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Sensitizing mutations in the epidermal growth factor receptor (EGFR) predict response 
to EGFR tyrosine kinase inhibitors (TKIs) and both first- and second-generation TKIs are 
available as first-line treatment options in patients with advanced EGFR-mutant non-
small cell lung cancer. Eventual resistance develops with multiple mechanisms identifiable 
both upon repeat biopsy and in plasma circulating tumor DNA. The T790M gatekeeper 
mutation is responsible for almost 60% of cases. A number of third-generation TKIs are 
in clinical development, and osimertinib has been approved by the US Food and Drug 
Administration for the treatment of patients with EGFR T790M mutant lung cancer after 
failure of initial EGFR kinase therapy. Resistance mechanisms are being identified to these 
novel agents, and the treatment landscape of EGFR-mutant lung cancer continues to 
evolve. The sequence of EGFR TKIs may change in the future and combination therapies 
targeting resistance appear highly promising.

Keywords: lung cancer, lung cancer treatment, epidermal growth factor receptor, tyrosine kinase inhibitors, 
T790M

inTRODUCTiOn

Non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases and is a leading 
cause of morbidity and mortality internationally (1, 2). When treated with platinum-based chemo-
therapy, the median survival in patients with metastatic disease is 8 months (3). Mutations in the 
epidermal growth factor receptor gene (EGFR) are found in 10–15% of lung cancers in Caucasians, 
and 30–40% of East Asian patients (4, 5). These patients most commonly have adenocarcinoma, 
are lifetime non- or light smokers and are more frequently female. The most commonly described 
mutations are deletions in exon 19 (del19) and the exon 21 L858R point mutation (from leucine to 
arginine). The discovery of EGFR mutations as a predictor of response to tyrosine kinase inhibitors 
(TKIs) heralded a paradigm shift in the treatment of NSCLC (6–8).

In the advanced setting, options for first-line treatment of EGFR-positive lung cancer include 
first-generation TKIs (erlotinib, gefitinib) and afatinib, a second-generation kinase inhibitor. These 
agents have an impressive body of evidence confirming better response, improved progression-free 
survival (PFS), and quality of life compared to chemotherapy (9–16). The pooled analysis of the LUX 
Lung 3 and 6 studies also suggested an overall survival advantage of afatinib relative to chemotherapy 
in the first-line setting for the subgroup of patients with exon 19 deletions (17). Recently, afatinib 
has been shown to have improved PFS compared to gefitinib, however, at the expense of greater 
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toxicity (18). Resistance to both first- and second-generation 
TKIs is common and develops at a median time of 9–16 months 
(9, 11, 14, 19). This review summarizes known mechanisms of 
TKI resistance, clinical approaches to resistance with a focus 
on third-generation EGFR TKIs, their preclinical and clinical 
evidence for use, and future directions to improve the outcomes 
of patients with EGFR mutation-positive lung cancer.

ReSiSTAnCe TO FiRST- AnD  
SeCOnD-GeneRATiOn inHiBiTORS

By performing biopsies in patients with progression on first-
generation TKIs, Yu et al. elucidated the common mechanisms of 
resistance to first-generation TKIs (20). In approximately 60% of 
cases, a T790M point mutation in exon 20 was identified. Other 
mechanisms include downstream signaling pathway mutations 
in BRAF or PIK3CA, or parallel signaling pathway activation via 
changes in MET, HER2, FGFR, and AXL. A small group (3%) 
had histologic transformation: epithelial to mesenchymal transi-
tion or high-grade neuroendocrine transformation. A total of 
18% did not have an identifiable cause. Multiple mechanisms of 
resistance were shown in 10% cases and have been postulated to 
be up to 15% of cases in other series (20–22).

More recently, the rate of T790M mutation have been reported 
to be much higher when analyzing circulating tumor DNA 
(ctDNA), highlighting the limitations of a single biopsy in the 
context of tumor heterogeneity (23). Tissue biopsies are associ-
ated with risks, delays, and an increased economic burden (24). 
Liquid biopsies are an attractive alternative to this and can accu-
rately detect T790M mutations in ctDNA with a high positive 
predictive value. In the study by Oxnard et al., of 58 patients with 
a T790M negative tissue biopsy, one-third had T790M detected 
in plasma with similar response rates (RRs) to patients with the 
mutation identified in tumor biopsy samples (25). Recently, two 
studies have reported the detection of T790M several weeks to 
months prior to radiological progression, which emphasizes 
the potential use of serial plasma monitoring in this population  
(26, 27). However, plasma genotyping may still result in false 
negatives and it is unlikely that repeat tumor biopsies in clinic 
can be completely eliminated for all patients. But an approach 
whereby initial blood-based screening is used, followed by biopsy 
in only those without the mutation identified, may decrease the 
morbidity and delays involved in serial genomic testing.

MAnAGinG ReSiSTAnCe TO iniTiAL  
TKi THeRAPY

Platinum-based chemotherapy has been considered the stand-
ard treatment upon progression for patients on initial EGFR 
kinase therapy; however, few patients are well enough or agree to 
have cytotoxic chemotherapy (28). Intercalation or combination 
with chemotherapy has been minimally successful with added 
toxicity and no consistent survival benefit (29). The IMPRESS 
study showed that continuing TKI therapy with chemotherapy 
did not provide a PFS benefit and was associated with increased 
toxicity (30).

For oligo progressive disease, administering local therapy and 
continuing the original kinase inhibitor is a common approach 
(31). In a small single-arm phase II study (ASPIRATION), 
patients with minimally symptomatic or asymptomatic progres-
sion were randomized to continue erlotinib past progression or to 
stop, and those continuing remained on treatment for a median of 
an additional 3.7 months after the initial PFS of 11 months (32).

Despite in vitro T790M inhibition, the second-generation TKIs 
have not demonstrated significant single-agent activity in T790M 
mutation positive disease. Dual inhibition of EGFR signaling has 
generated interest, with a phase II study of afatinib and cetuximab 
in TKI-resistant patients, demonstrating a RR of 29% in T790M-
positive and -negative subgroups. Thus, EGFR pathway signaling 
remains an important driver of disease, with trials ongoing (33).

The most significant development in treating resistance has 
been through third-generation kinase inhibitors that target 
T790M.

THiRD-GeneRATiOn TKis

Not only do these agents have activity in T790M mutant lung  
cancer but many have the advantage of limited wild-type inhibition, 
therefore, overcoming toxicities associated with first- and second-
generation TKIs. WZ4002, a covalent pyrimidine EGFR TKI, was 
one of the first compounds to show in  vitro and in  vivo EGFR 
T790M inhibition with relative WT sparing (34). Several agents 
have now been tested in clinical trials, with osimertinib recently 
approved by the US Food and Drug Administration (FDA) and 
other regulatory agencies in patients with EGFR T790M mutant 
NSCLC post failure of first-/second-generation TKIs.

Osimertinib (AZD9291, Previously 
Merelitinib)
Osimertinib is an oral, irreversible TKI that forms a covalent 
bond with the cysteine residue in position 797 of EGFR within 
the ATP-binding site. Osimertinib and its active metabolites also 
interact with a number of other kinases harboring the cysteine 
residue. Osimertinib is a potent inhibitor of T790M with lit-
tle wild-type activity and shows tumor regression in murine  
models (35).

AURA (a phase I dose escalation study) (36) was performed 
in patients with EGFR mutation-positive advanced NSCLC with 
acquired resistance to TKI. No dose-limiting toxicity (DLT) was 
observed; the most common adverse events were diarrhea, rash, 
anorexia, and nausea (see Table  1). The overall RR was 51%  
[95% confidence interval (CI), 45–58]; higher in the T790M 
mutation-positive group than the T790M mutation-negative 
group (61 versus 21%). The median PFS was 9.6  months  
(95% CI, 8.3 to not reached) in EGFR T790M-positive patients.

Updated results of the 80  mg (RP2D) cohorts from three 
AURA studies were presented (37), and confirm a high RR  
(66% in phase I study and 71% in phase II studies). Encouraging 
duration of response (12.5 months in pooled phase II studies) and 
PFS (11.0 months in same pooled analysis) was seen (37).

AURA2 is a single-arm, open-label phase II study of osi-
mertinib 80 mg daily in T790M mutation positive NSCLC after 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


TABLe 1 | Toxicities of third-generation tyrosine kinase inhibitors.

Agent Osimertinib (36–39) Rociletinib (41, 43) Olmutinib (46–48) nazartinib (50, 51) Avitinib (55)

Study Phase I Phase II Phase III Phase I/II Phase I/II Phase I/II Phase I
Number of patients 253 210 419 92 93 111 25
Response rate (RR) overall 51 (45–58) 70 (64–77) 71 (65–76) 38 (NR) 54 (NR) 47 (39–55) NR
RR T790M Positive 61 (52–70) As above As above 45 (31–60) NR NR NR
Overall grade 3–4 toxicity 32 34 23 NR NR NR 4
Rash 40 (1) 40 (1) 34 (1) <1 (0) 39 (5) 39 (14) 20 (4)
Dry skin 20 (0) 30 (0) 23 (0) NR NR 28 (0) NR
Pruritus NR NR NR NR 39 (1) 32 (0) 16 (0)
Diarrhea 47 (2) 33 (<1) 41 (1) 22 (0) 55 (0) 40 (6) 44 (0)
Loss of appetite 21 (1) NR 18 (1) 20 (1) NR 17 (0) NR
Nausea 22 (<0.5) NR 16 (1) 35 (2) 38 (0) 13 (0) 16 (0)
Fatigue 17 (1) NR 16 (1) 24 (4) NR 21 (NR) NR
Dyspnea 11 (2) <1 (<1) 4 (<1) 1.5 NR (1) NR 12 (0)
Hyperglycemia 2 (0) NR NR 47 (22) NR (0) NR 0 (0)
QTc prolongation NR NR NR 12 (5) NR (0) NR 8 (0)
Anemia NR NR NR NR NR NR (6) NR
Stomatitis NR NR NR NR NR 23 (NR) NR
Muscle spasms NR NR NR 11 (1) NR NR NR
Dose reduction 7% 3% NR 51% NR NR NR
Discontinuation of drug 6% 5% 7% 11% 4% NR 0

RRs reported in % (95% confidence interval).
Toxicity reported in overall rate % (grade 3–4%).
NR, not reported.
Dyspnea, dyspnea/ILD/pneumonitis reported together.
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first-line TKI. A total of 140 (70%; 95% CI 64–77) of 199 patients 
(with measurable disease) achieved an objective response. There 
was a disease control rate (dCR) of 92%. Toxicity was manageable 
with low rates of grade 3 or higher toxicity (see Table 1) (38).

AURA3 was a phase III randomized trial that assessed the 
efficacy and safety of osimertinib (80 mg daily) versus platinum-
doublet chemotherapy after initial TKI failure in 419 patients 
with T790M mutation-positive advanced NSCLC (39). The trial 
demonstrated superior PFS 10.1 versus 4.4  months (HR 0.30; 
95% CI 0.23–0.41; p < 0.001) and higher RR with osimertinib, 
71%, versus chemotherapy, 31% (39). Grade 3 or 4 adverse events 
occurred in 23% of patients on osimertinib, compared to 47% 
with chemotherapy (Table 1). Quality of life results are pending.

In November 2015, osimertinib received accelerated approval 
by the FDA, representing rapid progress through drug devel-
opment—the first AURA patient was enrolled in March 2013  
and FDA accelerated approval was granted in November 2015.

Rociletinib (CO1686)
Rociletinib is an irreversible orally delivered third-generation 
TKI that targets L858R, del19, and T790M mutations of EGFR 
with little WT activity. Rociletinib also modifies the C797 site 
through covalent binding. Tumor xenograft and transgenic 
models documented tumor regression in preclinical studies (40). 
In the phase I/dose expansion study, TIGERX, 130 patients with 
progression following EGFR TKI were enrolled but the maximum 
tolerated dose was not reached (41). The RR was 59% in T790M-
positive patients; however, pooled data from this TIGER-X study 
and the phase II TIGER-2 was initially reported to be 30.2%  
(42) and later updated and published as 45% (43).

The most frequent grade 3/4 AEs, which occurred in more than 
10%, included hyperglycemia and QTc prolongation (Table 1). 

The hyperglycemia is thought to be mediated by a metabolite of 
rociletinib that inhibits insulin-like growth factor-1 receptor and 
to a lesser extent, insulin receptor kinases. Clovis has suspended 
development of rociletinib and terminated enrollment in clinical 
trials in 2016, soon after the FDA rejected the request for acceler-
ated approval (44).

Olmutinib (HM61713; Formerly Bi148269)
Olmutinib is an oral selective inhibitor for EGFR including 
T790M mutant kinases and acts by binding to a cysteine residue 
close to the kinase domain. Potent inhibition of representative cell 
lines and in vivo activity have been reported (45). A phase I trial 
of 173 patients with EGFR-mutant lung cancer that had failed 
previous TKI therapy demonstrated a favorable safety profile and 
promising antitumor activity (46, 47). The MTD was established 
as 800 mg once daily. Treatment-related adverse events occurred 
in 87.3% of 165 patients, mainly diarrhea, rash, skin exfoliation, 
nausea, pruritus, decreased appetite, and dry skin. Grade 3 or 
greater toxicity was 2% in the initial study report (2/93), although 
not in the updated results (Table 1) (46–48).

In 34 patients with centrally confirmed T790M tumor muta-
tions who received olmutinib at a dose greater than 650  mg 
daily, the RR was 59% (10 confirmed, 10 unconfirmed partial 
responses) and 13 achieved disease stabilization (dCR 97%). The 
phase II study has been suspended early with three cases of severe 
skin toxicity, including two reports of toxic epidermal necrolysis 
(one fatal), and one case of non-fatal Stevens–Johnson syndrome. 
The future of the drug’s development is uncertain.

nazartinib (eGF816)
EGF816 is an oral, irreversible EGFR TKI that also forms a cova-
lent bond with C797. Low IC50 values and in vivo activity against 
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L858R–T790M and del19–T790M have been reported (49). Data 
from the phase I/II study of EGF816 in advanced T790M-positive 
lung cancer are now available (50, 51). Dose escalation began 
at 75 mg daily up to 350 mg daily for capsules and 100–225 mg 
daily for tablets. Diarrhea, stomatitis, rash, and pruritus were the 
most common toxicities (see Table 1), and the confirmed RR was 
44% (56/127) and dCR was 91% (NCT02108964). Combination 
studies with immunotherapy are now recruiting (NCT02323126; 
NCT02335944; NCT02900664).

ASP8273
ASP8273 is an EGFR TKI that selectively and irreversibly inhibits 
mutant EGFR kinases including T790M by the formation of a 
covalent bond with C797. Both in vitro and in vivo studies confirm 
activity in T790M mutant lung cancer with relative WT sparing 
(52). In a phase I study, doses were escalated to 500 mg but the 
RP2D has been deemed 300 mg, although the details of DLT and 
maximum tolerated dose levels are not published (53). Of 60 
patients treated with ASP8273 at the 300 mg dose, there was no 
DLT. All patients were EGFR positive with 90% having a T790M 
mutation. PR was demonstrated in 16 of 45 evaluable patients; 
dCR was 62% (n = 28/45). For the 40 T790M mutation-positive 
subjects with evaluable data, 38% (15/40) had PR and dCR was 
65% (26/40) (NCT02113813). The Phase III SOLAR study is 
underway comparing initial ASP8273 with a first-generation TKI 
in patients with EGFR-mutant lung cancer (NCT02588261) (53).

PF06747775
PF0677775 is another oral inhibitor of EGFR T790M with 26-fold 
increased selectivity of mutant versus wild-type EGFR. It is cur-
rently under evaluation in a phase I/II study in patients with 
advanced EGFR mutation-positive lung cancer (del19 or L858R, 
T790M positive and negative) (NCT02349633) and early results 
have demonstrated activity and tolerability (54).

Avitinib (AC0010)
Avitinib is a new, irreversible, EGFR mutation selective TKI being 
evaluated in a phase I/II clinical trial (NCT02274337). In the 
reported dose escalation study (55), 25 patients were treated. The 
most common AEs were diarrhea, rash, and pruritus. Although 
diarrhea and rash increased in frequency in a dose-dependent 
manner, the majority of them were grade 1 (Table 1). There was 
no drug discontinuation in all treated patients. Outcomes for 
two patients with T790M-positive lung cancer showed partial 
responses. The clinical characteristics and efficacy outcomes of 
the remaining patients are not reported (55).

SPeCiAL POPULATiOnS

Uncommon Mutations
The “uncommon” EGFR mutations represent a heterogeneous 
group and can account for up to 10–18% of EGFR mutations  
(56, 57). The most frequent include exon 20 insertions (exon-
20ins), and point mutations G719X, L861Q, and S768I. The latter 
three mutations may have a superior response to afatinib (58). 
The majority of (exon20ins) are thought resistant to EGFR TKIs 

with the exception of A763_Y764insFQEA. In a preclinical study,  
osimertinib demonstrated potency with a wide therapeutic 
window in the exon20ins studied (Y764_V765insHH, A767V-
769dupASV, and D770_N771insNPG) (59). More recently, it has 
been revealed that EGFR amplification may occur in a subset 
of exon20ins. The dual EGFR blockade with osimertinib and 
cetuximab has demonstrated significant growth inhibition in 
in vivo models (60). EGF816 has shown both in vitro and in vivo 
efficacy in a number of exon20ins and in a patient-derived xen-
ograft model, 100 mg/kg dosing resulted in tumor regression of 
81% (49). AP32788 has also been shown to inhibit exon20ins 
in BA/F3 cell lines (61). The activity of third-generation TKIs  
in preclinical models has led to clinical trials for exon20 inser-
tions including the phase I/II study of AP32788 (NCT02716116).

Brain Metastases
Approximately 30–50% of patients with NSCLC develop central 
nervous system (CNS) disease (62, 63). The association between 
EGFR mutation-positive NSCLC and the incidence of brain 
metastases is controversial with some studies suggesting an 
increased risk of CNS disease at diagnosis (64, 65). CNS disease 
can reduce survival and both brain metastases and loco regional 
therapies can impact neurological function and quality of life. 
First-generation EGFR TKIs have shown intracranial activity 
with erlotinib exhibiting higher CSF concentrations than gefitinib 
(66). Afatinib in patients pretreated with chemotherapy and a 
first-generation TKI has demonstrated a CNS dCR of 66% (67). A 
recent preclinical study has shown superior blood–brain barrier 
penetration of osimertinib compared to gefitinib, afatinib, and 
rociletinib (68). Sustained tumor regression in a murine brain 
metastases model has also been reported with osimertinib, doses 
of 80 mg in humans were predicted to target human brain metas-
tases using an adaptive pharmacokinetic/pharmacodynamics 
model (69). AZD3759 is an innovative EGFR TKI developed 
to penetrate the blood–brain barrier but does not have T790M 
activity. BLOOM (NCT02228369) is a study testing the safety 
and efficacy of osimertinib 160 mg/day and AZD3759 in NSCLC 
patients with leptomeningeal disease; early data have reported 
disease control in three-quarters of patients and responses in 7 
of 20 patients (70).

Osimertinib CNS activity was also confirmed in AURA and 
AURA2 (71). In the recently reported phase III study of osimer-
tinib versus platinum-pemetrexed doublet, a significant improve-
ment in PFS in patients with brain metastases was evident in the 
osimertinib group (8.5 versus 4.2  months; hazard ratio 0.32;  
95% CI, 0.21–0.49) (39).

ReSiSTAnCe TO THiRD-GeneRATiOn 
TKis AnD COMBinATiOn TReATMenT

C797S and Other EGFR-Dependent 
Mechanisms
The point mutation C797S in exon 20 represents the most com-
mon resistance mechanism identified in third-generation EGFR 
TKIs. Most third-generation TKIs use the site of the cysteine 
amino acid located at position 797 for covalent binding, and 
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TABLe 2 | Ongoing combination studies targeting resistance mechanisms.

Target Trial name Clinical trial 
identifier

Status

Epidermal growth factor  
receptor (EGFR)

EGFR inhibitor AZD9291 and necitumumab in treating patients with EGFR-positive stage IV or recurrent 
non-small cell lung cancer (NSCLC) who have progressed on a previous EGFR tyrosine kinase  
inhibitor (TKI)

NCT02496663 Recruiting

EGFR A study of ramucirumab (LY3009806) or necitumumab (LY3012211) plus osimertinib in participants  
with lung cancer

NCT02789345 Recruiting
Vascular endothelial  
growth factor (VEGF)

VEGF Osimertinib and bevacizumab as treatment for EGFR-mutant lung cancers NCT02803203 Recruiting

JAK1 An open-label phase 1/2 study of INCB039110 in combination with osimertinib in subjects with NSCLC NCT02917993 Recruiting

BCL-2 Osimertinib and navitoclax in treating patients with EGFR-positive previously treated advanced or 
metastatic NSCLC

NCT02520778 Recruiting

ABL1/SRC Dasatinib and osimertinib (AZD9291) in advanced NSCLC with EGFR mutations NCT02954523 Recruiting 

TORC1/2 TORC1/2 inhibitor INK128 and EGFR inhibitor AZD9291 in treating patients with advanced EGFR  
mutation-positive NSCLC after progression on a previous EGFR TKI

NCT02503722 Recruiting

MET Study of safety and efficacy of EGF816 in combination with INC280 in NSCLC patients with EGFR 
mutation

NCT02335944 Recruiting

PD-1 Study of efficacy and safety of nivolumab in combination with EGF816 and of nivolumab in combination 
with INC280 in patients with previously treated NSCLC

NCT02323126 Recruiting
MET
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the serine amino acid substitution reduces the capacity for TKI 
binding. Analysis of both plasma and tissue has confirmed this 
as a mechanism of resistance to osimertinib and olmutinib  
(72, 73). C797S as a cause of rociletinib resistance has been found 
to be much lower, but emergence of other uncommon EGFR 
mutations including L798I, L692V, and E709K have been impli-
cated (23). Interestingly in preclinical models, if the activating 
mutation (del19 or L858R) is retained in the presence of C797S 
but without T790M, the tumor remains sensitive to gefitinib or 
afatinib. If T790M is present, in vitro analysis has demonstrated 
partial cetuximab sensitivity (74). Cetuximab with EAI045, a 
novel EGFR resistance mutation selective allosteric inhibitor 
was also effective in a mouse model of the triple-mutant EGFR 
L858R/T790M/C797S (75). Necitumumab is also being trialed 
in combination with osimertinib (Table  2) (NCT02496663, 
NCT02789345). Notably, brigatinib with or without the combi-
nation of an anti-EGFR antibody has demonstrated activity in 
preclinical models for the “triple-positive” tumors (76). First- 
and third-generation TKIs may also be combined effectively, 
but this is only likely if the C797S and T790M mutations occur  
in trans (77). Other acquired EGFR mutations have been reported 
by Chabon et al. including L798I, L762V, and E709K (23). EGFR 
amplification and copy number alterations are also important 
resistance mechanisms.

RAS/RAF/MeK
Cell line studies have identified the RAS pathway as important in 
emerging osimertinib resistance, including mutations in NRAS 
as well as copy number gains. The BRAF V600E mutation is 
also a known acquired resistance mutation (78). The addition of 
selumetinib (MEK inhibitor) delayed and prevented resistance in 
preclinical models and tumor regression has been documented 
in an osimertinib-resistant transgenic mouse model (79). The 

TATTON phase 1b study is a three-arm trial of TKI naive and 
pretreated patients that includes combinations of osimertinib 
with selumetinib (AZD6094), savolitinib, a MET inhibitor, and 
durvalumab (NCT02143466).

MET Amplification
MET amplification as a cause for EGFR TKI acquired resistance 
has been described in case reports and crizotinib led to a response 
in one of these (80–82). In a further study of rociletinib resistance, 
MET amplification accounted for 26% of patients. Patient-derived 
xenograft models in this study were again successfully targeted 
using crizotinib (83). Notable in the xenografts and in the case 
report by Planchard et al., selective pressure permitted the emer-
gence of MET amplifications without detectable T790M suggest-
ing that MET may induce resistance to third-generation TKIs. 
Chabon et  al. also described the preexistence of co-occurring 
MET amplification with T790M, which correlated with inferior 
responses to rociletinib (23).

immunotherapy Combinations
Although immune checkpoint inhibitors have made huge 
advances in shifting the treatment paradigm in NSCLC, their role 
in EGFR-mutant disease is unclear. The third arm of TATTON 
investigated the combination of osimertinib with durvalumab 
and has reported early data (84). Patients were treated with 
osimertinib 80 mg daily with varying dosing and scheduling of 
durvalumab. In EGFR TKI naïve patients, the RR was 70% and in 
pretreated T790M-positive patients and T790M-negative patients 
RR was 67 and 21%, respectively. The combined rate of interstitial 
lung disease was 38% and as such this arm is currently on hold. 
Similarly, the CAURAL (NCT02454933) study investigating the 
durvalumab combination versus single-agent osimertinib has 
been halted due to toxicity concerns.
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Other Resistance Mechanisms
Other potentially targetable resistance mechanisms include 
HER2 amplification, FGFR1 amplification, and the PIK3CA 
E545K mutation. Epithelial to mesenchymal transition (EMT) 
and small cell transformation are also well recognized. Preclinical 
models have successfully targeted EMT with Akt inhibitors (40). 
Navitoclax, a BCL-2 inhibitor when combined with WZ4002, 
was shown to induce greater apoptosis than with the EGFR 
TKI alone (85). A phase 1b study is accruing (NCT02520778). 
Vascular endothelial growth factor (VEGF) and EGFR pathways 
are intimately related. The upregulation of VEGF receptors may 
be responsible for EGFR resistance and combination studies 
are ongoing (86) (Table 2). Early trials have already confirmed 
the benefit of dual inhibition with bevacizumab and erlotinib  
(87, 88). One small retrospective study has suggested the possibil-
ity of rechallenging with EGFR TKIs in addition to bevacizumab 
to gain further disease control (89).

FUTURe DiReCTiOnS

It is not just the complexity of resistance mechanisms that poses 
challenges to physicians treating the EGFR mutation-positive 

population. It is also unclear as to whether third-generation 
TKIs should be used in the first-line setting or should remain 
the option for T790M resistance in the second line. The results 
of the phase III FLAURA study which compares osimertinib 
to either gefitinib or erlotinib are awaited. The ADAURA study 
will also investigate the potential role of adjuvant osimertinib in 
stage IB–IIIA resected NSCLC with and without chemotherapy. 
The roadmap of resistance continues to grow and it is very likely 
that ctDNA analysis will at least complement if not replace 
repeat tumor biopsies in building the knowledge of resistance 
mechanisms. Studies have already demonstrated the emergence 
of T790M prior to radiographic changes but whether this should 
mean a switch in TKI is uncertain at present.
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