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OBJECTIVE—The pathogenesis of diabetic nephropathy is
complex and involves activation of multiple pathways leading to
kidney damage. An important role for altered lipid metabolism
via sterol regulatory element binding proteins (SREBPs) has
been recently recognized in diabetic kidney disease. Our previ-
ous studies have shown that the farnesoid X receptor (FXR), a
bile acid-activated nuclear hormone receptor, modulates renal
SREBP-1 expression. The purpose of the present study was then
to determine if FXR deficiency accelerates type 1 diabetic
nephropathy in part by further stimulation of SREBPs and
related pathways, and conversely, if a selective FXR agonist can
prevent the development of type 1 diabetic nephropathy.

RESEARCH DESIGN AND METHODS—Insulin deficiency
and hyperglycemia were induced with streptozotocin (STZ) in
C57BL/6 FXR KO mice. Progress of renal injury was compared
with nephropathy-resistant wild-type C57BL/6 mice given STZ.
DBA/2J mice with STZ-induced hyperglycemia were treated with
the selective FXR agonist INT-747 for 12 weeks. To accelerate
disease progression, all mice were placed on the Western diet
after hyperglycemia development.

RESULTS—The present study demonstrates accelerated renal
injury in diabetic FXR KO mice. In contrast, treatment with the
FXR agonist INT-747 improves renal injury by decreasing pro-
teinuria, glomerulosclerosis, and tubulointerstitial fibrosis, and
modulating renal lipid metabolism, macrophage infiltration, and
renal expression of SREBPs, profibrotic growth factors, and oxida-
tive stress enzymes in the diabetic DBA/2J strain.

CONCLUSIONS—Our findings indicate a critical role for FXR in
the development of diabetic nephropathy and show that FXR
activation prevents nephropathy in type 1 diabetes. Diabetes
59:2916–2927, 2010

D
iabetic nephropathy is the most common renal
complication of diabetes and the leading cause
of end-stage renal disease (1). The pathogenesis
of diabetic nephropathy is complex and in-

volves activation of multiple pathways leading to kidney
damage, including the polyol pathway, advanced glycation
end products, oxidative stress, proinflammatory cyto-
kines, and profibrotic growth factors (2,3). In addition, an
important role for altered lipid metabolism has been
recently recognized in diabetic kidney disease (4–8). In
this condition, there is increased renal expression of sterol
regulatory element binding proteins 1 and 2 (SREBP-1 and
SREBP-2), transcription factors that mediate increased
fatty acid and cholesterol synthesis, resulting in triglycer-
ide and cholesterol accumulation in the kidney and are
associated with inflammation, oxidative stress, fibrosis,
and proteinuria. We have established a critical role for
SREBP-1 by determining that SREBP-1 transgenic mice
develop glomerulosclerosis and proteinuria in the absence
of alterations in serum glucose or lipids, and that
SREBP-1c knockout mice are protected from the renal
effects of a high-fat diet (4,9).

Modulation of SREBPs may therefore represent a ratio-
nal approach to prevent diabetic renal complications.
Since SREBP-1 or SREBP-2 inhibitors are still unavailable,
we have focused on the potential role of the farnesoid X
receptor (FXR), a bile acid-activated nuclear hormone
receptor which modulates SREBP-1 expression (10,11).
Indeed, our previous studies have shown that FXR ago-
nists decrease SREBP-1c expression in the kidney (7,12).

The purpose of the present study was then to determine
if FXR deficiency accelerates type 1 diabetic nephropathy
in part by further stimulation of SREBP and related
pathways, and conversely, if a selective FXR agonist can
prevent the development of type 1 diabetic nephropathy.

RESEARCH DESIGN AND METHODS

Homozygous male FXR knockout mice (FXR KO) of 6 months of age
backcrossed onto the C57BL/6 genetic background for 10 generations (13),
sex- and age-matched C57BL/6 wild-type mice, and 8-week-old male DBA2/J
mice were all obtained from Jackson Laboratories (Bar Harbor, ME). They
were maintained on a 12-h light/12-h dark cycle. The deletion of FXR was
confirmed with genotyping and Western blot (supplemental Fig. S1, available
in the online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/
db10-0019/DC1). Mice were injected with streptozotocin (STZ) (Sigma-Al-
drich, St. Louis, MO) intraperitoneally (40 mg/kg for DBA/2J and 50 mg/kg for
C57BL/6 strains, freshly made in 50 mmol/l sodium citrate buffer, pH 4.5) for
5 consecutive days, or with 50 mmol/l sodium citrate solution only. Tail vein
blood glucose levels were measured 1 week after the last STZ injection, and
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mice with glucose levels �250 mg/dl were considered diabetic. FXR KO mice
and their wild-type counterparts were fed with a high-fat high-cholesterol
Western diet (WD, TD88137) obtained from Harlan-Teklad (Madison, WI) after
the onset of diabetes and were studied after 12 weeks of diabetes. DBA/2J
mice were fed WD after the onset of diabetes in STZ groups and were treated
for 8 weeks with: 1) WD only; 2) the semisynthetic FXR agonist 6-�-ethyl-
chenodeoxycholic acid (INT-747, Intercept Pharmaceuticals, New York, NY)
(14): 30 mg/kg body weight admixed with WD. Animal studies and relative
protocols were approved by the Animal Care and Use Committee at the
University of Colorado Denver.
Blood and urine chemistry. Blood glucose levels were measured using a
Glucometer Elite XL (Bayer, Tarrytown, NY). Plasma lipid levels was mea-
sured with kits from Wako Chemical (Richmond, VA). Urine albumin and
creatinine concentrations were determined using kits from Exocell (Philadel-
phia, PA).
Quantitative real-time PCR and Western blotting. Quantitative PCR and
Western blotting were performed as previously described (4–7). Primer
sequences are available from the authors on request or can be found
elsewhere (4–7). The antibody against �-smooth muscle actin ([�-SMA],
Sigma, St. Louis, MO) was used at 1:1,000 dilution for Western blotting.
Lipid extraction and measurement of lipid composition. Lipids from the
kidneys were extracted by the method of Bligh and Dyer, as we have
previously described (4–7). Triglyceride and cholesterol composition were
measured by gas chromatography (Agilent Technologies, Wilmington, DE).
NF-�B transcriptional activity assay. Nuclear protein extracts were pre-
pared from kidney tissue and used for the measurement of NF�B transcrip-
tional activity with a kit from Marligen Biosciences (Rockville, MD) according
to the manufacturer’s instructions.
Oxidized protein analysis. The amount of oxidized proteins in kidney
homogenates was determined by using an OxyElisa Oxidized Protein
Quantitation Kit (Millipore, Billerica, MA) according to the manufacturer’s
instructions.
Histology staining, electron microscopy, and immunofluorescence mi-

croscopy. Sections (4-�m thick) cut from 10% formalin-fixed, paraffin-
embedded kidney samples were used for periodic acid-Schiff (PAS) staining
and Masson’s trichrome staining. Frozen sections were used for oil red O
staining of neutral lipid deposits or for immunostaining for nephrin (a gift
from Dr Larry Holzman, University of Michigan, Ann Arbor, MI), synaptopodin
(Sigma), fibronectin (Sigma), CD68 (AbD Serotec, Raleigh, NC), and �-SMA
(Sigma), and imaged with a laser scanning confocal microscope (LSM 510,
Zeiss, Jena, Germany). The expression level was quantified as the sum of pixel
values per glomerular area using ImageJ version 1.44 image analysis software.
Electron microscopy (EM) was conducted in the Mouse Metabolic Phenotyp-
ing Center (University of Washington, Seattle, WA). Samples for EM were
fixed in 1/2 x Karnovsky’s fixative.
Quantification of morphology. All quantifications were performed in a
masked manner. Using coronal sections of the kidney, 30 consecutive
glomeruli per mouse, 6 mice per group were examined for evaluation of
glomerular mesangial expansion. The index of the mesangial expansion was
defined as the ratio of mesangial area/glomerular tuft area. The mesangial area
was determined by assessment of the PAS-positive and nucleus-free area
in the mesangium using ScanScope image analyzer (Aperio Technologies,
Vista, CA).
Statistical analysis. Results are presented as the means � SE for at least
three independent experiments. Data were analyzed by ANOVA and Student-
Newman-Keuls tests for multiple comparisons or by Student t test for

unpaired data between two groups. Statistical significance was accepted at
the P � 0.05 level.

RESULTS

FXR deficiency accelerates diabetic nephropathy. To
investigate whether FXR plays a role in diabetic nephrop-
athy and if FXR deficiency accelerates diabetic kidney
injury, we induced insulin deficiency and hyperglycemia
with STZ in FXR KO mice with the C57BL/6 genetic
background. Progress of renal injury was compared with
wild-type C57BL/6 mice injected with STZ, a mouse strain
previously shown to be resistant to STZ-induced hypergly-
cemic kidney disease (15). To accelerate disease progres-
sion, we placed all mice on WD after they developed
hyperglycemia. As shown in Table 1, STZ injections led to
a marked increase in blood glucose level in both wild-type
and FXR KO mice. Both wild-type mice and FXR KO mice
injected with STZ had markedly low insulin levels. FXR
deficiency without diabetes caused a mild increase in
plasma triglyceride, total cholesterol, HDL cholesterol,
and LDL cholesterol levels, compared with C57BL/6 wild-
type mice. In contrast, a significant increase of plasma
lipid level was observed in diabetic FXR KO mice on WD,
associated with proatherogenic changes, including a de-
crease in HDL cholesterol, increase in LDL cholesterol,
and the dominant LDL cholesterol level in total cholesterol.

Diabetic wild-type C57BL/6 mice did not show increased
albuminuria, and there was only moderate albuminuria in
nondiabetic FXR KO mice fed a WD. However, urinary
albumin/creatinine ratio in FXR KO mice after 12 weeks of
diabetes was markedly increased by 11-fold over diabetic
wild-type C57BL/6 mice (Table 1). The development of
albuminuria in diabetic FXR KO mice was associated with
increased diabetes-induced renal hypertrophy compared
with wild-type mice, but the difference did not reach
statistical significance, as revealed by the kidney-to-body
weight ratio (Table 1). However, the glomerular volume
was significantly increased in diabetic FXR KO mice
(Table 1).

Wild-type C57BL/6 mice or nondiabetic FXR KO mice
showed nearly normal glomerular structure with only mild
mesangial expansion (Fig. 1A–C). In contrast, the glomer-
ular tufts in diabetic FXR KO mice exhibited foam cell
accumulation with glomerular lobulation enlarging the
entire glomerular area and more mesangial matrix expan-
sion (Fig. 1D–I). Some capillaries were extended and
occluded by foam cells or dilated and contained pale-

TABLE 1
Metabolic data in normoglycemic control and diabetic FXR KO mice

WT FXR KO WT � STZ FXR KO � STZ

Body weight (g) 44.2 � 2.28 41.0 � 1.98 28.4 � 0.95a 25.0 � 1.27
Kidney weight (g) 0.36 � 0.02 0.34 � 0.01 0.38 � 0.01 0.37 � 0.01
Kidney/body weight ratio (%) 0.82 � 0.02 0.84 � 0.02 1.33 � 0.06a 1.48 � 0.09
Plasma glucose (mg/dl) 193 � 15 183 � 12 769 � 81 731 � 85
Plasma TG (mg/dl) 12.7 � 3.42 32.9 � 6.20a 54.4 � 8.73a 1,081 � 603bc

Plasma TC (mg/dl) 308 � 25 487 � 28a 334 � 38 1,217 � 99bc

Plasma HDL-C (mg/dl) 123 � 9 181 � 15a 83.8 � 2.4a 26.3 � 2.6bc

Plasma LDL-C (mg/dl) 124 � 14 202 � 18a 132 � 17 905 � 86bc

Plasma insulin (ng/ml) 2.75 � 0.37 2.25 � 0.06 0.49 � 0.06a 0.64 � 0.12c

Urine ACR (mg/g) 25.4 � 3.8 59.4 � 11.2a 30.7 � 5.4 328 � 66bc

Glomerular volume (�m2) 3,286 � 168 4,243 � 179a 4,129 � 154a 5,457 � 263bc

Data are means � SE (n � 6 mice in each group): aP � 0.05 vs. WT � WD, bP � 0.05 vs. WT � STZ/WD, cP � 0.05 vs. FXR KO/WD. ACR,
albumin/creatinine ratio; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; TC, total cholesterol; TG, triglyceride; WT, wild-type.
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staining material (Fig. 1E). Some glomeruli displayed
prominent mesangiolysis accompanied by ballooning of
capillaries (Fig. 1F and G). In tubulointerstitial areas,
wild-type mice or nondiabetic FXR KO mice showed no

significant tubular damage, whereas diabetic FXR KO mice
had remarkable tubulointerstitial changes. The tubules
were dilated, lined by flattened epithelium, and contained
proteinaceous casts with large amounts of lipid droplets
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FIG. 1. Renal histopathology in diabetic FXR KO mice. A–I: Repre-
sentative PAS staining of kidney sections: nondiabetic wild-type
C57BL/6, WT (A); diabetic wild-type C57BL/6, WT/STZ (B); nondi-
abetic FXR KO, KO (C); diabetic FXR KO, KO/STZ (D–H). A–G:
Glomerular histopathology. Diabetic FXR KO mice exhibited
patent foam cell accumulation (D–G) with dilated capillaries (E)
or ballooning of capillaries (F and G). H: Tubulointerstitial injury
shown by dilated tubules with flattened epithelium and lipid drop-
lets. I: Mesangial expansion index defined by the ratio of mesangial
area/glomerular tuft area. The mesangial area is determined by
assessment of PAS-positive and nucleus-free areas in the mesan-
gium excluding glomeruli that accompany mesangiolysis or foam
cells. *P < 0.05 as specified (n � 6 mice per group). J–M: Repre-
sentative Masson’s trichrome staining of kidney sections showing
the tubulointerstitial fibrosis in diabetic FXR KO mice. N–R:

Electron micrographs of glomeruli showing reactive podocyte and endothelial cell (Q) and lytic mesangium (R) in diabetic FXR KO mice. Irregular
thickening of GBM in Q indicates possible subepithelial deposit and increased vesicles in the podocyte cell body. Arrows in Q show effacement
of podocyte foot processes. Lytic leision in R looks like lipid deposits or cholesterol “clefts.” Scale bar: A–G, 50 �m (shown in G); H, 50 �m; J–M,
50 �m (shown in M); N–Q, 2 �m; R, 10 �m. (A high-quality digital representation of this figure is available in the online issue.)
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deposited in the tubular epithelial cells (Fig. 1H). Intersti-
tial collagen deposition was studied in Masson’s
trichrome-stained renal sections as an index of interstitial
fibrosis. Diabetic FXR KO mice showed more interstitial
fibrosis than wild-type mice and nondiabetic FXR KO mice
(Fig. 1J–M).

Electron microscopic examination from diabetic FXR
KO mice disclosed increased podocyte and endothelial cell
reactivity and local foot process effacement (Fig. 1N–Q).
As shown in Fig. 1R, prominent mesangiolysis and lipid
inclusions in the mesangium were observed, accompanied
by dissociation of mesangial matrix and disruption of
anchoring of glomerular basement membrane (GBM) to
mesangium.

In agreement with lipid deposits and foam cell accumu-
lation, immunofluorescence microscopy revealed an in-
crease in CD68-positive macrophages in the glomeruli and
tubulointerstitium in diabetic FXR KO mice compared
with wild-type controls (Fig. 2A). This is associated with
increased expression of master inflammatory mediator
NF�B subunit p65 and elevated NF�B activation level
(Fig. 2B).

An important mechanism causing albuminuria is podo-
cyte dysfunction (16,17). Immunofluorescence microscopy
showed that the distribution of podocyte markers, synap-
topodin and nephrin, was changed from uniformly linear
pattern in wild-type and nondiabetic FXR KO mice to
discontinuous pattern with loss of staining in diabetic FXR
KO mice (Fig. 2C). Nephrin is a key component of the slit
diaphragm complex, and synaptopodin, a differentiated
podocyte marker, is a regulator of actin dynamics for
podocyte foot processes. Both are critically important for
the sustained function of glomerular filtration barrier to
proteinuria (16–18). Podocyte loss was also confirmed by
staining with WT1, a nuclear podocyte marker, showing a
significantly reduced podocyte density in diabetic FXR KO
mice (Fig. 2D). Our results thus indicate podocyte loss,
decreased podocyte density, and loss of podocyte differ-
entiation markers in the kidneys of diabetic FXR KO mice.
Increased renal expression of profibrotic growth fac-

tors and accumulation of matrix proteins in diabetic

FXR KO mice. Glomerulosclerosis and tubulointerstitial
fibrosis are pathologic hallmarks of diabetic renal disease,
characterized by accumulation in the kidney of extracel-
lular matrix (ECM) proteins and myofibroblasts, the pri-
mary matrix-producing cells (19). TGF-	 is a cytokine that
plays a pivotal role in the profibrotic responses (20). In
diabetic FXR KO mice, we found a significant increase of
TGF-	 mRNA expression in the kidney compared with
corresponding wild-type or nondiabetic controls, in paral-
lel with increased expression of microRNA-192 and de-
creased expression of microRNA-29a (Fig. 2E).
MicroRNAs have been shown to be actively involved in
TGF-	 signaling. MicroRNA-192 is important for TGF-	–
induced ECM production (21). MicroRNA-29 inhibits sev-
eral mRNAs involved in ECM production and fibrosis (22).
Our data suggest that TGF-	-induced increase in the
expression of microRNA-192 coordinately downregulates
microRNA-29a to control the induction of fibrosis gene
expression related to the pathogenesis of diabetic ne-
phropathy. We also examined the expression of ECM
protein fibronectin by immunofluorescence, and found
increased expression of fibronectin in glomeruli of dia-
betic FXR KO mice (Fig. 2F). FXR deficiency also in-
creased the renal expression level of two myofibroblast

markers, fibroblast-specific protein-1 (FSP-1) and �-SMA
(Fig. 2G).
Increased lipid accumulation in the kidneys of dia-
betic FXR KO mice. We found that FXR deficiency
caused increased kidney neutral lipid accumulation in
both glomeruli and tubulointerstitium, as determined by
oil red O staining, and biochemical lipid analysis revealed
increased kidney triglyceride and cholesterol content (Fig.
3A). To explore the mechanism by which FXR regulates
renal lipid accumulation, we investigated pathways regu-
lating renal lipid metabolism. In glomeruli isolated from
diabetic FXR KO mice, we found significantly increased
expression of SREBP-1c and its target genes fatty acid
synthase (FAS), acetyl-CoA carboxylase (ACC), and
stearoyl-CoA desaturase-1 (SCD-1), which mediate fatty
acid and triglyceride synthesis. In addition, we observed
increased expression of LDL receptor and lectin-like oxi-
dized LDL receptor-1 (LOX-1), which mediate cholesterol
and oxidized LDL uptake (Fig. 3B).
FXR activation protects against diabetic nephropa-
thy. To further confirm the role of FXR in diabetic
nephropathy, we used the selective FXR agonist INT-747
to test whether the FXR activation can ameliorate diabetic
nephropathy in a STZ-induced type 1 diabetes model.
Because C57BL/6 mice are resistant to diabetic renal
injury, STZ-injected nephropathy-susceptible DBA/2J mice
were used (15). As shown in Table 2, STZ injections led to
a marked increase in blood glucose level in DBA/2J mice.
Diabetic DBA/2J mice developed increased triglyceride
and cholesterol levels, with a marked increase in LDL
cholesterol levels. Treatment with the selective FXR ago-
nist INT-747 did not decrease the blood glucose level in
diabetic DBA/2J mice, but it significantly decreased
plasma total cholesterol and LDL cholesterol levels. No
changes were observed in the HDL cholesterol and triglyc-
eride levels (Table 2).
Treatment with INT-747 decreases albuminuria and
renal histopathology alterations in diabetic DBA/2J
mice. Diabetic DBA/2J mice on WD developed severe
albuminuria, which was significantly decreased and nearly
normalized by INT-747 treatment (Table 2). In diabetic
DBA/2J mice, morphometric analysis revealed a moderate
but significant increase of mesangial matrix expansion in
glomeruli which was blunted by INT-747 treatment (Fig.
4A–D). Patchy fibrosis was demonstrated in the tubular
interstitium of diabetic DBA/2J kidneys, but was nearly
absent in the kidneys of mice treated with INT-747 (Fig. 4E
and F).

In diabetic DBA/2J mice, immunofluorescence staining
showed in the kidney reduced expression of synaptopo-
din, which was prevented by INT-747 treatment (Fig. 4G).
Podocyte loss revealed by WT1 staining (Fig. 4H) in
diabetic DBA/2J mice was also rescued by INT-747 treat-
ment. Conversely, INT-747 treatment decreased renal
Notch1 mRNA level which was enhanced in diabetic
DBA/2J kidneys (Fig. 4I). As Notch activation in podocytes
is involved in the development of proteinuria and podo-
cyte dysfunction (23), these data suggest that INT-747
prevents the development of proteinuria by preventing
podocyte dysfunction in DBA/2J mice.
Treatment with INT-747 decreases profibrotic
growth factors, accumulation of extracellular ma-
trix, macrophage accumulation, and NADPH oxi-
dase expression in diabetic DBA/2J mice. In diabetic
DBA/2J mice, INT-747 treatment blocked the increase of
TGF-	 expression in diabetic kidneys, suggesting that
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FXR activation may counteract kidney fibrosis induced
by TGF-	 (Fig. 5A). In addition, INT-747 treatment
markedly inhibited fibronectin expression in glomeruli
(Fig. 5B) and significantly reduced renal �-SMA and
FSP-1 expression, which were both increased in dia-
betic DBA/2J mice (Fig. 5C). FXR activation markedly
decreased the expression of macrophage marker CD68

in the glomeruli of diabetic kidneys (Fig. 5D), which was
consistent with its inhibition in p65 expression and
NF�B activity (Fig. 5E). INT-747 also modulated oxida-
tive stress, as shown by decreased NADPH oxidase
Nox-2 and p22-phox expression and total protein car-
bonylation in diabetic kidneys from INT-747-treated
mice (Fig. 5F).
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FIG. 2. Macrophage infiltration and renal expression of podocyte markers, profibrotic growth factors, and extracellular matrix protein in diabetic
FXR KO mice. A: Immunofluorescence staining of kidney sections for synaptopodin (red) and CD68 (green). The CD68 expression level in
glomeruli was normalized to that in the wild-type group. B: Renal NF-�B p65 subunit mRNA expression by quantitative real-time PCR and NF-�B
activation determined by DNA-binding assay. C: Immunofluorescence staining of kidney sections for synaptopodin and nephrin. The expression
level of synaptopodin and nephrin was normalized to that in the wild-type group. D: Immunohistologic detection of WT1 in glomeruli. WT1
staining is indicated by intense immunoperoxidase activity in podocyte nuclei (arrows). Podocyte density is presented as the numbers of
podocytes per glomerular area. E: Renal mRNA expression levels of TGF-�1, microRNA-192, and microRNA-29a determined by quantitative
real-time PCR. F: Immunofluorescence staining of kidney sections for fibronectin. The expression level of fibronectin was normalized to that in
the wild-type group. G: FSP-1 mRNA expression in kidney was determined by quantitative real-time PCR, and the protein level of �-SMA in the
kidney demonstrated by Western blot and immunohistologic staining. *P < 0.05 as specified (n � 6 mice per group). (A high-quality digital
representation of this figure is available in the online issue.)
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Treatment with INT-747 decreases lipid accumula-
tion in diabetic DBA/2J mice. Diabetic DBA/2J mice had
increased kidney neutral lipid accumulation in both glo-
meruli and tubulointerstitium and enhanced kidney tri-
glyceride and cholesterol content. Treatment with INT-747
significantly attenuated kidney lipid accumulation (Fig.
6A). Correspondingly, glomerular lipid synthesis genes
were downregulated, including: 1) SREBP-1c and its target
gene SCD-1, carbohydrate responsive element binding
protein (ChREBP) and its target gene liver pyruvate kinase
(LPK), which mediate fatty acid and triglyceride synthesis,

and 2) SREBP-2 which mediates cholesterol synthesis
(Fig. 6B).

DISCUSSION

The purpose of this study was to examine the role of the
nuclear bile acid receptor FXR in diabetic nephropathy.
The present data demonstrate accelerated renal injury in a
model of experimental diabetic nephropathy in FXR KO
mice on the nephropathy-resistant C57BL/6 background.
In a type 1 diabetes model using the nephropathy-suscep-
tible DBA/2J strain, renal injury was attenuated by FXR
activation with the selective FXR agonist INT-747, suggest-
ing that FXR plays a pivotal role in diabetic renal injury in
these models.

Clinical observations have suggested that hyperlipid-
emia contributes to the progression of diabetic renal
disease (24,25). To accentuate diabetic injury in the kid-
ney, we have combined type 1 diabetes and hyperlipidemia
by feeding WD to mice rendered diabetic with STZ. FXR
deficiency triggers hypertriglyceridemia and hypercholes-
terolemia in diabetic C57BL/6 mice on WD, but not in
nondiabetic mice. In addition, in diabetic mice FXR defi-
ciency switches the lipid profile to pro-atherogenic by
decreasing HDL cholesterol and increasing LDL choles-
terol. The same degree of hyperlipidemia and lipid profile
change is also observed in diabetic DBA/2J mice fed with
WD. Interestingly, treatment with INT-747 decreases
plasma cholesterol, but not triglyceride levels, in diabetic
DBA/2J mice.

Our observations in the STZ-induced type 1 diabetes
model are not consistent with FXR activation decreasing
both plasma triglyceride and cholesterol levels (11,12,26),
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TABLE 2
Metabolic data in INT-747–treated diabetic mice

WD STZ/WD
INT-747/
STZ/WD

Body weight (g) 39.2 � 1.40 17.6 � 0.35a 17.8 � 1.27
Kidney weight (g) 0.46 � 0.02 0.47 � 0.02 0.48 � 0.02
Kidney/body weight

ratio (%) 1.16 � 0.04 2.70 � 0.11a 2.72 � 0.0
Plasma glucose (mg/dl) 179 � 6 651 � 26a 637 � 47
Plasma TG (mg/dl) 195 � 46 955 � 163a 906 � 142
Plasma TC (mg/dl) 297 � 17 1,452 � 137a 782 � 112b

Plasma HDL-C (mg/dl) 93.6 � 6.4 115 � 26 98.7 � 8.7
Plasma LDL-C (mg/dl) 24.0 � 3.9 727 � 96a 364 � 87b

Plasma insulin (ng/ml) 8.73 � 2.53 0.26 � 0.04a 0.20 � 0.01
Urine ACR (mg/g) 88.0 � 10.7 603 � 113a 106 � 23b

Data are means � SE (n � 6 mice in each group): aP � 0.05 vs. WT �
WD, bP � 0.05 vs. WT � STZ/WD. ACR, albumin/creatinine ratio;
HDL-C, HDL cholesterol; LDL-C, LDL cholesterol; TC, total choles-
terol; TG, triglyceride.
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and with the observation that FXR KO mice have in-
creased plasma LDL and HDL levels (13,27). This may
reflect lack of insulin-mediated regulation of genes con-
trolling lipid homeostasis in STZ-induced diabetes (28).
However, we cannot exclude the possibility that INT-747
mixed in the diet admix is less bioavailable compared with

the gavage administration (12), blunting some of its
effects.

The renal injury in diabetic FXR KO mice was associ-
ated with severe albuminuria as well as a variety of
structural changes in both glomeruli and tubulointersti-
tium not seen in the nondiabetic counterpart or in diabetic
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wild-type C57BL/6 mice. In this model we observed a large
amount of lipid droplets and foam cell formation in the
kidney, indicating an altered lipid homeostasis. There is
growing evidence for the role of dysregulated lipid metab-
olism in the pathogenesis of renal disease (3–9,29). Previ-
ous studies in our laboratory have provided evidence that
renal de novo lipid synthesis contributes to renal lipid
accumulation in the pathogenesis of nephropathy (4–

9,12). Although circulating lipids can amplify renal injury
in diabetes, in a separate study with regular low-fat chow
diet, diabetic FXR KO mice still exhibited increased pro-
teinuria, mesangial expansion, and fibrosis, as shown by
increased collagen III deposition compared with wild-type
control mice (supplemental online Fig. S2). These results
suggest that absence of FXR, even in the absence of a
Western diet, can cause renal pathologic changes. The
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deleterious effects of FXR deficiency may result from
disruption of FXR-regulated renal lipid metabolism or by
other FXR-mediated actions, as the kidney expresses high
FXR levels (7,30). We have shown before that FXR activa-

tion mediates negative regulation of SREBP-1-mediated
renal lipid metabolism (7,12). Consistent with this obser-
vation, in the current study we found that FXR activation
in DBA/2J mice with STZ-induced diabetes significantly
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decreases glomerular expression of lipid synthesis genes,
oil red O staining, as well as kidney lipid content. In
addition, FXR deficient mice express more lipogenesis
genes in glomeruli, indicating FXR-mediated regulation of
renal lipid metabolism in diabetic FXR KO C57BL/6 mice
as well as in diabetic DBA/2J mice.

Lipid metabolites can induce cellular dysfunction, a
process known as lipotoxicity, to release profibrotic and
proinflammatory cytokines and chemokines, increase the
generation of reactive oxygen species, and promote the
expression of extracellular matrix, contributing to oxida-
tive stress, inflammation, and fibrosis in diabetic nephrop-
athy (31–33). All these features were inhibited by INT-747
treatment in diabetic DBA/2J mice. Lipid products include
oxidized and glycated LDLs, advanced glycation end prod-
ucts (AGEs), free fatty acids, free cholesterol, excess
triacylglycerols, diacylglycerols, and ceramides. Kidney
cells can acquire these lipids from atherogenic lipopro-
teins in circulation and intracellular lipid synthesis. All
major cell types in kidney, including endothelial cells,
monocyte–macrophages. and mesangial cells, have been
shown to cause oxidative modification of LDL (34). Our
study demonstrates upregulation of LDL receptor and
LOX-1 expression in the glomeruli of diabetic FXR KO
C57BL/6 mice, which can facilitate the LDL and oxidized
LDL uptake, consistent with a previous report showing
FXR-mediated regulation of LOX-1 in another diabetic
mouse strain, KKAy (35). In obese rats with uncontrolled
diabetes and dyslipidemia, renal LOX-1 upregulation pro-
motes lipid peroxidation stress, inflammation, and fibrosis
(36). Excess neutral lipid accumulation in mesangial cells
and macrophages forms the lipid-laden foam cells that we
have observed in kidneys from diabetic FXR KO mice.
Foam cell formation is generally thought of as a protective
mechanism whereby the potentially harmful lipids are
sequestered in lipid droplets. However, recent evi-
dence shows that genetic ablation of lipid droplets surface
protein adipocyte differentiation-related protein (ADFP/
adipophilin) expression restricts foam cell formation and
protects mice against atherosclerosis development, sug-
gesting that foam cell formation per se is a crucial patho-
genic event (37). How foam cell accumulation affects the
renal function is not fully understood. Based on our
present findings, we speculate that severe foam cell accu-
mulation in the mesangium leads to loss of mesangial
support for normal capillary architecture, with consequent
pathologic manifestations such as impaired glomerular
filtration.

Development and progression of diabetic nephropathy
are characterized by inflammatory infiltrates (38). The
macrophage is a central mediator of renal vascular inflam-
mation, and its accumulation is a feature of diabetic
nephropathy (39–41). Macrophages mediate diabetic in-
jury through a variety of mechanisms, including produc-
tion of reactive oxygen species, cytokines, and proteases,
which result in tissue damage leading to sclerosis and
fibrosis (39–41). Components of the diabetic milieu, in-
cluding high glucose, AGEs, and oxidized LDL, promote
macrophage accumulation via induction of chemokines
and adhesion molecules, and macrophage activation
within diabetic kidneys (39–41). Our study shows that
FXR deficiency increases macrophage infiltration in both
glomeruli and tubulointerstitium, whereas treatment with
the FXR agonist INT-747 reverses this course, both asso-
ciated with regulation of NF�B activity. NF�B transcrip-
tional activity controls the activation of a number of

inflammatory genes. Consistent with our findings, the
anti-inflammatory properties of INT-747 have been appre-
ciated in other cell types (42,43). In vascular smooth
muscle cells (42), the counterpart of glomerular mesangial
cells, and in hepatocytes (43), INT-747 has been shown to
inhibit the inflammatory response by antagonizing the
NF�B signaling pathway. All together, this may represent a
mechanism for FXR activation to inhibit inflammatory
properties in macrophages and diabetic kidneys.

Our results show that proteinuria in diabetic mice is
remarkably augmented by FXR deficiency, and signifi-
cantly inhibited by FXR activation with INT-747. Damaging
any component of the glomerular filtration barrier, fenes-
trated endothelium, intervening GBM, or slit diaphragms
created by epithelial podocyte foot processes, results in
proteinuria (16). Furthermore, mesangial cell injury can
lead to foot process fusion and proteinuria (44). Tubules
also play an important role in proteinuria by tubular
reabsorption of filtered protein (16). FXR deficiency in
diabetic mice showed the lytic mesangium with foamy
cells, activated glomerular endothelium, and podocyte
foot process effacement, indicating the involvement of
multiple cell types in the pathogenesis of proteinuria in
this model, as predicted by FXR expression in most kidney
cell types. Indeed, the crosstalk of cytokines generated by
mesangial cells, endothelial cells, and podocytes makes
alterations in one cell type reverberate on others (44).
Recently, FXR was found to directly enhance transcrip-
tional activation of the endothelial nitric oxide synthase
(eNOS) gene promoter, leading to increased nitric oxide
production in vascular endothelial cells (45). This mecha-
nism still remains to be ascertained in glomerular endo-
thelial cells, but may represent a very important FXR-
mediated effect, as eNOS deficiency results in endothelial
dysfunction which favors development of diabetic ne-
phropathy (46,47).

The diabetic FXR KO model does not recapitulate all
typical features of human diabetic nephropathy, such as
nodular mesangial lesions, although early lobulation was
found in some glomeruli. This may relate to diabetes
duration, resistant C57BL/6 background, or monogenic
changes in gene expression intrinsic to this model, which
makes it unable to reproduce full-fledged human diabetic
nephropathy (48). However, the increased bile acid con-
centration in FXR KO mice (13) may lead to activation of
the membrane bile acid receptor TGR5, a G-protein cou-
pled receptor (49,50), which may exert compensatory
actions in FXR deficiency (51). Establishing FXR defi-
ciency in susceptible strains and exploring the role of
TGR5 in diabetic nephropathy represent our future direc-
tions to clarify these issues and generate more predictive
mouse models for human diabetic nephropathy.

In summary, our findings indicate a critical role for FXR
in the development of diabetic nephropathy and show that
FXR activation by the selective and potent FXR agonist
INT-747 prevents nephropathy in type 1 diabetes by inhib-
iting diabetes-induced alterations in renal lipid metabo-
lism, fibrosis, inflammation, and oxidative stress. This
knowledge has translational potential into effective thera-
pies for type 1 diabetic patients with diabetic renal
complications.
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