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Gamete signalling underlies the evolution
of mating types and their number

Zena Hadjivasiliou1,2 and Andrew Pomiankowski1,2

1Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, and 2Department of
Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK

The gametes of unicellular eukaryotes are morphologically identical, but are

nonetheless divided into distinct mating types. The number of mating types

varies enormously and can reach several thousand, yet most species have

only two. Why do morphologically identical gametes need to be differen-

tiated into self-incompatible mating types, and why is two the most

common number of mating types? In this work, we explore a neglected

hypothesis that there is a need for asymmetric signalling interactions

between mating partners. Our review shows that isogamous gametes

always interact asymmetrically throughout sex and argue that this asymme-

try is favoured because it enhances the efficiency of the mating process. We

further develop a simple mathematical model that allows us to study the

evolution of the number of mating types based on the strength of signalling

interactions between gametes. Novel mating types have an advantage as

they are compatible with all others and rarely meet their own type. But if

existing mating types coevolve to have strong mutual interactions, this

restricts the spread of novel types. Similarly, coevolution is likely to drive

out less attractive mating types. These countervailing forces specify the

number of mating types that are evolutionarily stable.

This article is part of the themed issue ‘Weird sex: the underappreciated

diversity of sexual reproduction’.
1. Introduction: why have distinct mating types and how
many?

While sexual reproduction requires two parents, there is no obvious need for

them to be differentiated into distinct mating types or sexes. Yet, this is the pre-

dominate state of nature, from complex birds, mammals and plants down to

humble single-celled eukaryotes. Sexual reproduction in complex organisms

is contingent upon highly specialized male and female roles both at the organis-

mal level (e.g. sex-specific attraction mechanisms) and cellular level (e.g. egg

and sperm motility and size differences).

This picture changes when considering unicellular organisms. Although an

asymmetry in gamete size (anisogamy) exists in some unicellular taxa, the vast

majority of unicellular protist gametes are morphologically identical (isogamy)

[1]. Yet the gametes of isogamous species are divided into genetically distinct

mating types. These mate disassortatively, scarcely ever with members of the

same type. This arrangement is paradoxical as it comes with a major cost

since it restricts the pool of potential partners to those of a different mating

type. Furthermore, this cost is maximized with two mating types, which

perplexingly is the most common state in nature among isogamous organisms.

Considerable effort has been expended in forming and testing hypotheses to

explain the evolution of mating types [2]. A prevalent explanation drawn from

the literature on multicellular organisms suggest that mating types serve to

avoid inbreeding by preventing matings between members of the same clone

[3–6]. Another notable hypothesis proposes that mating types evolved because

different gamete types can enforce uniparental inheritance of the cytoplasm,
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thereby restricting the spread of mitochondrial mutations or

selfish elements [7–11]. Both are persuasive ideas but not

without problems. The key challenge to both of them is the

presence of several species where inbreeding and biparental

inheritance is the rule but that nonetheless maintain mating

types [12]. For example, in budding yeast the parent is

diploid (heterozygous for the mating types alleles a and a)

and undergoes meiosis to produce four haploid spores, two

of each mating type. The spores then germinate and mate

within the same tetrad while inheriting cytoplasm from

both parents. Similar behaviour is encountered in a variety

of other groups (e.g. Neurospora tetrasperma, Gelasinospora
tetrasperma, Podospora anserina and P. tetraspora [13]).

We do not consider these theories further here, as they

have been subject to several recent reviews [2,12,14]. Instead

we focus and expand a neglected hypothesis first proposed

by Hoekstra [15]. He suggested that mating types are

determined by the molecular system regulating gamete inter-

actions. The underlying idea is that partner recognition and

pairing are more efficient when gametes produce recog-

nition/attraction molecules and their receptors in a

mating-type-specific manner. Indeed, in the absence of any

asymmetry, cells will saturate their own receptors and

compromise their ability to detect and find partners [12,16].

This is a compelling idea bringing cell–cell signalling to the

centre of mating-type evolution.

The evolution of sexual signalling and mating preference

has received great attention among multicellular organisms

[17]. However, the same processes in the unicellular world

have been barely addressed, particularly among isogamous

species lacking obvious differentiation. This neglect in part

reflects the popular assumption that opposite mating-type

fusions exist for reasons unrelated to the signalling inter-

action itself (e.g. inbreeding avoidance and control of

organelle inheritance, as discussed above). In addition, it is

generally assumed that sex-specific roles follow from asym-

metry in gamete morphology and motility (e.g. [18]), and

this has overshadowed consideration of asymmetric signal-

ling among isogamous species. To rectify this imbalance,

we review signalling between gametes in isogamous species

and show that asymmetry in gamete communication is uni-

versal. We argue that this asymmetry’s primary function

lies in promoting mating success. We then develop a simple

model of gamete signalling and mating-type evolution that

explains why the number of mating types is so frequently

restricted to two and provides conditions under which

more numerous mating types are favoured.
2. Review: gamete signalling
In unicellular organisms, sex is initiated when individuals

(vegetative cells) are subject to growth arrest and produce

sex-competent cells, either through meiosis (in diplontic species)

or differentiation into gametes (in haplontic species; figure 1).

This occurs as a response to environmental cues and/or sub-

stances released by other individuals of the same species.

Following sexual differentiation, gametes must find and recog-

nize other sex-competent cells of the same species, form

adhesion and conjugation pairs, and synchronously permit

fusion (figure 1). Here, we review gamete signalling interactions

in unicellular and some multicellular species with isogamy, and

point out the role of mating-type asymmetry.
(a) Algae
(i) Chlamydomonas
Chlamydomonas species are biflagellate algae with two mating

types (MTþ and MT2) and are generally isogamous. Haploid

vegetative cells differentiate into gametes when environ-

mental nitrogen levels drop [19]. The MT locus is located in

a chromosomal region carrying several large inversions and

translocations that suppress recombination. The MTþ and

MT2 variants contain a number of genes that code for differ-

entiation into þ or – gametes, including mating-type-specific

agglutinins that act as recognition and adhesion molecules.

When gametes of the opposite mating type meet the aggluti-

nins along their flagella interlink and adhere. Adhesion

initiates a cascade that results in a 10-fold increase in intracellu-

lar cAMP, which enhances agglutinin levels and flagellar

adhesiveness [20–22]. It also leads to the release of lytic

enzymes that lead to rapid gamete cell wall disassembly and

simultaneous production of complementary mating structures

that prepare the gametes for fusion (figure 2a) [23–25]. Individ-

ual cells develop mating structures and fusion competence

when exposed to conspecific substances even in the absence

of a partner, pointing at the pivotal role of agglutinins in the

mating process [25]. Following fusion, the two gametes contrib-

ute distinct information that is necessary for zygote

development by forming heterodimers between the transcrip-

tion factors Gsm1 and Gsp1 that are expressed differentially

in the two mating types [19]. The heterodimers initiate zygote

differentiation and meiosis. There is also evidence for sexual

chemotaxis in some species of Chlamydomonas. At least one of

the two mating types is attracted to substances released by

the other type, but the putative substances have not been

isolated or characterized [26,27].

(ii) Closterium
Closterium are diploid green algae and the closest unicellular rela-

tives to land plants. Most Closterium species have two mating

types, mtþ and mt2. Their sexual reproduction is well character-

ized and takes place in five steps: sexual cell division producing

sexually competent cells (SCD), cell pairing, conjugation and

papillae formation, protoplast release (i.e. loss of the cell wall)

and protoplast fusion to produce a zygospore [28]. The presence

of chemical substances responsible for coordinating sexual

activity was postulated for Closterium species as early as 1971

[29]. It is now known that in the Closterium peracerosum-
strigosum-littorale (C. psl) species complex, PR-IP (protoplast

release-inducing protein) inducer is secreted by mt2 cells which

stimulates SCD, protoplast release and mucilage secretion activity

in mtþ cells [30,31]. The induction activity differs according to the

PR-IP inducer concentration: low to mucilage secretion, medium

to SCD and high to protoplast release in mtþ cells [28]. The same

is true for the corresponding mtþ substance simulating the equiv-

alent concentration-dependent reactions in mt2 cells. Similar

multifunction mating type factors have been identified also in

Closterium ehrenbergii [32,33]. In addition, mtþ and mt2 cells of

C. ehrenbergii and Closterium acerosum migrate towards one

another when separated [34–36]. This suggests the presence of

mating-type-specific chemoattraction between opposite types,

but these putative substances have not yet been characterized.

(iii) Diatoms
Diatoms have a unique diplontic vegetative phase involving

size reduction associated with mitotic divisions [37]. The
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Figure 1. Model life cycle for unicellular eukaryotes. Cells grow vegetatively for as long as conditions allow. Entry into the sexual phase begins with growth arrest
(1) followed by differentiation into gametes (2). Diplontic species undergo meiosis to produce haplontic gametes, whereas haploid species simply differentiate into
sex-competent cells. Gametes or sex cells encounter one another (3), either by chance (e.g. Chlamydomonas reinhardtii), via directed growth following diffusible
pheromones (e.g. yeasts) or through sexual chemotaxis (e.g. Closterium). When cells come in contact they recognize and adhere to one another (4). This is followed
by cell and nuclear fusion (5). The diploid zygote then switches back to the vegetative programme in diplontic species or undergoes meiosis to produce haploid
vegetative cells.

(a) (b)

Figure 2. (a) Two Chlamydomonas cells undergoing fusion. Picture reproduced from Goodenough & Weiss [24] with permission from the authors. (b) Tetrahymena
cells conjugating in preparation for nuclear exchange. Picture credit: SEPA ASSET programme at Cornell University.
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switch to sexual reproduction only occurs in cells below a

critical size. Haploid gametes are generated via meiosis and

are unable to grow clonally, so they must fuse to return to

the diploid stage (or die). It has long been speculated that

diatoms use pheromone signals to coordinate sexual repro-

duction [37]. Recent work has identified some of the

components of this system in the pennate diatom Seminavis
robusta. MTþ cells produce SIPþ, a pheromone that induces

cell cycle arrest and gamete production in MT2cells. It also

induces proline biosynthesis and release of the pheromone

diproline from MT2 cells. Diproline acts as a chemoattractant

for MTþ cells [38,39]. The role of these reciprocal pheromones

and other substances in subsequent stages of diatom mating

(i.e. recognition and fusion) is not currently known.
.R.Soc.B
371:20150531
(iv) Brown algae
Brown algae are multicellular marine algae. Sexual reproduc-

tion can be isogamous, anisogamous (different size gametes)

or oogamous (large egg and small sperm). Pheromones in

brown algae have been studied extensively and are well

characterized in terms of their function and molecular com-

position [40]. In isogamous brown algae such as Scytosiphon
lomentaria, Colpomenia bullosa and Ectocarpus siliculosus, the

female-equivalent mating type releases pheromones that

attract the male-equivalent mating type [41,42]. In E. siliculo-
sus, mating-type-specific glycoproteins and receptors are

responsible for gamete recognition and adhesion [42,43].

While the two mating types of E. siliculosus are morphologically

the same, their mating behaviour is different. The þ gametes

swim for a short period of time after which they ingest their

flagella and secrete pheromones. The 2 gametes, on the other

hand, swim for prolonged periods and have pheromone recep-

tor sites for signal processing necessary for their chemotactic

response. They recognize the þ gametes through receptors on

their anterior flagellum, but the details of how this is achieved

remain unexplored [43]. Transcriptome profiling of þ and –

gametes of E. siliculosus demonstrates extensive asymmetry

between the two mating types highlighting that distinct sexual

roles precede morphological differentiation of gametes [44].
(b) Fungi
(i) Yeasts
Yeasts are isogamous, single-celled fungi, with two mating

types. The vegetative stages of yeasts can be predominantly

haploid (e.g. Schizosaccharomyces pombe) or diploid (e.g.

Saccharomyces cerevisiae). Mating type is determined at the

haploid level at a single genetic locus, MAT. The pertinent

genes for each mating type are differentially expressed at

this locus. The sexual cycles of yeasts begin with growth

arrest and differentiation into gametes. This occurs as a

response to environmental cues but, in addition, mating-

type-specific pheromones initiate gametogenesis when

sensed by the opposite type [45]. In both S. pombe and S. cer-
evisiae, binding to pheromone from the opposite mating type

causes expression of mating-type-specific genes, and induces

physiological and morphological changes leading to sexual

differentiation [45]. Polarization of individual gametes

along the pheromone gradient leads to directed growth

towards gametes of the opposite mating type [45]. Mating-

type-specific pheromones have similar functions in several

other yeasts [46–49].
The molecular processes leading to gamete fusion are

known in considerable detail [45]. It begins with the induction

of mating-type-specific agglutinins by the opposite mating-

type pheromone. The interlinking of agglutinins leads to cell

adhesion [50,51] and increases conjugation efficiency [52].

Budding yeast mutants unable to produce mating pheromones

cannot induce agglutination or conjugation and are effectively

sterile [53]. Although exogenous pheromone restores aggluti-

nation, it does not lead to conjugation and fusion, suggesting

that modulation of the pheromone concentration and the

timing of secretion control downstream pathways crucial for

mating [53]. As in Chlamydomonas, upon zygote formation

transcription factors expressed differentially in the two

mating types in yeasts form heterodimers that repress genes

involved in mating and the haploid life cycle and are crucial

for subsequent zygote development and meiosis [54,55].
(ii) Filamentous ascomycetes
Mating-type genes have also been studied in several filamen-

tous ascomycetes. During sexual development, opposite

mating types form male and female structures (defined as

the donor and receiving structures, respectively) that fuse

with one another allowing the transfer of the male nucleus

to the female structure [56,57]. The entry of the male nucleus

into the female hyphal cell stimulates fruiting body for-

mation. The nuclei from the two mating types do not fuse

but undergo repeated mitotic divisions in synchrony result-

ing in a fruiting body composed of cells with multiple

nuclei from both mating types. The nuclei are then organized

into dikaryotic cells, with one nucleus of each mating type,

which fuse, and undergo meiosis and spore production.

The mating types regulate directed growth of the female

structures towards the male, partner recognition, fertilization,

fruiting body formation and nuclear coordination in the fruit-

ing body [56,58,59]. The female trichogynes are attracted

towards the male spermatia, suggestive of diffusible phero-

mones [60–62]. Pheromone precursor genes have been

identified in many filamentous ascomycetes including Crypho-
nectria parasitica [63], Magnaporthe grisea [64], Podospora anserina
[65] and Neurospora crassa [66]. The pheromone precursor

genes are expressed in a mating-type-specific manner, similar

to yeast pheromones. In some species such as Ascobolus,
differentiated sexual structures only develop following

opposite-mating-types interaction [67]. For example, the male

element in A. stercorarius undergoes sexual activation after con-

tact with the mycelium of the opposite mating type [68]. Other

filamentous species like P. arsenia have the ability to differen-

tiate sexual structures without mating-type interactions [62].

Interestingly, P. arsenia is a pseudohomothallic species, mean-

ing that a single individual carries both mating types and so

compatible partners are always present. This eliminates the

need to have a check-point prior to sexual differentiation to

ensure the presence of a partner.

A further key role of the mating types is the specification

of nuclear identity, coordination of nuclear pairing and

migration of nuclei into the dikaryotic hyphal cell [56]. In

P. anserina, nuclear recognition is regulated by FMR1 and

SMR2 proteins in the mat2 nucleus and the FPR1 protein lim-

ited to the matþ nucleus. When nuclei of the opposite mating

type approach one another they release signals that simulate

growth and nuclear migration, the success of this process

relying on the proper association between the two nuclei
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[57,69]. Mutations in these genes affect nuclear synchroniza-

tion, causing errors in dikaryote formation and barren fruiting

bodies [70].

(iii) Filamentous basidiomycetes
Basidiomycetes spend most of their life cycle as dikaryons.

Each cell holds two nuclei from the mating partners without

fusion, and this state persists during the asexual phase [71].

Mating-type identity is determined by alleles at either one

locus (bipolar system) or two unlinked loci (tetrapolar

system). In the tetrapolar system, fusion normally only

occurs between individuals that differ at both mating-type

loci (e.g. A1B1 � A2B2). Basidiomycetes are notable for

having multiple mating types ranging from two up to several

thousands, with multiple alleles possible at both loci. Mating

types mediate pheromone signalling, cell fusion, filamentous

growth in the dikaryote phase and preservation of compatible

nuclei in close association through synchronized nuclear div-

ision [58,59,71].

Heterobasidiomycetes use pheromone signals to mediate

mating partner choice, with pheromone interaction with

receptors initiating the mating process when haploid iso-

gamous cells or organs of the opposite mating type come in

contact. Ustilago hordei has a bipolar mating system and two

mating types. Mating-type pheromones in this species

induce conjugation and tube formation in opposite mating

types that grow chemotactically towards one another [72].

In the related U. maydis, following pheromone binding,

mating structures are formed that enable fusion and the for-

mation of the dikaryon. After fusion, mating-type alleles of

the two partners form heterodimers that enter the diploid

nucleus and control switching to filamentous growth and

the subsequent meiosis [73,74]. Remarkably, these tight inter-

actions occur despite U. maydis having some 50 mating types,

which are determined at two multi-allelic loci [71].

In homobasidiomycetes (mushrooms), fusion between

mycelia occurs independently of mating type. In these

fungi, mating-type pheromones are activated following

fusion and control formation of nuclear pairs in the dikaryon

and maintain the dikaryophase [75]. A notable example is

that of Schizophyllum commune that has thousands of mating

types. Molecular analyses have found more than 75 different

pheromones and several receptors [76]. Each distinct mating

type consists of several genes specifying a single pheromone

receptor pair [76]. But the receptors within a mating type

never bind their own pheromones [77]. The pheromones

and receptors control nuclear recognition and fusion within

the mycelium [77,78]. A high degree of specificity is required

for nuclear communication and the full completion of sexual

development [76]. Although the mating system of S. commune
restricts sibling matings to some extent, these are still possible

approximately 25% of the time, suggesting that inbreeding

avoidance cannot be the main function of these complex

mating interactions. The situation is similar in other mushroom

species such as Coprinus cinereus [79].

(c) Amoebozoan slime moulds
In the cellular slime moulds, the unicellular phase of the life

cycle is initiated following spore release from the fruiting

body. The spores germinate and release haploid amoeboid

cells that grow vegetatively while food supplies are abun-

dant. Under stressful conditions, the unicellular amoebae
either aggregate to form a new fruiting body or fuse to form

a diploid zygote giant cell known as a macrocyst [80,81].

Macrocysts form through the fusion of cells with different

mating types. In the well-studied Dictyostelium discoideum,

there are three mating types, one of which appears to be a

fusion of the other two [80]. At least two interacting mating-

type-specific pheromones are necessary for macrocyst

development and completion of the sexual phase [82].

Disruption of the mating-type genes suppresses cell fusion in

D. discoideum [83,84]. However, the role of mating-type genes

is poorly understood in this and other slime moulds such as

D. purpureum and D. giganteum [85,86].
(d) Ciliates
Mating in several ciliate groups does not involve cell fusion.

Instead, compatible mating types form conjugating pairs, fol-

lowed by exchange of nuclei through a conjugation bridge

[87]. The conjugants then separate and the nuclei in each

cell fuse before restoring the vegetative phase. Ciliates con-

tain two nuclei, the micronucleus and the macronucleus.

The diploid micronucleus undergoes meiosis. The ‘somatic’

macronucleus forms from massive rearrangement, amplification

and gene loss from the diploid micronucleus.

The number of mating types in the genus Euplotes varies

from five to 12 [87]. Many species, including E. octocarinatus,

E. raikovi, E. patella and E. woodru, secrete mating-type-specific

substances [87,88]. Individual cells grow vegetatively when

binding to their own pheromone secreted continuously in

the extracellular environment. Mature cells arrest growth

and develop mating competence only when they bind to

a non-self pheromone. The same substances also act as

chemoattractants and sexualized cells are attracted to all non-

self pheromones [89–91]. The interaction between mating-type

pheromones in several ciliate species also regulates adhesion

and conjugation between complementary gametes [91–93].

Some species of Euplotes reportedly do not secrete mating-type

substances [87]. Instead, mating-type-specific interactions occur

upon contact and prepare cells for conjugation [94]. It is worth

noting that more recent reports suggest that E. crassus, a species

previously thought to only carry surface-bound pheromones,

actually does secrete pheromones but it remains to be seen

whether diffusible pheromones are universal in Euplotes [95].

Cell adhesion is mediated through cilia binding via

mating-type non-specific adhesins. However, mating-type-

specific pheromones and receptors are used to coordinate

adhesion and fusion. For example, the ciliate Dileptus
margaritifer forms mating pairs due to the expression of

mating-type non-specific cell-surface molecules [93]. The

two partners coordinate the expression of their adhesion

proteins by secreting and responding to pheromones in a

mating-type-specific manner. Experiments found that conju-

gation is highly unstable between gametes of the same

mating type [93]. It appears that continued stimulation

using pheromones is needed until fusion is completed. Simi-

lar results were reported for E. octocarinatus where pairs of

the same mating type were able to form under laboratory

conditions but were unstable and generally separated before

entering meiosis [96].

Paramecium is an exception among ciliates in that sexual

cells produce mating-type-specific agglutinins [87]. In the iso-

gamous Paramecium bursaria, mating-type-specific substances

are responsible for pair formation, conjugation, adhesion and
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fusion [97]. The mating reaction following mixing of opposite

mating types was observed in a number of different species

[98], suggesting that similar substances coordinate mating

in a number of different species of Paramecium. However,

few details of the molecular signalling interactions are cur-

rently known. Finally, sexual chemotaxis does not occur

among Paramecia. However, cell movement inactivation was

reported following opposite-mating-type contact-mediated

interactions [99].
3. The role of signalling asymmetry
Mating is contingent upon a cascade of events orchestrated

between the mating cells. Our review of isogamous species

reveals that these interactions are universally regulated by

mating types, which produce a range of mating-type-specific

proteins. These control a number of processes from initial

sexual differentiation, through to gamete fusion and sub-

sequent events in somatic development. The interactions

between mating types are always asymmetric—a particular

mating type will stimulate others (whether there are two or

multiple) but always fails to stimulate cells carrying the

same mating type. This asymmetry in intercellular signalling

during sex appears to be fundamental to the evolution of

mating types [12,16]. On what basis is asymmetry important?

We address this question for each of the steps in the sexual cycle.

Diffusible signals are at least in part necessary for growth

arrest and sexual differentiation in a range of species, includ-

ing yeasts, ciliates and diatoms. Why cannot all cells send

and differentiate in response to the same signal at this

stage? Cells would then face the challenge of distinguishing

their own signal from that of potential partners [12]. Owing

to diffusion, signals from self will always be higher than

those of a remote partner, considerably degrading the ability

to distinguish self and other signals (figure 3a). Recent exper-

iments have reinforced this idea by showing that secreting

and detecting the same molecule can prevent cells from

responding to signals from others, particularly at low cell

densities [100]. In many species, differentiation into gametes

is not reversible and the only way for individuals to restore

their mitotic growth phase is by sexual fusion. It is therefore

vital that passage into gametogenesis is synchronized with

others, who are potential partners.

Following sexual differentiation individuals must pair.

The majority of species reviewed here (with the exception

of some species of ciliates and some chlamydomonads) use
pheromones to direct migration or growth towards one

another. Sending and receiving the same chemotactic signal

could be problematic due to the potential of receptor satur-

ation [15]. Experimental overexpression of pheromone

disturbs gamete polarization in yeast gametes resulting in

growth in a random direction, and a 15-fold increase in

mating time [101]. An additional problem is that secretion

during movement results in high chemoattractant concen-

tration behind moving cells due to diffusion and

accumulation of chemical molecules [16]. This alters the net

local concentration, reducing the cell’s ability to respond

appropriately to external signals, or worse prompting the

cell to reverse its direction of movement (figure 3b). Conse-

quently, the use of chemotaxis to bring partners together

likely provides a substantial advantage if attraction signals

are sent and received asymmetrically [16].

Upon physical contact gametes must recognize one

another as conspecifics, adhere and proceed to conjugation

and/or fusion. There is strong selection for swift initial recog-

nition when there is competition between gametes; for

example, only two from an initial clump of several cells

will mate in Paramecium and Chlamydomonas [19,102]. Fur-

thermore, conjugation and fusion involve cell wall

remodelling and must be tightly coordinated, as lack of syn-

chronization can lead to osmotic shock and cell lysis [45].

Several species use the same mating-type pheromone/receptor

pairs to induce gametogenesis as well as sexual chemotaxis.

This is achieved by shifts in pheromone concentration inducing

corresponding shifts in the other mating type’s pheromone pro-

duction. This would be difficult to achieve without asymmetric

signals, as distinguishing changes in own versus partner phero-

mone production would be nigh on impossible (figure 3a).

Several species use non-diffusible, surface-bound molecules

for adhesion, conjugation and fusion, which are distinct from

their pheromones and receptors. These again show mating-

type specificity in species like Paramecium and some

Chlamydomonas. A probable reason for this asymmetry lies in

the avoidance of binding between self molecules that could

lead, not only to saturation, but also to noise/interference

that could potentially impair fusion synchronization or rapid

cell–cell recognition. There is little specific theoretical work

on this possibility beyond Hoekstra’s original work [15],

though cell surface interactions likely mirror the situation

with diffusible signals and their receptors, and imposes a

cost on the speed and robustness of the interaction

when there is no asymmetry [16]. There is also a need for

experimental work to investigate these trade-offs.
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Finally, mating-type-specific molecules can also be impor-

tant for post-fusion events. Heterodimers of proteins specific

to each of the mating partners are important for switching the

mating programme off and initiating meiosis in several

species. It has been argued that this function is itself key to

the evolution of mating types [12,103]. For example, it

allows cells to assess their ploidy level and so switch between

vegetative growth, and gametic developmental programmes,

and between mitosis and meiosis. From our perspective, this

is but one of the factors that favour asymmetry.
 g
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4. Pairwise gamete interactions dictate the
number of mating types

Let us now assume that the key role of mating types lies in

securing an asymmetry in signalling interactions between

gametes. We expect a proliferation of mating types as new

rare types seldom meet themselves and so have an advantage

over more common types (i.e. negative frequency depen-

dence), leading to their spread until they reach a frequency

equal to that of the residents [2,104]. This appears to describe

the case in some ciliates and basidiomycetes that have very

large numbers of mating types. However, most known isoga-

mous species have only two mating types. Clearly, there

must be some constraints that operate on gamete signalling

limiting the evolutionary proliferation of mating types. We

investigate this in a simple model that considers the strength

of pairwise interactions between gametes and how this

affects the spread and elimination of new types.

(a) Model outline
Consider a population with a single haploid locus M that

defines the mating type, and assume n mating types are poss-

ible determined by alleles fm1, m2, . . . , mng. We define the

signalling preference of mating type i towards mating type

j as pij and let pij take any positive value. This can be thought

of as the ‘investment’ of mating type i in interactions with

mating type j. Note, a more extensive treatment could be

done by separating search, recognition and fusion functions,

but for simplicity we consider these together, coded by a

single locus. The mating probability between mating types i
and j then depends on the product of their relative preferences

for one another ~pij~pji, where ~pkl ¼ pkl=
P

l pkl.

This relative preference treatment can be justified by con-

sidering signalling systems such as those identified in many

ciliates and basidiomycetes having multiple mating types.

Here, multiple pheromones from different mating types com-

pete with one another for the same receptor [88]. Likewise,

in many species, multicell clumps form before pairs become

isolated and proceed to zygote formation, suggesting that sev-

eral cells compete to mate at the same time [19,102]. Therefore,

if a receptor has a stronger interaction with one pheromone, it

is likely that this denudes the strength of interaction with

others. We assume pij¼ 0 for all i ¼ j so that homotypic pair-

ings are not possible (i.e. mating types are already present),

as discussed earlier in the article. The frequency of the ith
mating type in the population ( fi) then follows:

fiðtþ 1Þ ¼ GiðfðtÞ,p̃Þ

and GiðfðtÞ,pÞ ¼
fiðtÞ

P
jfjðtÞ~pij~p jiP

k,lfkðtÞflðtÞ~pkl~plk
,

9>>=
>>;

ð4:1Þ
where the system of n equations with fi(t þ 1) ¼ fi(t) for i ¼ 1,

2, . . . , n in equation (4.1) can be solved for the equilibrium

value of each fi. This formulation follows from the assump-

tion that the chance of successful mating between types i
and j is proportional to their relative preferences and their fre-

quencies in the population. The denominator in equation (4.1)

is equivalent to the mean fitness and normalizes all frequen-

cies at each time step. For n ¼ 3, equation (4.1) simplifies to

the following system of equations:

f1ðtþ 1Þ

¼ f1ðtÞf2ðtÞ~p12~p21 þ f1ðtÞf3ðtÞ~p13~p31

2f1ðtÞf2ðtÞ~p12~p21 þ 2f1ðtÞf3ðtÞ~p13~p31 þ 2f2ðtÞf3ðtÞ~p23~p32

,

ð4:2Þ
f2ðtþ 1Þ

¼ f1ðtÞf2ðtÞ~p12~p21 þ f2ðtÞf3ðtÞ~p23~p32

2f1ðtÞf2ðtÞ~p12~p21 þ 2f1ðtÞf3ðtÞ~p13~p31 þ 2f2ðtÞf3ðtÞ~p23~p32

ð4:3Þ

and

f3ðtþ 1Þ

¼ f1ðtÞf3ðtÞ~p13~p31 þ f2ðtÞf3ðtÞ~p23~p32

2f1ðtÞf2ðtÞ~p12~p21 þ 2f1ðtÞf3ðtÞ~p13~p31 þ 2f2ðtÞf3ðtÞ~p23~p32

:

ð4:4Þ

Solving these equations finds four equilibria for ( f1, f2, f3)

given by E1 ¼ (0.5, 0.5, 0), E2 ¼ (0.5, 0, 0.5) and E3 ¼ (0, 0.5,

0.5) at which one mating type is lost and the others occur

at equal frequencies, and E4 ¼ ð̂f1, f̂2, f̂3Þ where all mating

types are present (i.e. f̂i . 0 for all i). The value of each f̂i is

a function of pij given in the electronic supplementary

material, equations S1–S3.

(b) Model results
We begin by investigating the stability of E1, that is, when

two mating types are resistant to invasion of a new mating

type. If all preferences ( pij) are equal, then E1 is never

stable, and a new mating type will always invade. Now con-

sider the case where preferences vary. The full stability

conditions are complex (given in the electronic supplemen-

tary material, equation S4), but can be simplified by

assuming that p12 ¼ p21 ¼ g (i.e. mating types 1 and 2 have

similar preferences for each other). This is reasonable as we

are assessing the condition when there are two mating

types that have evolved to interact with one another, and

their relationship is likely to be symmetric. We further

assume that the rare new mating type 3 invests equally in

interactions with either of the resident types, so p31 ¼ p32 ¼

g þ h, and that the two resident types have the same prefer-

ence for the new mating type when it appears, so p13 ¼ p23 ¼

g þ k. Under these assumptions, the stability condition for E1

reduces to

2þ 3k

g
þ k

g

� �2

, 1: ð4:5Þ

Both h, k . –g, because pij has to always be positive, and

condition (4.5) reduces to k=g , ð
ffiffiffi
5
p
� 3Þ=2 or k , �0:382g

(see the electronic supplementary material for detailed deri-

vation). A third rare type will therefore not invade if the

interaction or preference of existing mating types towards it

is about a third (38%) weaker than between the existing
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Figure 4. (a,b) Contour plots indicating stability conditions for E1. (a) Assuming that, p12 ¼ p21 ¼ g, p31 ¼ p32 ¼ g þ h, p13 ¼ g þ k1 and p23 ¼ g þ k2
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rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150531

8

types. Similarly, if two mating types develop stronger prefer-

ence for one another, while weakening their preference for a

third type, the third type will be eliminated if it is 38% less

preferred by the other two (electronic supplementary

material, figure S1).

We also examined the more general situation when the

preference of the resident types (types 1 and 2) for the new

type (type 3) is not symmetric, by setting p13 ¼ g þ k1 and

p23 ¼ g þ k2. The stability condition for E1 now reduces to

2þ 3

2

k1

g
þ 3

2

k2

g
þ k1

g

k2

g
, 1: ð4:6Þ

In this case, a third type will not invade if larger values of k1

are compensated by smaller values for k2 and vice versa

(figure 4a). Note that owing to the assumption that p31 ¼

p32, h does not impact on the stability conditions (4.5) or (4.6).

An alternative treatment to simplify stability condition

(S4) of the electronic supplementary material is to assume

that all pairwise interactions occur symmetrically so that

p12 ¼ p21 ¼ g, p12 ¼ p31 ¼ g þ h and p23 ¼ p32 ¼ g þ k. Now
the stability condition for E1 reduces to

4þ ~h~kð~hþ ~kÞ þ 5ð~hþ ~kÞ þ 2ð~hþ ~kÞ2

ð2þ ~hþ ~kÞ , 1, ð4:7Þ

where ~h ¼ h=g and ~k ¼ k=g. Condition (4.7) is illustrated in

figure 4b. This shows that the stability condition for E1

holds if both h=g and k=g are negative. Once again, a third

mating type cannot be established if the pairwise interaction

(or preference) between the residents is sufficiently stronger

than with the mutant. Conversely, a third mating type can

replace one of the residents if it establishes strong interactions

with the other one (figure 4c), or can invade at the expense

of both mating types so that a polymorphic equilibrium

with three mating types at equal or unequal frequencies is

established (figure 4d,e).
We also explored more complex situations with four or

more mating types. There are then multiple equilibria with

variable numbers of mating types persisting. Although the

analysis becomes more complex, the same principles hold.

A stability analysis and simulations for n ¼ 4 are provided

in the electronic supplementary material.
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Our model suggests that a rare type only increases in fre-

quency if it is able to strongly interact with the pre-existing

mating types (figure 4). It challenges the general belief that

rare mating types invade as they have high mating rates because

they rarely meet themselves [2]. This ignores the strength of inter-

action between mating types. We expect that if two mating types

have coevolved for some time they will have gained strong inter-

actions, say because this leads to more efficient mating. Further

novel mating types lacking this strength of interaction thus will

be less likely to invade. Likewise, in a population with three

mating types one may become extinct if two types evolve signifi-

cantly stronger interactions with one another. Underlying this

are likely to be biochemical constraints on signal and recognition

molecules, so the evolution of stronger interactions (higher pre-

ference) for one signal automatically weakens interactions with

other mating types. Although such bias needs to be strong for

other types to be eliminated altogether, it seems likely that

small differences could seed subsequent coevolution, and

drive the population towards fewer types. These concerns

place major limitations on mating-type proliferation. They

also suggest that where multiple mating types occur, such as

in many ciliates and filamentous fungi, new forms must be

equally able to interact with the existing types (or nearly so).

It would be interesting to understand what structural properties

of signals and receptors in these cases allow for this outcome.
5. Conclusion
The evolution of mating types and the optimal number of

mating types remain key unanswered questions in evolution-

ary biology. In this work, we examined the capacity for

asymmetric gamete signalling to address both of these appar-

ent enigmas. This idea goes back to the pioneering work by

Hoekstra in 1982 [15]. In support of this theory, we present

evidence that asymmetric communication between opposite

mating types is common, if not universal, throughout

sexual reproduction in species with isogamous gametes. In

addition, we discuss the constraints gametes encounter with-

out any asymmetry in their signalling communication,

beyond those postulated initially [12,15,16].

The evolutionary forces that determine the number of

mating types have received even less attention than the evol-

ution of mating types themselves. A pioneering study

tackling this question suggests that selection for quick

mating favours the evolution of multiple mating types

[105]. Under this condition, novel mating types are at an

advantage when rare as they can mate with more individuals

they encounter than the existing more common types. It

seems likely that gametes are generally under strong selection

for quick mating, especially in unicellular species. But if this

is the case, why are two mating types the dominant reproduc-

tive mode? It has also been suggested that mating types act as

a self-incompatibility (SI) system that prevents inbreeding,

and that negative frequency-dependent selection favours

rare types as they can mate with more partners [3,4,6].
Furthermore, the allelic diversity and recombination between

different loci that specify SI may also be important for the

invasion of new mating types [106]. While these consider-

ations might explain expansion in the number of mating

types, they again fail to establish why two is the dominant

reproductive mode. An alternative approach suggests that

selection for uniparental inheritance of mitochondria (and

other cytoplasmic genes like chloroplasts) requires two dis-

tinct mating types, one to be the transmitting sex and the

other to destroy its mitochondria [104]. While there may be

advantages to the uniparental inheritance of mitochondria,

analyses of models allowing coevolution with mating types

do not result in the stabilization of two mating types [8].

This hypothesis does not fully account for the proliferation

of mating types and why this is restricted to certain groups.

We propose an alternative hypothesis based on the

strength of pairwise interactions between gametes. In the

model, novel mating types only spread if they interact strongly

with the resident mating types. Spread is resisted if the existing

mating types have evolved strong pairwise interactions that

limit the attraction/recognition of novel variants. Conversely,

multiple mating types evolve if specialization does not restrict

interactions with novel types. The model also explains the

observation that in species with multiple mating types not

all types coexist at equal frequencies [107], as uneven pairwise

interaction strengths lead to multiple mating types at different

frequencies (figure 4e). Such unevenness could also arise due

to drift in the vegetative growth phase, but then would be

expected to be randomly distributed across mating types

through time [6]. Our alternative model is not at odds with

previous hypotheses, for example, selection for swift partner

finding, SI or the need for uniparental inheritance of mitochon-

dria [3,4,104,105]. However, it does identify a generally

applicable selective force that may better account for variation

in number and distribution of mating types seen in unicellular

organisms.

The main challenge to the ideas presented here is the

existence of homothallic species, where clones of the same

mating type can mate with one another [2]. In many reported

cases of homothallism, however, mating partners behave

asymmetrically [108,109]. These behaviours could be due to

mechanisms similar to mating type switching whereby

clonal individuals express opposite mating types [6]. It

would be interesting to assess whether asymmetries actually

underlie the mating behaviour of gametes in homothallic

species, and to quantify the efficiency of mating compared

to related heterothallic species.
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