar to [35]. In this approach, we prepare a very large bifur-

cated tree called a reference tree (corresponding to the maximum tree in [36] and encode the

observed tree topologies and edge lengths onto the reference. Zero-length edges are regarded

as degenerated edges (Fig 1C). The advantage of this approach is that once we encode the
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observed tree onto a reference tree, the comparison can be simply achieved for trees of the

same structures and sizes. To account for the issue (p4), we developed a method for normaliza-

tion of the edge length to remove the bias in the detected number of SSNVs.

Here, we describe the details of the registration method. First, we set the maximum depth

in X as dmax(X) = max {dik; i = 1, 2, . . ., n, k = 1, 2, . . ., Ni} and define the reference tree as

follows.

Definition 1 (Reference tree) The reference tree is a bifurcated tree with the minimum depth
of dmax(X).

Thus, the reference tree has m = 2(2dmax(X) − 1) edges (Fig 1C). We denote the reference tree

as Xref with edges and edge lengths Ek; k = 1, 2, . . ., m and |Ek|; k = 1, 2, . . ., m, respectively. The

registration can then be defined with the reference tree.

Definition 2 (Registration) Registration is a mapping f: X 7! Xref.

We define the mapped trees as Y = {f(xi); i = 1, 2, . . ., n}, and more specifically, the mapped

edge and edge length are set to {Eik; i = 1, 2, . . ., n, k = 1, 2, . . ., m} and {|Eik|; i = 1, 2, . . ., n,

k = 1, 2, . . ., m}, respectively. The number of edges differs between the observed tree and the

reference tree, and we also need to account for any unmapped edges. Since the degenerated

edges can be regarded as the zero-length edge when considering the distance of trees [36],

we can define |Eik0| = |eij|; k0 2 A for the mapped edge index set A� {1, 2, . . ., m}, and define

|Eik0| = 0; k0 2 B for the unmapped edge index B = {1, 2, . . ., m}\A.

To resolve (p3), we developed the mapping rule eij 7! Eik for j = 1, 2, . . ., mi, k = 1, 2, . . ., m,

such that the observed trees are mapped onto the reference tree beginning with sub-trees with

the largest depths and moving on to those with the smallest depths (Fig 1C). When the depths

are the same among the sub-trees, we use the edge length and map the sub-trees beginning

with those with the largest edge lengths (Fig G in S1 Text).

In the last step of the registration, we perform normalization for the edge length. Zhang

et al. [23] importantly suggested in NSCLC study that patients with relapsed disease had larger

fractions in their primary tumors (average 41% in patients with relapse versus 24% in patients

without relapse, p = 0.045 by t test). Therefore, we consider that the ratio of the number of

accumulated SSNVs is an important factor to characterize and compare the cancer evolution-

ary trees, and we divided each edge length by the total number of SSNVs within patients.

jEikj=
Xm

k¼1

jEikj; for all k: ð1Þ

Clustering set of registered trees

To define the dissimilarity between the registered trees, we begin with the space of the set of

the registered trees. Billera et al. [34] proposed the concept of a continuous tree space-associ-

ated geodesic distance metric as a natural way to embed and compare phylogenetic trees. This

tree space consists of a set of Euclidean regions, called orthants, one for each tree topology.

Orthants are joined together whenever one tree topology can be made into another by

exchanging edges between the trees. Within an orthant, the coordinates of each point repre-

sent the edge lengths for a particular tree with the topology associated with that orthant. Since

we only encode the observed trees onto the reference tree with the same topology, the regis-

tered trees do indeed lie in the same orthant as a special case of BHV space.

Corollary 1 (Euclidean embedding) The registered trees lie in Euclidean space.
We represent the registered tree as a vector, whose elements correspond to each edge length

as z0i ¼ ðzi1; zi2; . . . ; zimÞ; zij 2 R. Note that zero length edges are regarded as degenerated

edges. Thus, n registered trees are represented as the n ×m matrix Z0 ¼ ðz1; z2; . . . ; znÞ.

Clustering cancer evolutionary trees
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We define the dissimilarity as follows:

sðxi; xjÞ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzi � zjÞ

0
ðzi � zjÞ

q
: ð2Þ

The basic statistics of the cancer evolutionary trees can also be defined. The tree average is

defined as m ¼ 1

n

Pn
i¼1

zi and the tree variance is defined as s2 ¼ 1

n

Pn
i¼1
ðzi � mÞ

0
ðzi � mÞ.

Based on the tree representation with Z, which can be regarded as n observations with an m
features matrix, we can simply apply standard clustering algorithms and divide the n trees into

subgroups. Hierarchical clustering was then implemented using phyC. To determine the num-

ber of clusters automatically, we applied the gap statistics criterion [37] with the NbClust R

package [38].

Graphical representation

Interpreting clustering results is a key issue for tree comparison, which requires understanding

the features of the cancer evolutionary trees in clusters. In particular, visual representation can

be a powerful tool for such interpretation. Therefore, we developed two computational tools

for comparing trees and understanding the cluster features.

MDS. To effectively compare the trees, we approximately embedded the registered trees

into lower-dimensional Euclidean space. For this purpose, we applied classical MDS (CMDS)

[39], which is a dimension-reduction technique based on singular value decomposition. We

will here omit the details of the CMDS algorithm and briefly describe the method below.

Given the symmetric distance matrix S = {sij; i, j = 1, 2, . . ., n}, the double-centered matrix

B ¼ �
1

2
HS2H ð3Þ

is positive semi-definite, where H ¼ 1 � 1

n 1n1n
0, and can be diagonalized as

B ¼ ULU 0: ð4Þ

The constructed coordinates are obtained by X ¼ UL
1
2. For this purpose, we use the dis-

tance that is defined in Eq (2). CMDS requires knowing the number of dimensions, which we

set to two for the purpose of convenient visualization. In phyC, we overlaid the tree shapes

over the coordinates and visually compared the tree structures based on dissimilarity.

Sub-clonal diversity plot. To visualize how sub-clones evolve with respect to SSNV accu-

mulation, we apply the concept of a lineage-through-time (LTT) plot, which is commonly

used for visualizing the timing of speciation events in studies of the birth-death process.

The LTT plot generally describes the time vs. number of lineages; in the present case, this is

expressed as the number of sub-clones (y-axis) vs. the fraction of accumulated SSNVs (x-axis)

and the plot is referred to as a sub-clonal diversity plot. This plot represents the growth rate

of the number of sub-clones when a certain percentage of mutations accumulate. In the plot,

y = 1 means that there is no sub-clone, and thus only a normal cell exists, and y = 2 indicates

that there is a founder cell. For example, (x, y) = (0.3, 2) indicates that the founder cell is estab-

lished with the accumulation of 30% SSNVs. For y> 1, the growth curve in the plot represents

how many sub-clones emerged for a given fraction of SSNVs. If the curve is upright, the sub-

clones evolve with a small fraction of SSNV accumulation, and conversely, if the curve grows

with gradual steps, the sub-clones acquire a relatively large fraction of SSNVs. A gradual

growth curve was observed in the case of parallel evolution shown in [21], which will be dem-

onstrated below in the implementation of the ccRCC dataset.

Clustering cancer evolutionary trees
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Results

Simulation analysis

We evaluated the performance of the proposed method using simulation data that reflects real

situations. The main purpose of simulation is to show the effectiveness of the registration pro-

cess for cancer evolutionary tree classification when compared to methods without the regis-

tration. Moreover, we investigated whether the differences in tree topology or edge length are

more important when comparing tree objects.

There are two types of tree comparison methods: one is based on only tree topologies, and

the other is based on both tree topologies and edge attributes. We examined phyC from the

viewpoint of classification performance for tree topologies, edge length, and both. We con-

ducted the following three simulations:

Simulation I Comparison of tree topologies

Simulation II Comparison of the edge lengths of tree

Simulation III Comparison of both tree topologies and edge lengths

Simulation I was conducted to examine whether phyC can classify tree topologies, i.e., the

edge lengths are all the same. In simulation II, we examined the classification performance of

phyC for edge length differences. Simulation III was designed to examine the performance of

phyC for both tree topology and edge length differences between tree objects.

To evaluate the clustering results, we adopted three external clustering validation indices

[40], which are described in S1 Text: purity (PR), normalized mutual information (NMI), and

Rand index (RI). In the following three simulations, we created 100 replicates of each dataset

and evaluated the mean and standard deviation of PR, NMI, and RI.

Simulation I. To simulate cancer evolutionary tree topologies, we manually created four

classes of tree topologies used in Yuan et al. [41]: monoclonal (MC), polyclonal-low (PL), poly-

clonal-high (PH), and mutator phenotype (MT). Based on the four classes of tree topologies,

we generated random topologies via tree editing with various dispersion parameters described

in S1 Text. We obtained 10 trees for each class, and simulations were conducted for various

dispersion parameters. The results were compared to those of the tree edit distance (TED)

using RTED [33] and to those of the shortest path distance (SPD).

Simulation II. Zhang et al. [23] showed that the ratio of the number of SSNVs in the

trunk to branches was significantly different between the recurrent and non-recurrent group,

suggesting that the ratio of the edge length of the trunk to that of the branches can be related

to phenotype. We considered three classes of SSNVs accumulation patterns with regard to the

edge length of cancer evolutionary trees: trunk-accumulation (TR), balanced-accumulation

(BL), and branch accumulation (BR), as shown in Fig 2. In TR and BR, most of the SSNVs are

accumulated in the trunk and branch, respectively. In BL, the SSNVs are equally distributed in

the trunk and branch. Based on these three classes, we generated the random trees described

in S1 Text. We obtained 10 trees for each class, and simulations were conducted for different

variances. The results were compared to those of the branch length score (BScore).

Simulation III. We created nine classes of tree objects considering both tree topology and

edge length (Fig 2). We used the three tree topologies from simulation I, PL, PM and PH, and

adopted the three classes of SSNVs accumulation patterns from simulation II, TR, BL, and BR,

to each tree topology. We obtained nine classes that represent a combination of cases in simu-

lations I and II, named polyclonal-low trunk-accumulation (PL-TR), polyclonal-low balanced-

accumulation (PL-BL), polyclonal-low branch-accumulation (PL-BR), polyclonal-middle

trunk-accumulation (PM-TR), polyclonal-middle balanced-accumulation (PM-BL),

Clustering cancer evolutionary trees
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Fig 2. Classes of cancer evolutionary trees in the simulations. Simulation I: Five classes of tree topologies were

considered: monoclonal (MC), polyclonal-low (PL), polyclonal-middle (PM), polyclonal-high (PH), and mutator-phenotype

(MT). Simulation II: Three classes of edge lengths of the tree are considered: trunk accumulation (TR), branched

accumulation (BR), and balanced accumulation (BL). Simulation III: Nine classes of trees are considered: polyclonal-low

trunk accumulation (PL-TR), polyclonal-low balanced accumulation (PL-BL), polyclonal-low branch accumulation

Clustering cancer evolutionary trees
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polyclonal-middle branch-accumulation (PM-BR), polyclonal-high trunk-accumulation

(PH-TR), polyclonal-high balanced-accumulation (PH-BL), and polyclonal-high branch-accu-

mulation (PH-BR). Based on these nine classes, we generated the random trees described in S1

Text. We obtained 10 trees for each class, and simulations were conducted for different vari-

ances. The results were compared to those of the BScore.

Simulation results. Fig 3 shows the results of each simulation, where the x-axis and y-axis

represent the variance index and performance score, respectively. The variance index corre-

sponds to the descending order of the variance, and the performance scores are defined by

external clustering validation indices.

In simulation I, phyC outperformed the other methods without the registration, although

the performance decreased with an increase in the variance. The performance of NMI of phyC

(PL-BR), polyclonal-middle trunk-accumulation (PM-TR), polyclonal-middle balanced-accumulation (PM-BL), polyclonal-

middle branch-accumulation (PM-BR), polyclonal-high trunk accumulation (PH-TR), polyclonal-high balanced

accumulation (PH-BL), and polyclonal-high branch accumulation (PH-BR)

https://doi.org/10.1371/journal.pcbi.1005509.g002

Fig 3. Results of the simulations. Each row of panels represents the simulation type (simulation I, II, and III), and each column represents

the external clustering validation indices: purity (PR), normalized mutual information (NMI), and Rand index (RI). The horizontal axis of each

graph is the variance parameter defined in S1 Text, and the vertical axis is the external validation index. The bold lines and the bands

indicate the mean and 95% confidence interval of the index for 100 replicates of each dataset.

https://doi.org/10.1371/journal.pcbi.1005509.g003
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was much higher than that of the other methods, in contrast to those of PR and RI, which indi-

cated that the clusters of TED and SPD included more objects from the other classes than that

of phyC. The good performance of phyC is attributed to the mapping for tree topologies in the

registration, which allows us to focus only on the tree shapes without considering node labels

in contrast to the other methods. The mapping process is clearly effective when considering

the differences of cancer evolutionary tree topologies.

In simulation II, phyC showed higher clustering performance than BScore, without the

registration. When the variance was large, the performances of phyC and BScore were close;

however, the performance of phyC increased with smaller variances. Similar to the results of

simulation I, the performance of NMI of phyC was much higher than that of the other meth-

ods. These results are attributed to the mapping and edge length normalization in the registra-

tion, which allows us to focus on the edge length ratio with regard to SSNVs accumulation

patterns.

In simulation III, the performance score of BScore with PR was higher than that of phyC,

but the scores for NMI and RI showed the opposite results. In BScore, most of the objects are

assigned to a few large clusters, and the remaining fractions of objects are distributed to several

small clusters, which results in a high PR score. The good performance of phyC is attributed to

the mapping and edge length normalization in the registration, as in simulations I and II. The

performance of phyC tended to become saturated at around 0.75 and 0.90 in NMI and RI,

respectively, compared to the performance of simulation I and II. This is because the three

classes defined by PL-TR, PM-TR, and PH-TR were assigned to the same clusters, which indi-

cates that phyC tends to emphasize the difference in edge length rather than the difference in

tree topology when the differences of edge length are extremely large.

These results indicate that our method is effective for capturing the differences in the shapes

of cancer evolutionary trees.

Real data

We here demonstrate the application of our proposed method using an actual ccRCC dataset

[21] and an NSCLC dataset [23], consisting of 8 and 11 multi-regional tumor samples with

VAFs collected among 587 and 7,026 SSNVs, respectively. Since both studies used the maxi-

mum parsimony method to reconstruct the cancer evolutionary trees, we also adopted this

method to analyze the datasets with our approach. We binarized the VAF profiles with

VAF � 0.05 as one and otherwise zero. Using the binary profile, we estimated the phylogenetic

trees using the function acctran in the R package phangorn [42] and we obtained 19 can-

cer evolutionary trees.

ccRCC dataset. The ccRCC dataset consists of eight evolutionary trees with clinical infor-

mation related to treatments. We divided the eight evolutionary trees of the ccRCC dataset

into three subgroups using hierarchical clustering with Ward’s method. Table 1 shows the

clustering result, and a configuration of the eight trees with CMDS and a dendrogram are

shown in Fig 4A-1 and Fig A in S1 Text, respectively. We also show in Fig D of S1 Text the tree

averages that are mean of edge length of registered trees in each cluster.

Table 1. Clustering result of the ccRCC dataset.

Cluster Sample name

Cluster 1 EV003, EV006

Cluster 2 EV005, EV007, RMH008, RMH004, RK26, RMH002

https://doi.org/10.1371/journal.pcbi.1005509.t001
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The tree averages in Fig D in S1 Text indicate that the tree shape of cluster 1 is characterized

by trunk accumulation-like shape in contrast to cluster 2 and 3 that are characterized by bal-

anced accumulation and branched accumulation-like shapes, respectively.

Cases EV003 and EV006 in cluster 1 received pretreatment with everolimus [21]. The sub-

clonal diversity plot shown in Fig 4B-1 demonstrates that sub-clonal expansions in cluster 1

occurred after 60% of the SSNVs accumulated, in contrast to cluster 2 (10%), which may indi-

cate that the drug interrupts acquisition of SSNVs in the sub-clones, leading to lower genetic

diversity of these sub-clones. Cluster 1 reflects the drug-sensitive sub-clones group, and the

result corresponds to the interpretation provided by Gerlinger et al. [21].

Cases EV005, EV007, RMH004, RMH008, RK26, and RMH002 in cluster 2 acquired a large

fraction of SSNVs in the sub-clones (Fig 4B-1). Comparison of the original tree shape demon-

strated that the long branches are followed by several private branches. The samples of EV005,

EV007, RMH004, and RMH008 were reported as sub-clones of parallel evolution, i.e., each

sub-clone independently evolved in spatially distinct regions [21].

These findings demonstrate that our method can produce interpretable clusters for the

drug-sensitive group and parallel evolution group in the ccRCC dataset.

NSCLC dataset. The NSCLC dataset consists of 11 evolutionary trees with the following

clinical information: staging (IA, IIA, IIIA, and IB), smoking status (former, current, and

never), and recurrence (yes and no). We divided the 11 trees into two subgroups using hierar-

chical clustering with Ward’s method. The clustering result is shown in Table 2, and the con-

figuration of CMDS and a dendrogram are shown in Fig 4A-2 and Fig B in S1 Text,

respectively. The tree averages are shown in Fig E in S1 Text.

The tree averages in Fig E in S1 Text indicate that the tree shape of cluster 1 and 2 are char-

acterized by trunk accumulation and balanced accumulation-like shape.

Case 330 and case 4990 in cluster 2 are labeled as the recurrent group, but case 356 is not.

As shown in Fig 4B-2, there are several long horizontal regions in the sub-clonal diversity

curve, which indicates that each sub-clone acquired a large portion of SSNVs. This implies

that the sub-clones contained a large fraction of the SSNVs after diverging from the founder

cell, i.e., representing a genetically new generation. Zhang et al. [23] reported a similar observa-

tion, in which they found a significant difference (t-test) in the average fractions of SSNVs

between the recurrent group and non-recurrent group. Case 356 is labeled as non-recurrent;

however, it shows a large fraction of SSNVs in the sub-clones compared to that of the non-

recurrent group, leading to a similar tree shape to that of trees of the recurrent group.

Cluster 1 consists of non-recurrent cases, except for case 270. Fig 4B-2 shows small horizon-

tal regions in the sub-clonal diversity curve, which indicates that each sub-clone acquired a

smaller portion of SSNVs compared to that observed in the sub-clones of cluster 2; that is,

most of the SSNV acquisition events had already occurred as founder mutations. Although

case 270 is labeled as recurrent, it shows a lower fraction of SSNVs in the sub-clones compared

to that of the recurrent group; as a result, its tree shape resembles that of trees of the non-recur-

rent group.

The difference between the two clusters indicates that acquisition of a large fraction of

SSNVs in sub-clones may influence the survival of cancer patients, and phyC could capture

this feature and correctly classify them, which is consistent with the results of Zhang et al. [23].

Comparison of the ccRCC and NSCLC datasets. In addition to establishing the evolu-

tionary pattern of a certain cancer type or sub-type, it is also interesting to compare the evolu-

tionary patterns of different types of cancer. Therefore, we compared the evolutionary trees

derived from the ccRCC and NSCLC datasets. We applied phyC to the 19 trees reconstructed

as described in the previous sub-sections, which were divided into two distinct clusters

(Table 3, Fig 4A-3 and Fig C in S1 Text, Fig F in S1 Text).
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Fig 4. (A-1) Three clusters of the ccRCC dataset. The x-axis and y-axis are the lower dimensions reconstructed by CMDS. Clusters 1

(green) and 2 (orange) reflect drug-sensitive evolution and parallel evolution, respectively; we cannot provide a valid interpretation for cluster

3 (purple) at present. (B-1) Sub-clonal diversity plot of the ccRCC dataset. The x-axis and y-axis are the fraction of accumulated SSNVs and

the number of sub-clones, respectively. Each color corresponds to the clusters shown in (A). Expansions in cluster 1 occurred with x = 0.6; (i.

e., the proportion of SSNVs in the trunk is 60%). This result is in contrast to that obtained for cluster 2 (x = 0.2) and cluster 3 (x = 0.1). Trees

in cluster 2 show gradual growth of sub-clonal diversity curves, indicating that these sub-clones acquire a relatively large fraction of SSNVs.

The sub-clones independently evolve in spatially distinct regions [21]. (A-2) Two clusters in the NSCLC dataset. Clusters 1 (green) and 2

(orange) reflect the non-recurrent and recurrent group, respectively. Only case 270 and case 356 were misclassified to clusters 1 and 2,

respectively. (B-2) Sub-clonal diversity plot of the NSCLC dataset. Each color corresponds to the clusters shown in (A-2). (A-3) Two clusters

in the ccRCC and NSCLC datasets combined. Clusters 1 (green) and 2 (orange) represent the cancer types NSCLC and ccRCC,

respectively. (B-3) Sub-clonal diversity plot of the ccRCC and NSCLC datasets.

https://doi.org/10.1371/journal.pcbi.1005509.g004
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The tree averages in Fig F in S1 Text indicate that the tree shape of cluster 1 and 2 are char-

acterized by trunk accumulation and branched accumulation-like shape.

The trees could be mainly classified according to cancer type. One of the main features of

the ccRCC evolutionary trees in cluster 2 was the acquisition of a large fraction of SSNVs in

the sub-clones, leading to the tendency of parallel evolution. In contrast to the ccRCC trees,

the NSCLC evolutionary trees showed that a large fraction of SSNVs was acquired in the

trunk, and not in the sub-clones, which confirmed that the important event had already

occurred in the early stage of SSNVs acquisition [23].

Some of the trees were classified with different cancer types, including case 330, case 4990,

and case 356 in cluster 2, and EV003 and EV006 in cluster 1. Case 330 and case 4990 in the

NSCLC dataset are part of the recurrent group, and the tree shape of case 356 is similar to that

of the recurrent group (Table 3). A large fraction of SSNVs of case 330, case 4990, and case 356

accumulated in branches, as in the ccRCC samples. EV003 and EV006 in the ccRCC dataset

are samples of drug-sensitive tumors, and their tree shapes resemble those of NSCLC trees,

which further supports that the drug interrupts the accumulation of SSNVs in the sub-clones.

Discussion

We developed phyC, which was designed for clustering a set of cancer evolutionary trees to

characterize cancer evolutionary patterns according to tree shape, based on analysis of tree

topologies and edge attributes. Using this approach, we effectively identified the evolutionary

patterns with different degrees of heterogeneity in a simulation study. We also successfully

detected the phenotype-related and cancer type-related subgroups when applying this method

to actual ccRCC and NSCLC data.

Considering the generally high level of inter-tumor heterogeneity, it is important to be able

to identify phenotype- or cancer type-related evolutionary patterns. Previous studies have clas-

sified and interpreted the branching patterns of such sub-clones with manual methods, and

then separately analyzed the compositions of SSNVs in each sub-clone. However, development

of a quantitative analysis method is required to deal with datasets containing a large number of

patients with cancer evolutionary trees to characterize and interpret the evolutionary patterns.

Our approach relies on reconstruction methods of evolutionary trees, and we used a par-

simony approach that is widely adopted in studies of multi-regional sequencing. The pro-

posed method only requires knowledge of the edges and edge attributes of rooted trees, and

is therefore widely applicable to outputs of other recently developed state-of-the-art

Table 2. Clustering result of the NSCLC dataset.

Cluster Sample name

Cluster 1 case 317, case 292, case 283, case 324, case 499

case 472, case 339, case 270

Cluster 2 case 330, case 4990, case 356

https://doi.org/10.1371/journal.pcbi.1005509.t002

Table 3. Clustering result of the ccRCC and NSCLC datasets.

Cluster Sample name

Cluster 1 case 317, case 292, case 283, case 324, case 499

case 472, case 339, case 270, EV003, EV006

Cluster 2 EV005, EV007, RK26, RMH002, RMH004

RMH008, case 330, case 4990, case 356

https://doi.org/10.1371/journal.pcbi.1005509.t003

Clustering cancer evolutionary trees

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005509 May 1, 2017 13 / 17

https://doi.org/10.1371/journal.pcbi.1005509.t002
https://doi.org/10.1371/journal.pcbi.1005509.t003
https://doi.org/10.1371/journal.pcbi.1005509


reconstruction methods, which allowed us to consider the heterogeneous mixture of cells

within a sample.

There are several limitations of the present method that are worth mentioning, which

should be tackled in further investigations. First, we have ignored the specific content of

SSNVs in the sub-clones. We believe that this is a reasonable assumption to some extent, since

the variation of SSNVs is too large to yield an effective comparison. However, the effects and

consequences of different types of SSNVs can also vary, such as driver mutations or passenger

mutations. Thus, when comparing edges with the same lengths from different trees, the two

edges may not actually be equivalent if driver genes are included in one edge but not in the

other. The first cut distinction between driver and passenger mutations could also simplify the

algorithm and improve its running time. Therefore, a method that can incorporate the effect

of driver genes in the sub-clones should be explored in future work.

Second, we have here only considered the SSNVs accumulating in the evolutionary trees,

ignoring potential copy number or epigenetic aberrations; however, these factors may also

affect heterogeneity within a tumor. Multi-regional sequence analysis has been performed

using exome sequencing as well as copy number, methylation, and mRNA expression array

profiling, providing an integrated interpretation of cancer evolution [43]. To determine the

evolutionary patterns from these integrated data, our method can be extended to the case of

multivariate edge attributes, including copy number variations and hyper- or hypo-methyla-

tion, as well as other genetic and epigenetic aberrations.

Finally, we did not take into account the potential effects of regional sampling biases and

individual variations among tumors or patients. Gerlinger et al. [21] pointed out that increas-

ing the sequenced regions of samples might lead to additional detection of sub-clones, and

thus the complexity of inferred evolutionary trees might be affected by the sampling strategy.

Therefore, a method for sampling bias reduction is needed to improve the clustering accuracy

and plausible interpretation.

Our proposed approach represents the first practical method to quantitatively and accu-

rately compare a variety of evolutionary trees with different structures, sizes, and labels, and

with biases of edge length, while further allowing for biological interpretation. Our results

imply that this approach has potential applications for personalized medicine such as predict-

ing the outcomes of chemotherapeutics and targeted therapies, e.g., drug-resistance, based on

evolutionary trees. We believe that the value and impact of our work will grow as more and

more multi-regional sequencing datasets of patients become available.

Supporting information

S1 Text. S1 Text contains detailed procedure of generating simulation data, external evalu-

ation criteria for clustering, sampling effects on the clustering results, supporting figures

and tables (Fig A–Fig G in S1 Text and Tables A–F in S1 Text).

(PDF)

S1 File. S1 File contains an R Markdown file for reproducing all the figures in this manu-

script and the related data can be downloaded from https://github.com/ymatts/phyC/tree/

master/misc.

(HTML)
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