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The Unified Huntington’s Disease Rating Scale (UHDRS) is the primary clinical

assessment tool for rating motor function in patients with Huntington’s disease (HD).

However, the UHDRS and similar rating scales (e.g., UPDRS) are both subjective and

limited to in-office assessments that must be administered by a trained and experienced

rater. An objective, automated method of quantifying disease severity would facilitate

superior patient care and could be used to better track severity over time. We conducted

the present study to evaluate the feasibility of using wearable sensors, coupled with

machine learning algorithms, to rate motor function in patients with HD. Fourteen

participants with symptomatic HD and 14 healthy controls participated in the study.

Each participant wore five adhesive biometric sensors applied to the trunk and each limb

while completing brief walking, sitting, and standing tasks during a single office visit. A

two-stage machine learning method was employed to classify participants by HD status

and to predict UHDRS motor subscores. Linear discriminant analysis correctly classified

all participants’ HD status except for one control subject with abnormal gait (96.4%

accuracy, 92.9% sensitivity, and 100% specificity in leave-one-out cross-validation).

Two regression models accurately predicted individual UHDRS subscores for gait,

and dystonia within a 10% margin of error. Our regression models also predicted a

composite UHDRS score–a sum of left and right arm rigidity, total chorea, total dystonia,

bradykinesia, gait, and tandem gait subscores–with an average error below 15%.

Machine learning classifiers trained on brief in-office datasets discriminated between

controls and participants with HD, and could accurately predict selected motor UHDRS

subscores. Our results could enable the future use of biosensors for objective HD

assessment in the clinic or remotely and could inform future studies for the use of this

technology as a potential endpoint in clinical trials.
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INTRODUCTION

Huntington’s disease (HD) is a progressive autosomal dominant
neurodegenerative disease caused by a CAG trinucleotide
repeat expansion within the HTT gene. Clinically, HD is
marked by abnormal involuntary movements, cognitive
decline, and behavioral changes. Presently, disease onset
is identified by the emergence of characteristic abnormal
motor findings during clinical examination. The Unified
Huntington’s Disease Rating Scale (UHDRS) is the current
gold standard used to communicate disease severity and
consists of a four part battery of assessments measuring
motor function, cognitive function, behavioral abnormalities,
and functional capacity (1). The UHDRS Total Motor Score
(UHDRS-TMS) is a 124-point scale consisting of multiple
subscores rated from zero to four (e.g., maximal chorea-left
leg, bradykinesia). Although the UHDRS-TMS assessment
has acceptable interrater reliability, it is ultimately subjective
and its accuracy depends on the clinical experience of the
rater (1–3).

Objective measurements of disease characteristics are
important for reliably assessing disease progression, both
for clinical management and for evaluating the efficacy
of novel candidate therapies. Furthermore, acquiring
objective data more frequently and in settings other
than the clinic, without the necessity of a clinician, may
ultimately provide more sensitive biomarkers to inform
clinical decision-making and for use in clinical trials.
Numerous tools to this end have been investigated, including
wearable devices as well as mobile smartphone applications,
in the context of monitoring a range of neurological
conditions (4–19).

Prior studies have attempted to characterize motor features
in HD using various configurations of wearable sensors by
recording longitudinal data (19, 20), recording complex observed
tasks (18), or by focusing on a particular body region (16, 17, 21).
Our objective was to develop an automated scoringmethod using
data from simple assessments to provide point measurements
of motor features in HD. The present study applies machine
learning methods to automatically classify participant disease
status and to predict seven specific UHDRS-TMS subscores (left
and right arm rigidity, total chorea, total dystonia, bradykinesia,
gait, and tandem gait) using data obtained from wearable sensors
worn during simple, brief tasks.

METHODS

Data Collection
We recruited a convenience sample of 14 individuals with
clinically manifest HD and confirmatory genetic testing (>36
CAG repeats) and 14 healthy controls (unaffected caregivers).
Participants provided informed, written consent and all study
activities were approved by the University of Pennsylvania’s
Institutional Review Board. Five BioStamp nPoint R© sensors
(MC10, Inc.; Maguire Rd., Lexington, Massachusetts, USA)
were attached to each participant’s forearms, thighs, and
sacrum, respectively (Figure 1). The BioStamp sensor is a

510(k)-approved, reusable, wearable device equipped with a
triaxial accelerometer and gyroscope.

We obtained triaxial linear acceleration signals from all five
sensors and angular velocity signals from arm and sacral sensors
as the participant performed three tasks: (1) sitting for∼30 s with
feet planted and back unsupported; (2) standing with feet apart
for∼30 s; and (3) walking along an 11-yard straight path over five
repetitions (Figure 1). A neurologist specializing in movement
disorders (PGA) subsequently completed the UHDRS-TMS
assessment for patients with HD. Healthy controls were assigned
a total score of zero.

Feature Extraction
We split the accelerometer and gyroscope data from each sensor
into seven task segments, one segment corresponding to each of
the sitting and standing tasks, and five segments corresponding
to each straightaway walking interval, ensuring that turns were
excluded. The accelerometer and gyroscope data in each segment
was pre-processed by first applying a 5th order bandpass filter
between 1 and 16Hz, a frequency range that should capture
relevant motion while attenuating signal noise (22). Next we
combined the three axial signals for a given sensor and signal type
to obtain an orientation-invariant signal as follows:

|STotal| =
√

Sx
2 + Sy

2 + Sz
2,

where S(.) represents an axial component of the recorded
signal. After preprocessing, we were left with eight orientation-
invariant signals from the five accelerometers and three
gyroscopes per task.

Thirteen summary statistics were computed over the eight
inertial segments for a total of 104 features per task. These
features were selected based on literature review and clinical
judgment of the types of quantitative measures that would
capture the abnormal movements observed by clinical HD
experts. For each segment, we first calculated the root mean
squared, absolute maximum, and standard deviation (SD) of
the signal in the segment. Next, we located all peaks in the
segment using MATLAB’s findpeaks function, and calculated
the mean, SD, maximum, and minimum peak height. We
also calculated the mean and SD of the inter-peak-interval.
Finally, we calculated the average power in the broadband signal,
and average band power in three evenly-divided bands of the
6Hz window surrounding the mean normalized frequency of
the broadband signal (23). For example, we would calculate
average bandpower in the windows of 7–8, 9–10, and 11–
12Hz for a mean normalized frequency of 9.5Hz. We averaged
the calculated features across segments of the five walking
intervals, and thus had 312 features total from the three tasks
per patient.

Predictive Scoring Method
We developed a two-stage machine learning method to predict
UHDRS-TMS subscores. The goal of the first stage was to use
a binary classifier to discriminate between healthy controls and
participants with HD. In the second stage, we aimed to predict
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FIGURE 1 | (A) Sensor placement and sample of combined triaxial acceleration data for symptomatic HD participants and controls in three tasks: standing with feet

apart for 30 s; sitting for 30 s with feet planted and back unsupported; and walking along an 11-yard straight path over five repetitions. (B) Two-stage classification

and prediction flowchart.

UHDRS-TMS subscores in participants classified as having
symptomatic HD (Figure 2A). The UHDRS-TMS consists of
multiple subscores that are rated on a 0–4 scale, including
vertical and horizontal ocular pursuit, saccade initiation, saccade
velocity, and tongue protrusion. Because our sensors would
not directly record any eye or face motion, we chose to
predict seven specific UHDRS-TMS subscores related to our
sensor placement—left and right arm rigidity, total chorea, total
dystonia, bradykinesia, gait, tandem gait— as well as a composite
sum of the seven subscores.

For the first stage of our model we trained and evaluated
three types of binary classifiers–a linear support vector machine
(SVM), a linear discriminant analysis (LDA) model, and
a K-nearest neighbors (KNN) model–to compare different
classification mechanisms. We used leave-one-out (LOO) cross
validation to train and validate the three models; across 24
training rounds we held out one participant as a test set and used
the remaining participants for model training. In each round,
we first performed feature selection using the least absolute
shrinkage and selection operator (LASSO) to reduce the number
of features from 312 to fewer than 20 features (24). Finally, we
used the trained model to predict the class (HD symptomatic
or control) of the held-out participant. The MATLAB functions
fitcsvm, fitdiscr, and fitcknn were used for model training.

For the second stage, we trained linear SVM, decision tree, and
exponential gaussian process models with training data restricted
to symptomatic HD participants. We separately predicted the

seven selected TMS-UHDRS motor subscores (left and right
arm rigidity, total chorea, total dystonia, bradykinesia, gait, and
tandem gait) and a composite sum of the seven subscores. Again
we used LOO cross-validation to train and validate the models
across 14 training rounds. LASSO was used to first select relevant
features in each round, and then the TMS-UHDRS subscore was
predicted for the held-out participant. The MATLAB functions
fitrsvm, fitrtree, and fitrgp were used for model training.

Finally, we chose the best performing model from each
stage together to complete our full model. We performed LOO
cross validation to obtain a TMS-UHDRS prediction for each
participant. Participants classified as controls in the first stage
were assigned a score of zero, and the TMS-UHDRS subscore was
predicted for the participants classified as HD patients.

Model Performance and Statistical
Analysis
We evaluated the performance of the three binary classifiers
by comparing the predicted class of the held-out participants
to their actual class assignment; we calculated accuracy
(percent correctly classified), sensitivity (true positives/total
positives), and specificity (true negatives/total negatives) of each
classification model.

To assess the performance of the second stage of our model,
we computed the absolute difference between the predicted
subscore and true subscore for each held-out patient. Then we
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FIGURE 2 | (A) Classification results: model performance comparison (healthy controls= 0, symptomatic HD participants=1) (B) UHDRS subscore prediction:

normalized mean absolute error (nMAE) in predicted score for decision tree, linear SVM, and Gaussian process models in 7 UHDRS subscores and composite

subscore. Boxplots indicate the 75% interquartile interval (box), median (solid line), mean (x), maximum and minimum values excluding outliers (whiskers), and

individual errors (dots).

normalized that value by the range of the subscore to account
for different subscore ranges (e.g., chorea has a range of 20:
four possible points for each arm, each leg, and the trunk), and
averaged the error across patients. We termed this value the
normalized mean absolute error (nMAE), with equation given as

nMAE =
1

N∗r

N
∑

i=1

∣

∣y (i) − ŷ (i)
∣

∣ ,

where N is the number of patients, y(i) and ŷ (i) are the predicted
and true scores for patient i, and r is the score range. We
also used the nMAE to evaluate the performance of the full
two-stage model.

The non-parametric Mann-Whitney U-test was used to
determine whether the absolute error in subscore predictions

was significantly different between pairs of prediction models.
Pearson’s correlation was used to determine whether model error
corresponded to external patient factors.

RESULTS

Stage 1—Classification Performance
Three first-stage classification models (LDA, linear SVM, and
KNN) were compared by their ability to classify HD symptomatic
participants and control participants (Figure 2A). Each model
exhibited a LOO cross-validation accuracy of at least 92.9%,
with our LDAmodel demonstrating the best performance (96.4%
accuracy, 92.9% sensitivity, and 100% specificity). The same
11 features were included in at least 50% of the feature sets
selected during cross-validation. The selected features were not
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categorized by a particular task, signal type, or sensor location,
but instead represented all tasks, signals, and most sensors
(Supplementary Figure 2).

Stage 2—Scoring Performance
Next, we assessed the performance of decision tree, linear SVM,
and exponential Gaussian process models in predicting each of
the seven UHDRS-TMS subscores and the composite subscore.
We were curious about whether our data and features would
perform better for some subscores over others.We also wondered
whether the most accurate way to predict the composite subscore
was to predict each subscore separately and add them together, or
to directly predict the full composite subscore value.

We compared all three models across subscore predictions
using the nMAE reported as a percent of score range (Figure 2B),
and found that all three performed similarly (Mann-Whitney U,
p > 0.05). In both decision tree and Gaussian process models,
the nMAE for gait subscores and dystonia fell under 10% of the
possible score range. Bradykinesia, chorea, and arm rigidity were
more difficult to predict individually, with the nMAE ranging
from 17 to 25%. We also found that combining predicted scores
from the seven subgroups to predict the composite UHDRS
subscore resulted in a higher nMAE (Gaussian process, absolute
error Mdn= 27.4%, Q1= 23.9%, Q3= 32.5%) than did training
a single model to predict the composite subscore (Gaussian
process, absolute error Mdn= 12.3%, Q1= 3.0%, Q3= 14.9%).

Total Model Performance
Finally, we used our two-stage machine learning method to
(1) discriminate between healthy controls and participants with
HD, then to (2) predict the seven selected UHDRS motor
subscores and composite subscore in participants classified as
having symptomatic HD. We combined results from the LDA
binary classifier and selected the Gaussian process model to
measure the full-model performance. All thirteen participants
classified as healthy by the LDAmodel received a score of zero. A
UHDRS-TMS subscore was predicted for the single misclassified
control participant, and the predicted score was included in
the error analysis (Figure 3). The nMAE for predicting the
composite UHDS subscore using the full model was 6.37% (Mdn
= 0.97%, Q1 = 0%, Q3 = 12.64%) of the score range. We found
no significant association of total model prediction error and
age, total UHDRS-TMS score, or UHDRS composite subscore
(Pearson’s correlation p > 0.05).

DISCUSSION

We present a quantitative machine learning method that uses
biometric sensor data to identify participants with HD and to
predict UHDRS-TMS subscores. Our work complements prior
studies that have used longitudinal data, more tasks, or greater
task complexity to objectively quantify motor features in HD
(4, 17, 18). We demonstrate that with <5min of data over
three simple tasks, we can discriminate between participants
with symptomatic HD and healthy controls with an accuracy
that is comparable to previous work that used longer recording
durations or tasks with greater complexity (4, 17, 23).

Although decision trees and linear SVM models have
demonstrated predictive power in other studies, we found that
LDA and Gaussian process models performed as well or better
with our particular feature set (17, 18). Signal features extracted
from both the linear accelerometer and gyroscope were selected
in all optimized feature sets, suggesting that angular velocity may
be a promising addition to previously reported models that rely
on linear acceleration alone. Our prediction error was smallest for
subscores encompassing dynamic, high-frequency movements
evident during gait and chorea assessments. The relatively high
prediction error for subtle or slow changes (i.e., bradykinesia), is
likely due to a combination of sensor placement and task brevity.

Outliers were observed in the prediction of dystonia and
arm rigidity for some patients. The outliers may be due in part
to intrarater variability during visual scoring of dystonia and
arm rigidity or due to variability in sensor placement along the
limbs (3). Bradykinesia, chorea, and arm rigidity may be more
easily predicted in future studies by adding more sensors (e.g.,
shins, thighs, forearm, and triceps). Additional training data
representing a broad range of patient severity levels would likely
improve the prediction accuracy.

Limitations
This study has several limitations. First, only participants with
HD who were independently ambulatory were included, which
may limit the generalizability of our predictive models to patients
with more advanced disease. Second, the small size of our dataset
may result in high variance between predictive models and the
possibility of overfitting amodel to our sample data, also resulting
in poor generalizability of our selected model. To mitigate the
possibility of overfitting, we evaluated model performance using
LOO cross-validation, which should yield an approximately
unbiased estimation of model performance for future data (25).

The wireless nPoint bioStamp sensors used in our methods
were easy to implement in a clinical setting, and eventually
the devices could be used to monitor the severity of abnormal
movements throughout daily living or while sleeping. Currently
there are certain UHDRS categories that our algorithms would
not accurately predict (ocular pursuit, saccade, pronation, luria,
etc.) with the current sensor configuration. Sub-categories might
be quantified in future experiments by adding sensors to hands,
feet, and neck.

One of the objectives of this study was to perform classification
of patients using only small amounts of data, easily obtained in a
routine office visit with little provider time required. As a result,
classifications were performed on a comparatively small dataset.
It is anticipated that adding more longitudinal data, such as
from at-home recordings will lead to more accurate classification
results. Despite the short data sampling periods and small
numbers of patients, classification results compared favorably to
reported interrater reliability in UHDRS-TMS measurements.

Future Work
The methods outlined in our study may be suitable to validate
digital candidate biomarkers used in clinical trials and in
clinical decision-making. Ultimately, a complement of sensor
configurations and analysis algorithms combining both longer
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FIGURE 3 | Full-model composite score prediction. Full-model prediction of the composite UHDRS-TMS subscore vs. true subscore for all participants. The

composite UHDRS-TMS subscore is a sum of the of the left and right arm rigidity, total chorea, total dystonia, bradykinesia, gait, and tandem gait subscores.

term measurement periods and briefer point measurements of
motor features, as employed in this study, may provide for richer
objective motor phenotyping of HD. Future directions include
evaluating thesemethods with additional HD patient populations
including prodromal and presymptomatic HD, juvenile-onset
HD, and late-onset HD.We also plan to capture longitudinal data
from patients in the home and community settings. We share
all our data in a cloud repository for collaboration to accelerate
these efforts.

CONCLUSION

Our prediction protocol requires minimal training to implement
and could benefit future studies which seek to monitor HD-
severity, progression, or therapeutic response in a non-clinical
setting. The results of our study demonstrate the feasibility of
applying machine learning methods to movement data collected
during brief, simple tasks in the classification of abnormal
movement in HD.
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