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Abstract

Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex 

responses to stimuli, yet such experiments are by nature constructed based on a priori hypotheses, 

limited to the set of images presented to the individual while they are in the scanner, are 

subject to noise in the observed brain responses, and may vary widely across individuals. In 

this work, we propose a novel computational strategy, which we call NeuroGen, to overcome 
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these limitations and develop a powerful tool for human vision neuroscience discovery. NeuroGen 

combines an fMRI-trained neural encoding model of human vision with a deep generative network 

to synthesize images predicted to achieve a target pattern of macro-scale brain activation. We 

demonstrate that the reduction of noise that the encoding model provides, coupled with the 

generative network’s ability to produce images of high fidelity, results in a robust discovery 

architecture for visual neuroscience. By using only a small number of synthetic images created by 

NeuroGen, we demonstrate that we can detect and amplify differences in regional and individual 

human brain response patterns to visual stimuli. We then verify that these discoveries are reflected 

in the several thousand observed image responses measured with fMRI. We further demonstrate 

that NeuroGen can create synthetic images predicted to achieve regional response patterns not 

achievable by the best-matching natural images. The NeuroGen framework extends the utility 

of brain encoding models and opens up a new avenue for exploring, and possibly precisely 

controlling, the human visual system.
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1. Introduction

Light rays reaching the retina are converted into bioelectrical signals and carried through 

the ophthalmic projections to the brain, where incoming signals are represented by 

corresponding neural activation patterns in the visual cortex (Wandell et al., 2007). The 

specific patterns of neural activation in response to visual stimuli are determined in part 

by the texture, color, orientation and content of the visual stimuli. The visual system has 

provided a rich model for understanding how brains receive, represent, process and interpret 

external stimuli, and has led to advances in understanding how the human brain experiences 

the world (Thorpe et al., 1996; Van Essen et al., 1992).

Much is known about how regions in the visual cortex activate in response to different 

image features or content. Our knowledge of stimulus-response maps has mostly been 

derived from identifying features that maximally activate various neurons or populations of 

neurons (Hubel and Wiesel, 1962; 1968). Non-invasive techniques such as functional MRI 

(fMRI), are now one of the most utilized approaches for measuring human brain responses 

to visual (and other) stimuli (Allen, 2021; Van Essen, 2013). The responses of early visual 

areas such as primary visual cortex (V1) have been studied using population receptive field 

(pRF) experiments wherein a participant fixates on a central dot while patterned stimuli 

continuously moved in the visual field (Wandell et al., 2007). Neurons in early visual areas 

have been found to be selective for stimulus location, but also other low-level stimulus 

properties such as orientation, direction of motion, spatial and temporal frequency (De 

Valois and De Valois, 1980; DeAngelis et al., 1995; Hubel and Wiesel, 2020; Movshon et 

al., 1978). Recently, intermediate visual areas, like V2 or V4, were found to be responsive 

to textures, curved contours or shapes (Nandy et al., 2013; Ziemba et al., 2016). Late visual 

area activations have typically been explored by contrasting response patterns to images 

with varied content, e.g. to faces, bodies, text, and places. For example, the fusiform face 
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area (FFA) (Kanwisher et al., 1997) involved in face perception, the extrastriate body area 

(EBA) (Downing et al., 2001) involved in human body and body part perception, and the 

parahippocampal place area (PPA) (Epstein and Kanwisher, 1998) involved in perception 

of indoor and outdoor scenes, have been defined by contrasting patterns of brain activity 

evoked by images with different content. However, this approach has several limitations: the 

contrasts 1) are constructed based on a priori hypotheses about stimulus-response mappings, 

2) are by nature limited to the set of images presented to the individual while they are in 

the scanner, 3) are subject to noise in the observed brain responses, and 4) may vary widely 

across individuals (Benson and Winawer, 2018; Seymour et al., 2018).

The recent explosion of machine learning literature has centered largely around Artificial 

Neural Networks (ANNs). These networks, originally inspired by how the human brain 

processes visual information (Rosenblatt, 1958), have proved remarkably useful for 

classification or regression problems of many types (Belagiannis et al., 2015; He et al., 

2016; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Toshev and Szegedy, 

2014). Common applications of ANNs are in the field of computer vision, including image 

segmentation (Girshick et al., 2014), feature extraction (Krizhevsky et al., 2012; Simonyan 

and Zisserman, 2014) and object recognition (Sermanet, 2013). Meanwhile, in the field 

of neuroscience, researchers have incorporated ANNs into “encoding models” that predict 

neural responses to visual stimuli and, furthermore, have been shown to reflect structure 

and function of the visual processing pathway (Cichy et al., 2016; Khaligh-Razavi and 

Kriegeskorte, 2014; Khosla et al., 2020; St-Yves and Naselaris, 2018a). Encoding models 

are an important tool in sensory neuroscience, as they can perform “offline” mapping of 

stimuli to brain responses, providing a computational stand-in for a human brain that also 

smooths measurement noise in the stimuli-response maps. ANNs’ internal “representations” 

of visual stimuli have also been shown to mirror biological brain representations of the 

same stimuli, a finding replicated in early, mid and high-level visual regions (Cadena, 2019; 

Yamins, 2014). This observation has led to speculation that primate ventral visual stream 

may have evolved to be an optimal system for object recognition/detection in the same way 

that ANNs are identifying optimal computational architectures.

An alternative approach to understanding and interpreting neural activation patterns is 

decoding, in which the stimulus is reconstructed based on its corresponding neural activity 

response pattern. The presence of distinct semantic content in natural movies, e.g. object 

and action categories, has previously been decoded from fMRI responses with high accuracy 

using a hierarchical logistic regression graphical model (Huth, 2016). Beyond semantic 

content, natural scenes and even human faces can be reliably reconstructed from fMRI 

using generative adversarial network (GAN) approaches (Mozafari et al., 2020; Shen et 

al., 2019; St-Yves and Naselaris, 2018b; VanRullen and Reddy, 2019). Encoding and 

decoding models, in conjunction with state-of-the-art generative networks, may also allow 

single neuron or neural population control. Recent work in macaques used an ANN-based 

model of visual encoding and closed-loop physiological experiments recording neurons to 

generate images specifically designed to achieve maximal activation in neurons of V4; the 

resulting synthetic images achieved higher firing rates beyond what was achieveable by 

natural images (Bashivan et al., 2019). Moreover, by adopting a pretrained deep generative 

network and combining it with a genetic algorithm, realistic images were evolved to 
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maximally activate target neurons in monkey’s inferotemporal cortex (Ponce, 2019). Both 

studies’ results suggested the synthetic images un-covered some encoded information in 

the observed neurons that was consistent with previous literature, and, furthermore, that 

they evoked higher responses than any of the natural images presented. One recent study 

applied generative networks to synthesize preferred images for functionally-defined regions 

of interest in the human brain, specifically FFA, EBA and PPA, and were able to replicate 

regional category selectivity (Ratan Murty et al., 2021). However, generative networks have 

not yet been applied to investigate 1) inter-individual and inter-regional differences in image 

features that maximize activation in single regions of the human visual cortex or 2) image 

features that are designed to achieve more complex optimizations of activation patterns over 

multiple regions of the human visual cortex.

In this work, we build upon three recent advances in the literature. The first is the existence 

of the Natural Scenes Dataset (NSD), which consists of densely-sampled fMRI in eight 

individuals who each participated in 30–40 fMRI scanning sessions in which responses to 

9,000–10,000 natural images were measured (Allen, 2021). The second is in an interpretable 

and scalable encoding model, based on the NSD data, that performs accurate individual-

level mapping from natural images to brain responses (St-Yves and Naselaris, 2018a). The 

third is in the development of generative networks which are able to synthesize images 

with high fidelity and variety (Brock et al., 2018; Nguyen et al., 2016). Here, we propose 

a state-of-the-art generative framework, called NeuroGen, which allows synthesis of images 

that are optimized to achieve specific, predetermined brain activation responses in the human 

brain. We then apply this framework as a discovery architecture to amplify differences in 

regional and individual brain response patterns to visual stimuli.

2. Materials and methods

2.1. Natural scenes data set

We used the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org (Allen, 2021) to 

train the encoding model. In short, the NSD dataset contains densely-sampled functional 

MRI (fMRI) data from 8 participants collected over approximately a year. Over the course 

of 30–40 MRI scans, each subject viewed 9,000–10,000 distinct color natural scenes 

(22,000–30,000 trials with repeats) while undergoing fMRI. Scanning was conducted at 

7T using whole-brain gradient-echo EPI at 1.8-mm iso–voxel resolution and 1.6s TR. 

Images were sourced from the Microsoft Common Objects in Context (COCO) database 

(Lin, 2014), square cropped, and presented at a size of 8.4° × 8.4°. A set of 1000 images 

were shared across all subjects; the remaining images for each individual were mutually 

exclusive across subjects. Images were presented for 3s on and 1s off. Subjects fixated 

centrally and performed a long-term continuous recognition task on the images in order to 

encourage maintenance of attention. The fMRI data were pre-processed by performing one 

temporal interpolation (to correct for slice time differences) and one spatial interpolation (to 

correct for head motion). A general linear model (GLM) was used to estimate single-trial 

beta weights, representing the voxel-wise activation in response to the image presented. 

Specifically, there are three components in the GLM: first, a library of hemodynamic 

response functions (HRFs) derived from an initial analysis of the dataset was used as 
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an efficient and well-regularized method for estimating voxel-specific HRFs; second, the 

GLMdenoise technique (Charest et al., 2018; Kay et al., 2013) was adapted to the single-

trial GLM framework, thereby enabling the use of data-driven nuisance regressors; third, an 

efficient ridge regression (Rokem and Kay, 2020) was used to regularize and improve the 

accuracy of the betas. Cortical surface reconstructions were generated using FreeSurfer, and 

both volume- and surface-based versions of the response maps were created.

In addition to viewing the COCO images, individuals all underwent the same image 

functional localizer (floc) task to define the visual region boundaries (Stigliani et al., 2015). 

In short, regions of interest were defined by contrasting activation maps for different types of 

localizer images (floc-bodies, floc-faces, floc-places, floc-words). Several regions exhibiting 

preference for the associated category were defined (e.g., floc-faces was based on t-values 

for the contrast of faces>non-faces). Regions were defined by drawing a polygon around 

a given patch of cortex and then restricting the region to vertices within the polygon that 

satisfy t>0. See Supplementary Figure S10–18 for the 8 individuals’ early and late visual 

region maps, along with quantification of the regions’ overlaps using Dice coefficient.

2.2. Deepnet feature-weighted receptive field encoding model

We trained a Deepnet feature-weighted receptive (fwRF) encoding model (St-Yves and 

Naselaris, 2018a) using the paired NSD images and fMRI response maps described above. 

Here, instead of the voxel-wise model previously created, we trained a model for each of the 

24 early and late visual regions for each of the 8 individuals in the NSD dataset that predicts 

a single number - the average response over the voxels in that region for that individual. 

There are three components in the Deepnet-fwRF model: K feature maps, a vector of feature 

weights wk, and a feature pooling field. The output of each fitted encoding model is the 

predicted activation r  for a given region for a given individual in response to an image S:

r(S) = ∑
k

K
wk∫−D/2

D/2∫−D/2
D/2

g x, y; μx, μy, σg fi(x)j(y)
k (S)d xd y

where wk is the feature weight for k th feature map fk, g is the feature pooling field 

(described below), D is the total visual angle sustained by the image, i(x) = ⌊(2x + D)/2Δ⌋ 
(likewise for j(y)) is the discretization depending on Δ = D/nk which is the visual angle 

sustained by one pixel of a feature map with resolution, and nk × nk is the resolution of kth 

feature map.

The feature maps fk were obtained from Alexnet (Krizhevsky et al., 2012), a deep 

convolutional neural network containing 5 convolutional layers (interleaved with max-pool 

layers) and 3 fully-connected layers. AlexNet was originally trained for classification of 

images in ImageNet (Russakovsky, 2015), and is often used to extract salient features from 

images. The exact structure and trained network can be downloaded as part of the Pytorch 

library, and is also available at https://github.com/pytorch/vision/blob/master/torchvision/

models/alexnet.py. The feature maps can be drawn from all convolutional layers and fully-

connected layers in Alexnet. To limit the total number of feature maps, we first set the 
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maximum feature maps for each layer to 512. For those layers whose dimension exceeded 

512, we calculated the variance of the layer values across the image set and retained those 

512 feature maps with the highest variance. We then concatenated the selected feature maps 

having the same spatial resolution, which resulted in three feature maps of size (256, 27, 27), 

(896, 13, 13) and (1536, 1, 1).

The fwRF model was designed based on the hypothesis that the closer the feature map pixel 

is to the center of the voxel’s feature pooling field, the more it contributes to the voxel’s 

response. We also assume this is the case for clusters of voxels (regions in our case). The 

feature pooling field was modeled as an isotropic 2D Gaussian blob:

g x, y; μx, μy, σg = 1
2πσg

exp −
x − μx

2 + y − μy
2

2σg2

where μx, μy are the feature pooling field center, and σg is the feature pooling field radius. 

The feature pooling field center and radius were considered hyperparameters and learned 

during training of the encoding model. By definition, when the radius of the feature pooling 

field is very large (e.g. σg ≫ Δ), the predicted activation from a single layer reduces 

to a weighted sum of all pixels within the field; otherwise, it reduces to just one single 

spatial unit. In experiments, the grid of candidate receptive fields included 8 log-spaced 

receptive field sizes between 0.04 and 0.4 relative to 1/nk, and the candidate feature pooling 

field centers were spaced 1.4 degrees apart (regardless of size), resulting in a total of 875 

candidate feature pooling fields. We searched the regularization parameter over 9 log-spaced 

values between 103 ~ 107 and chose the one that had the best performance on the held-out 

validation set of 3000 images.

Each of the 2688 image feature maps has an associated feature weight, wk, indicating how 

important the kth feature map was for predicting that region’s activity. Once the feature 

pooling hyperparameters were determined, a set of feature weights were then learned via 

ridge regression for each visual region in each of the 8 individuals. Since the images that 

each individual viewed were different and the individuals had a slightly different number of 

image-activation pairs, we used the individual-specific images for training and validating the 

ridge models and tested the ridge models on the shared 1000 images where we calculated 

the predicted accuracy. During training, 3000 randomly selected image-activation pairs were 

held-out and used as a validation set with which to identify the optimal hyperparameters, 

namely those that maximized the prediction accuracy within this validation set.

2.3. The BigGAN-deep image generator network

We used the generator from BigGAN-deep, a pretrained deep generative adversarial 

network (GAN), utilizing the ImageNet image set, whose goal is to synthesize images 

of a given category that look natural enough to fool an automated fake/real classifier 

(Brock et al., 2018). The BigGAN-deep was built upon the self-attention GAN (SAGAN) 

(Zhang et al., 2019) with some differences: i) a shared class embedding was used for the 

conditional BatchNorm layers to provide class information, ii) the entire noise vector z was 
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concatenated with the conditional vector to allow the generator G to use the latent space 

to directly influence features at different resolutions and levels of hierarchy, iii) the noise 

vector z was truncated by resampling the values with magnitude above a chosen threshold to 

fall inside that range instead of using a Normal or Uniform distribution and iv) orthogonal 

regularization was used to enforce the models’ amenability to truncation. BigGAN-deep’s 

truncation threshold controls the balance of fidelity and variety of the synthetic images: 

larger thresholds lead to higher variety but lower fidelity images while lower thresholds 

lead to higher fidelity images of lower variety. In our experiments, the truncation parameter 

was set to 0.4 to achieve a balance of both fidelity and variety. The PyTorch version of 

the pretrained model can be publicly downloaded at https://github.com/huggingface/pytorch-

pretrained-BigGAN.

2.4. Synthesizing images to optimize regional predicted activation

We aimed to synthesize images using our generator network G that either maximized 

the activation in single or pairs of regions or maximized activation in one region while 

minimizing activation in another region, depending on the experiment. For the sake 

of simplicity, we will describe the optimization procedure using the example goal of 

maximizing activation in a single region. Because our generator network (BigGAN-deep) 

is a conditional GAN, it requires identification of an image class via a one-hot encoded class 

vector c, then uses a noise vector z to generate an image of that class. We performed the 

optimization in two steps; first, we identified the 10 most optimal classes, then, for each 

class we optimized over the noise vector space. To identify optimal classes, we generated 

100 images from each of the 1000 classes in the ImageNet database using 100 different 

random noise vectors. We input the resulting images into the encoding model to obtain 

associated predicted regional activation, which was averaged over the 100 images per class. 

The 10 classes that gave the highest average predicted activation for the region of interest 

were identified and encoded in ci (i = 1, …10), and corresponding image generator noise 

vectors zij (i = 1, …10, j = 1, …10) were further optimized via backpropagation with 

10 random initialization seeds per class. The result of this optimization is a set of 100 

images G(ci, zij) that yielded maximal predicted activation of the target region. Formally, and 

including a regularization term, we posed the optimization problem as finding the codes zij
such that:

zij ci = argmax
zij

rt G ci, zij − λ zij

where λ = 0.001 was the regularization parameter. For the maximization/minimization of 

region pairs, the cost function aimed to maximize/minimize the sum of the two regions’ 

activations together, with both regions considered equally. For the maximization of one 

region and the minimization of the other, the cost function was the sum of the max and min, 

with both regions considered equally. Once this optimization was performed, we selected the 

top 10 images by taking the most optimal image from each of the 10 distinct classes.
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3. Results

3.1. Encoding models accurately map images to brain responses and remove noise 
present in fMRI activation maps

First, subject and region-specific encoding models were built using the Deepnet-fwRF 

framework (St-Yves and Naselaris, 2018a) and the NSD data, which contained between 20k 

to 30k paired images and fMRI-based brain response patterns for each of eight individuals 

(Fig. 1A) (Allen, 2021). Other than a shared set of 1000, the images were mutually exclusive 

across subjects. The encoding models first extract image features using AlexNet, a pre-

trained deep neural network for image classification (Krizhevsky et al., 2012). The encoding 

model then applies a 2D Gaussian pooling field to the image features to obtain a set of 

multi-scale feature maps. Ridge regression is used in the final step to predict individual 

regional activations (which is the average activation over all voxels within that region) from 

the multi-scale feature maps. For each of the eight subjects, we trained a separate model for 

each early/late visual region, of which there were at most 24. Regions were defined using 

functional localizer tasks (Allen, 2021) and some were missing in certain individuals.

To objectively evaluate the regional encoding models’ predictive abilities, we compared their 

prediction accuracies against the reliability of repeated fMRI measurements of responses to 

the same image as a noise ceiling estimate. A region’s observed and predicted activations are 

the mean of those quantities over all voxels in that region. We first selected the images in the 

held-out shared image set that were viewed twice by each subject, totalling between 700–

1000 images per person (see Supplementary Figure S1 for the prediction accuracy for all 

images, including repeats, in the held-out shared image set). Model prediction accuracy was 

calculated as the Pearson correlation between the predicted activation for images that viewed 

twice with their measured fMRI responses, where the two repeated responses/predictions 

per image were concatenated. Note that the measured responses are different for the two 

repeats of the same image, but the predictions are the same. The noise ceiling was calculated 

by correlating the two measured fMRI responses for the same set of images (see Fig. 

2A). Distributions of the prediction accuracies and noise ceilings for each subject and 

each region’s encoding models are shown in Fig. 2B–F; the prediction accuracy and noise 

ceiling for the same subject are connected by a dashed line. Generally, regions with higher 

noise ceilings had higher accuracies. In all cases, prediction accuracies were greater than 

noise ceilings, reflecting the noise in fMRI measurements as well as the good predictive 

performance of the encoding models.

One approach we explore here is to assume that images with similar predicted responses 

can be treated as repeated measurements under similar conditions. Thus, we first rank-order 

the images in the held-out shared image set by their predicted activations, then apply 

non-overlapping windows of fixed size to group the images. We then average the predicted 

and measured responses within these windows and calculate the Pearson correlation of 

the two resulting averages across all windows, see Fig. 3A. As the window size in the 

smoothed accuracy calculation increases, the correlation also increases (see in Fig. 3B–F), 

thus validating the noise-smoothing ability and relatively high accuracy of the encoding 

model. It is clear from this analysis that the encoding model accuracy estimates are limited 
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by the noise present in the fMRI measurements. For comparison in the null case of no 

correlation between predicted and measured responses, we calculated the smoothed accuracy 

when the measurement-response pairs were uncoupled (see Supplementary Figure S2 for the 

smoothed accuracy calculations when the predicted activation vector is randomly permuted).

3.2. Optimized synthetic images more consistently align with expectations of regional 
feature selectivity than natural images.

After validating the encoding model, we sought to generate images whose predicted 

activation optimally achieved certain criteria, e.g. had a maximal predicted activation in 

OFA (as quantified by the average activation over all voxels in the OFA). A conditional 

deep generative network (BigGAN-deep), based on the diverse set of natural images in 

ImageNet, was adopted as NeuroGen’s synthetic image generator. By constructing the 

activation maximization scheme (Fig. 1B), which connects the encoding model and the 

image generator, gradients flowed from the regional predicted activation back to the noise 

vector to allow optimization. Because BigGan-deep is conditional, the class of the image is 

identified prior to synthesis which allows generation of more realistic synthetic images. We 

began optimization by first identifying the top 10 classes that gave the best match to our 

desired activation pattern. Once the top 10 classes were identified, the noise vector was then 

fine-tuned as previously described. We began by using this NeuroGen framework to generate 

images that give maximal predicted activation for a single region in turn. Fig. 4A–E, shows 

the i) 10 natural images that had highest measured fMRI activation (top row) ii) 10 natural 

images that had the highest predicted activation from the encoding model (middle row) 

and iii) the 10 synthetic images optimized to achieve maximal predicted activation from 

the encoding model (bottom row) for a subject whose encoding model prediction accuracy 

was closest to the median accuracy. Word clouds representing the semantic content of all 

the top 10 images from the three sources are also provided by collecting the labels from 

the natural images and obtaining labels for the synthetic images using an automated image 

classifier (Ren et al., 2015). The images and word clouds largely show alignment with 

expected image content and agreement across the three sources; however, when looking at 

the individual images, the content and features of both the natural and synthetic images with 

highest predicted activations are more aligned with a priori expectations than the content 

and features of images with highest measured activations. For example, the images with the 

highest observed activation include a giraffe for the face area, a zebra for the body area 

and many of the word area top images do not contain text. We posit that this is due to the 

encoding model predictions being less noisy than fMRI measurements.

We do see a general agreement in the content/features of the synthetic images with what 

is expected from how the regions are defined. For FFA1 (face), the top 10 classes varied 

across individuals but were generally those that produced optimized images with human 

faces (ImageNet categories are terms like groom, mortarboard, shower cap, ice lolly, bow 

tie etc.) or dog faces (ImageNet categories were Pembroke, Basenji, Yorkshire terrier, etc.); 

the wordcloud reflects this as “person” is the dominant term. One interesting thing to note 

when comparing the natural and synthetic images for FFA1 is that the synthetic images tend 

to contain more than one person’s face. Most of the top ImageNet classes for EBA (body) 

were sports-related (rugby ball, basket ball, volleyball, etc.) and the resulting images’ most 
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prominent features were active human bodies; the wordcloud again prominently features 

“person” but also sport-related terms. Typical indoor and outdoor place scenes emerged for 

place area PPA (wordcloud contained “dining table”, “chair”, “bed”, etc.) and images with 

objects and/or places containing text were generated for word area mfs-words (wordcloud 

contained “book”, “bottle” and “truck”). Synthetic images with high spatial frequency 

and color variety were produced when maximizing V1v (early visual), which generally 

responds to low-level image features such high frequency textures. In addition to the good 

agreement of the content and features of the optimized synthetic images with expectations, 

they are also predicted by the encoding model to achieve significantly higher activation 

than the top natural images (see Supplementary Figure S7). In fact, for all single region 

optimizations (over all 8 subjects and 24 regions), the synthetic images had significantly 

higher predicted activations than the top natural images. Supplementary Video S1 shows a 

video of the sets of top natural and synthetic images for all 8 individuals, for all 24 regions; 

Supplementary Figures S3–6 for wordclouds for all regions. Looking across all single region 

optimizations, there were some obvious differences in image content/features that emerged 

across individuals within the same region and within the same individual across regions in 

the same perception category, some of which we investigate further below. These results 

provide evidence that the NeuroGen framework can produce images that generally agree in 

content and features with a priori knowledge of neural representations of visual stimuli, and 

may be able to amplify differences in response patterns across individuals or brain regions.

3.3. Optimized synthetic images reflect and amplify features important in evoking 
individual-specific and region-specific brain responses

One deviation in the content of the synthetic images from what was generally expected 

was the prevalence of dogs in all the five of face regions we modeled; 96 of the 350 top 

images (10 top images × 8 individuals × 5 face areas - 10 × 5 missing subjects’ face 

areas) were of dog faces and 219 were of human faces. We observed some individuals’ 

top 10 synthetic images all contained dogs while others had none. This imbalance also 

varied by brain region, one individual could have all synthetic images containing dogs for 

one face region while they would have fewer in another face region (see Supplementary 

Video S1). This apparent region- or individual-specific dog versus human preference was 

not apparent from the content of either the top 10 natural images giving highest observed 

or predicted activations. Figure 5A–C, show all eight subjects’ 10 natural images with the 

highest measured activation, 10 natural images with the highest predicted activation and 10 

synthetic images, respectively, for an example face area (FFA1). For subject 3, nine out of 

ten synthetic images contain human faces, with only one dog. On the other hand, subject 4 

had eight dog images, one human and one lion. Frequency based wordcloud plots of the top 

10 synthetic images’ labels for all individuals for each of the five face areas are shown in 

the third row of Fig. 6. The wordclouds confirm the regionally-varying prevalence of dogs 

in NeuroGen’s synthetic images, which is not obvious from looking at either of the natural 

image wordclouds. We hypothesized that this individually and regionally varying dog/human 

preference in the synthetic images may be reflecting the actual underlying preferences in 

the data. To test this hypothesis, we calculated 1) the t-statistic of the measured fMRI 

activation from dog images (images in the NSD dataset that had a single label “dog”) and 

the measured fMRI activation from images of humans (images in the NSD dataset that 
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had a label “person” and any of the following: “accessory”, “sports”) and 2) the top 10 

and top 100 synthetic images’ dog vs human image ratios, calculated as ((number of dog 

images - number of person images)/(number of dog images + number of person images)). 

We calculated these two measures (dog vs. person t-stat and synthetic image ratio) for all 

eight individuals and all five face ROIs (see Fig. 5D). We found a significant correlation 

between the t statistic and image ratios for NeuroGen’s top 10 synthetic images (Spearman 

rank r = 0.6681, p = 1.157e − 5); this correlation was even higher when considering 

NeuroGen’s top 100 synthetic images (Spearman rank r = 0.7513, p = 1.987e − 7), see 

Supplementary Figure S8. Correlations with the top 10 natural images from the encoding 

model and fMRI measurements were also significant, but not as strong as the top 10 

synthetic images correlation (Spearman rank r = 0.4468, p = 7.126e − 3 and r = 0.2948, 

p = 0.086), respectively. These results show that previously identified “face” regions in 

the human visual cortex also respond robustly to dog faces, and, furthermore, that the dog/

human balance in response patterns varies across individuals and brain regions. These results 

highlight NeuroGen’s potential as a discovery architecture, which can be used to amplify 

and concisely summarize (even with only 10 images) region-specific and individual-specific 

differences in neural representations of visual stimuli.

Another unexpected observation of individual and regional variability was found in the word 

areas. Because the images in NSD are natural, they do not solely contain text; therefore 

many of the top natural and synthetic images for the word-preferred regions contained 

objects or scenes with integrated text (scoreboard, packet, cinema, bottle cap, sign, etc.), 

see Fig. 7. However, images with integrated text were only a portion of the word form area 

top images; many also contained humans, dogs, cats, birds, other animals, food and clocks. 

We aimed to test if the content of the synthetic images from NeuroGen could accurately 

reflect underlying patterns in the measured activation data, even when considering several 

categories of images. Therefore, we calculated the proportion of each individual’s top 10 

images that contained objects in each of the six categories of interest (humans, dogs, birds, 

other animals, food and clocks) for each of the top 5 word areas. These six categories 

of interest were selected based on the most common categories in the top 10 synthetic 

images across all 5 word form areas. We then correlated each individual’s synthetic image 

proportions with their t-statistic of measured activation for images containing that target 

object (and not any objects in the other 5 categories) contrasted against the measured 

activation for all images not containing that object. Categories were included for a given 

word form area’s analysis if there existed at least 10 images of that category out of the 

240 total top natural or synthetic images for that region (8 individuals × 10 images × 3 

sources). Figure 7D shows the scatter plot of the image proportions versus the t-statistic 

giving the activation contrast for synthetic images of a given category (indicated by color) 

for the various word form regions (indicated by shape), which were significantly correlated 

(Spearman rank r = 0.557, p = 2e − 15). The proportion of the 10 natural images with 

highest encoding model predicted activation and highest measured activation via fMRI had 

a somewhat weaker but still significant correlation (Spearman rank r = 0.4545, p = 3.781e 
− 10 and Spearman rank r = 0.1897, p = 0.0127, respectively). These results again highlight 

the utility of NeuroGen as a discovery architecture that can concisely uncover, even across 
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several categories of images at once, neural representation variability across individuals and 

brain regions within an individual.

3.4. Optimized synthetic images have more extreme predicted co-activation of region-
pairs than natural images

The NeuroGen framework is flexible and can be used to synthesize images predicted to 

achieve an arbitrary target activation level for any or all of the 24 regions for which we have 

encoding models. We now provide examples of two-region and three-region optimization; 

specifically, we aimed to create synthetic images that jointly maximize and/or minimize 

predicted activation in the target regions together. For example, two region optimization 

could either be joint maximization (+ROI1+ROI2), or joint maximization of one region and 

minimization of the other, or maximizing (+ROI1−ROI2 or −ROI1+ROI2). Figure 8 shows 

the results of three example two region optimizations for subject 8’s A) FFA1 (face) and 

V1v (early visual) regions, B) PPA (place) and V1v (early visual) regions, C) FFA1 (face) 

and PPA (place) regions, and one example of three region optimization (FFA1, PPA and 

V1v). When jointly maximizing FFA1 or PPA with V1v, NeuroGen’s synthetic images are 

of places or faces with an abundance of texture (e.g. comic book, steel drum and kimono 

labels for FFA1 and toy shop, bookstore, slot labels for PPA). Alternatively, when jointly 

maximizing FFA1 or PPA and minimizing V1v, we see human/dog faces or places/indoor 

scenes with flat, non-textured colors in both the foreground and background (e.g. neck 

brace, ice lolly and bikini for FFA1 and beacon, pier, container ship labels for PPA). Natural 

images show a similar pattern, although they are not as obvious and appear less consistent 

(see Supplementary Figure S9). In addition, we see that the top 10 optimized synthetic 

images generally had significantly more extreme predicted activation values in the desired 

direction than the top 10 natural images for most cases (see Fig. 8 and Supplementary Figure 

S9). Both the two- and three- region optimizations demonstrate the synthetic images push 

the predicted activations past the boundaries of the natural image activations; there is a clear 

separation of the orange and blue points representing these values. These results demonstrate 

that the NeuroGen framework can be applied to create synthetic images predicted to achieve 

optimized activation in more than one region at the same time; the example synthetic images 

provided align with expectations from prior knowledge. Furthermore, they suggest that the 

benefit of NeuroGen’s synthetic images over natural ones in terms of pushing the predicted 

activation levels to those not achievable by natural images.

4. Discussion

Here, we introduce NeuroGen, a novel architecture designed to synthesize realistic images 

predicted to maximize or minimize activation in pre-selected regions of the human visual 

cortex. NeuroGen leverages three recent scientific advances: 1) the development of encoding 

models that can accurately predict brain responses to visual stimuli (St-Yves and Naselaris, 

2018a), 2) in deep generative networks’ abilities to synthesize high-fidelity and variety 

images (Brock et al., 2018) and 3) in the recent curation of the Natural Scenes Dataset 

(NSD), which consists of tens of thousands of paired images and human brain responses 

(Allen, 2021). We showed that encoding models trained on the NSD data could accurately 

maps images to their neural representations in individual subjects, and, importantly, that the 
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encoding model smooths noisy measured fMRI response maps. Once the encoding model 

was validated, we used the NeuroGen framework to concisely amplify and reveal individual 

and regional preferences for certain image types. We began by using NeuroGen to create 

synthetic images that were predicted to maximize a single region’s activation response. The 

resulting synthetic images agreed with expectations from previous knowledge of regional 

neural representations of visual stimuli and, furthermore, the predicted activations from 

synthetic images were significantly higher than from natural images. Once NeuroGen 

was validated, it was used as a discovery architecture to uncover region-specific and 

individual-specific visual cortex response patterns. Our main discovery was a remarkable, 

previously not well-described balance of dog-human preferences in face areas that both 

varied across face regions and individuals. The synthetic image human/dog preference ratios 

were validated by showing strong, significant correlations with dog/human preference ratios 

calculated by contrasting measured fMRI activations in response to thousands of dog and 

human images. Secondly, we used the NeuroGen framework to show that the content of 

images preferentially activating word form areas were of a wide variety, including humans, 

dogs, birds, other animals, clocks, food and more. Despite the fact that several categories 

of images were represented in the word form areas, we again validated the top 10 synthetic 

image ratios by showing significant correlations with underlying preferences extracted by 

contrasting measured fMRI activations in response to hundreds of images. Finally, we 

extended the single region analysis to demonstrate the capacity of the NeuroGen framework 

in optimizing activation for two or three regions at a time. We found that these two- and 

three-region optimizations not only produced images that agreed with expectations, but also 

provided significantly more extreme predicted activations than natural images, above and 

beyond the activation levels observed in response to the best-matching natural images. Taken 

together, these results validate and demonstrate that the NeuroGen framework can create 

new hypotheses for neuroscience and thus facilitate a tight loop between modeling and 

experiments, and thus is a robust and flexible discovery architecture for vision neuroscience.

The visual system provides an excellent model with which to understand how organisms 

experience the environment. Mapping the visual system’s neural representations of external 

stimuli has often centered around identifying features that maximally activate various 

neurons or populations of neurons (Hubel and Wiesel, 1962; 1968). This “activation 

maximization” approach, more commonly called the tuning curve approach, has lead to 

discoveries of visual regions that selectively respond to specific patterns (Kobatake and 

Tanaka, 1994; Wandell et al., 2007) or images with a certain content, most prominently, 

faces (Kanwisher et al., 1997; Tsao et al., 2006), places (Epstein and Kanwisher, 1998), 

bodies (Downing et al., 2001; Popivanov et al., 2014) and visual words (Baker, 2007). 

This “activation maximization” approach using in vivo measurements is by nature limited 

to the stimuli presented while observing responses, which is in turn biased by a priori 
hypotheses. There may be more complex, obscure stimuli-response maps that exist (for 

example, perhaps, to images of a dog riding a bicycle) but are not tested due to our limited 

imaginations or the lack of representation of that type of image in natural image sets. In 

addition, fMRI can be very noisy, and response maps to a handful of images (or even 

hundreds of them) are quite noisy even within an individual, let alone across the population. 

Encoding models that can perform “offline” mapping of stimuli to brain responses can 
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provide a computational stand-in for a human brain that also smooths measurement noise 

in the stimuli-response maps. NeuroGen’s framework that couples the benefits of encoding 

models with recent advances in generative networks in creating naturalistic-looking images, 

may prove to be an advance in discovery neuroscience that is more than the sum of its parts.

Only a few previous studies have used generative networks to create synthetic images 

made to achieve activation maximization of single neurons or populations of neurons in 

non-human primates. Both used closed-loop physiological experimental designs to record 

and optimize neuronal responses, e.g. maximize firing rates, to synthetic images (Bashivan 

et al., 2019; Ponce, 2019). One synthesized images by directly optimizing in image space 

using an ANN model for the brain’s ventral visual stream (Bashivan et al., 2019), and 

the other synthesized images in code space via a genetic algorithm to maximize neuronal 

firing in real time (Ponce, 2019). Both of these studies successfully demonstrated that single 

neurons or neuronal populations in monkeys can be controlled via optimization of synthetic 

images using generative networks. One difference in our framework, other than the species 

in question, is the use of a conditional generator network that requires the identification of 

an image class before synthesis. We wanted our framework to synthesize images that were 

as natural-looking as possible for two reasons: because our encoding model was trained on 

natural images and because future work will include presentation of these synthetic images 

to humans while they are undergoing fMRI to test if they achieve activation above and 

beyond the best natural images. One recently published work in humans used a similar 

approach to NeuroGen to synthesize images designed to achieve maximal activation in one 

of three late visual regions (FFA, EBA and PPA) to validate category selectivity of these 

regions (Ratan Murty et al., 2021). Our approach is different from theirs in many ways, most 

importantly that our focus is on individual-level and region-level differences in category 

preference (with which we make some interesting observations that reflect underlying data) 

and, further, our interest in creating synthetic images designed to achieve optimal activity 

(either maximized or minimized) in multiple regions at once.

Our main discovery using the NeuroGen architecture was a previously not well-described 

balance of dog-person preference in face areas, which varied over individuals within the 

population and regions within an individual. After inspecting the content of the top 10 

images from NeuroGen, we noted an abundance of dog faces in addition to human faces 

that was not obvious in the top 10 natural images with the highest measured or predicted 

activation; this was also apparent from looking at the face regions’ wordclouds. We showed 

that the dog-human preference ratio observed in NeuroGen’s synthetic images was reflected 

in the underlying data by observing a strong, significant correlation with the t-statistic of 

the measured activation (via fMRI response) from dog images versus human images. One 

idiosyncrasy of the ImageNet data used to train our generative network is its prevalence of 

dogs; 120 out of the approximately 1000 ImageNet classes are dog breeds and, furthermore, 

dog images in ImageNet generally feature close-ups of dog’s faces. This over-representation 

of dogs in the ImageNet database could have biased NeuroGen to more easily identify and 

amplify any existing dog-human preferences in the underlying data. In addition, measured 

contrasts for some regions in some individuals showed a clear preference for dog faces 

over human faces (t-statistic > 4), which we conjecture could be due to either differences 

in visual attention between the two categories or the fact that the NSD “person” images 

Gu et al. Page 14

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used to calculate the contrast are not all close-ups of human faces while the dog images 

do tend to be close up dog faces. As the face ROIs were derived based on the t values 

of activation contrast for face>non-face images, it may alter our dog v human findings 

when the threshold for t varies and/or when a more restrictive contrast is applied (e.g. 

face>objects). However, one can imagine if the ROI definition for face selectivity became 

less restrictive, you would see a drop in the number of human faces and an increase of 

non-face images. The fact that we are specifically observing dog images indicates that it 

is not an effect of reduced selectivity of the face ROI, unless that reduction happened to 

encompass regions that were dog-face selective. There have been a few previous works 

investigating humans’ face-processing areas’ responses to images of human versus animal 

faces (Downing et al., 2006; Whyte et al., 2016). One of the first studies showed that human 

face areas respond to mammals, although at a population level, the activation in response to 

mammals was not stronger than responses to humans (Downing et al., 2006). Another study 

found that face areas in adolescents with high functioning autism had a weaker response 

to unfamiliar human, but not animal, faces and greater activation in affective face regions 

in response to animal, but not human, faces compared to typically developing adolescents 

(Whyte et al., 2016). One of the few studies comparing humans’ neural representations 

of dog faces and human faces showed very similar response maps to both species, with 

lingual/medial fusiform gyri being the only region having higher activations for dog over 

human faces (Blonder, 2004). We conjecture that differences in our findings may be due 

to their population-level approach to identifying differences in neural representations, as 

they used coregistered contrast maps to identify group-level, voxel-wise significance. We see 

that NeuroGen’s dog-human balance in response patterns varies widely over individuals and 

brain regions, indicating that population-level approaches may not be adequate for creating 

stimulus-response maps.

While humans’ neural representations of faces, places and bodies are generally robust 

across the population, it has been shown that word form responses can vary based on an 

individual’s experience (Baker, 2007; Kanwisher, 2010). Our findings generally revealed 

more divergence in the word form area preferred content across individuals than other 

categories of visual regions. This large individual-level variability in preferred image 

content, including images of several very different categories (humans, dogs, cats, birds, 

food, clocks), could be due to the effect of individual experience in forming the neural 

representations in these word form areas. On the other hand, these areas do tend to be quite 

small and more susceptible to noise in the measured activation patterns which were used 

to define the regions leading to more population-level divergence (Brett et al., 2002). The 

natural images in the NSD dataset used to create the encoding model also did not contain 

isolated text, which could further contribute to noise in applying the NeuroGen framework to 

word form areas. However, many of the synthetic images were derived from categories that 

contain items with text, including “odometer”, “comic book”, “book jacket”, “street sign”, 

“scoreboard”, “packet” and “pill bottle”. The word form regions did also overlap regions 

in other categories (see Supplementary Figure S10–18), including face and place areas. 

This overlap could explain the presence of dogs and humans (and possibly other mammals) 

but it does not explain, for example, the strong presence of food images in many of the 

individuals’ top images (see Fig. 5B). Despite these potential short-comings, using only 
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10 images, NeuroGen was able to reflect measured, underlying preferences across several 

categories for these complex and widely varying word form regions.

One of the advantages of the NeuroGen framework is its flexibility and capacity - one can 

provide an arbitrary target response map containing desired activation levels for any (or all) 

of the 24 brain regions that have encoding models and produce synthetic images that achieve 

that vector as closely as possible. As a simple example, we performed joint optimization 

of two or three regions, where we maximized and/or minimized their activations together. 

We chose to use V1v as one of the regions as this is known to activate in response to 

high-frequency patterns and results could be readily validated visually. Indeed we do see 

that when maximizing V1v and face/place areas, we get faces/places with an abundance of 

texture and when minimizing V1v we get places/faces with flat features. From looking at the 

scatter plots representing the synthetic and natural images’ predicted activations in Fig. 8, 

there is a clear separation of the two, where the synthetic images clearly push the predicted 

brain activations to levels not achievable by the best-matching natural images. This example 

application of NeuroGen highlights another advantage of this framework in that one could 

synthesize stimuli predicted to evoke response patterns not generally observed in response to 

natural images.

There are a few limitations in this work. First, the range of the synthetic images is 

constrained by the images on which the generative network is trained, in this case ImageNet. 

Any preferences that exist for image content or features in the encoding model that do 

not exist in the ImageNet database may remain obscured in NeuroGen. Second, the deep 

generative network has a parameter that controls the balance between fidelity and variety 

of the synthetic images produced. It could be that varying this parameter would provide 

more realistic images, but it may also result in images that do not have as extreme 

predicted activation and/or have less variety and thus contain less information about the 

underlying stimuli-response landscape. Third, the optimization of the synthetic images is 

done in two steps, by first selecting the top 10 image classes and then optimizing the 

noise vector in that image class space. The classes identified in the first step could be 

constraining the synthesizer so that it is not identifying a global optimum; however, this 

trade-off was deemed an acceptable sacrifice for the more natural-looking images provided 

by a conditional generator. Lastly, this study employed AlexNet but more recent studies 

have found that other recent state-of-the-art methods like ResNet (He et al., 2016) and 

VGG19 (Simonyan and Zisserman, 2014) can perform better in terms of neural predictivity. 

Exploring these architectures can also be useful in subsequent studies.

The NSD data on which the encoding model was trained is unsurpassed in its quality 

and quantity, consisting of densely-sampled fMRI in 8 individuals with several thousand 

image-response pairs per subject. Still, the natural images sourced from the COCO dataset 

used in the NSD experiments are inevitably limited in their content and features, which can 

mean possibly inaccurate brain-response mappings for images not used to train the encoding 

model. Additionally, when calculating preference ratios in the measured NSD data, it was at 

times difficult to choose the combination of image labels that produced the desired image 

content or features (e.g. only a person’s face). Relatedly, it is not always straightforward 

to classify the natural or synthetic images into the appropriate category; the word form 
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areas were particularly challenging. In addition, fMRI has many known sources of noise/

confounds such as system-related instabilities, subject motion and possibly non-neuronal 

physiological effects from breathing and blood oxygenation patterns (Liu, 2016). Careful 

design of the acquisition and post-processing pipeline for the NSD data mitigated these 

effects. Finally, the localizer task, while previously validated, may have some variability 

due to the contrast threshold applied. Using a more or less liberal threshold for the region 

boundary definition may result in different results than what is presented here. Different 

visual regions used in this work did have some overlap within certain individuals, which 

could have contributed to similarities in synthetic image content for regions of different 

categories. Supplementary Figure S10–18 show each individual’s regional definitions and a 

heatmap of the Dice overlap of regions from different categories for each individual.

To validate and demonstrate the capability of our novel NeuroGen framework, we present 

here as a proof-of-concept optimization of predicted responses in one, two or three regions. 

However, this optimization can be performed on an arbitrary desired activation pattern 

over any regions (or voxels) that have existing encoding models. Generative networks 

for creating synthetic images are an highly active area of research; specialized generators 

for faces or natural scenes could be integrated into the NeuroGen framework to further 

improve the range and fidelity of the synthetic images. Furthermore, the work presented 

here does not investigate the measured responses in humans to NeuroGen’s synthetic 

images. However, we believe that the current paper introducing and validating the NeuroGen 

framework and demonstrating its use in a discovery neuroscience context represents an 

important technical and conceptual contribution to the field. The idea that this type of 

synthetic generator coupled with an encoding model can be used to make discoveries about 

regional or individual-level selectivity to stimuli is itself a novel conceptual contribution, 

and the NeuroGen framework is a novel technical contribution whose utility is demonstrated 

here with examples. Future work will involve presentation of these synthetic images to 

individuals while undergoing fMRI to test if their responses are indeed more extreme than 

the best natural images. One hypothesis is that the synthetic images may command more 

attention, as it is clear they are not perfectly natural and thus may produce a more extreme 

response than natural images, as found in studies of single or neuronal population responses 

(Bashivan et al., 2019; Ponce, 2019). The other is that there may be some confusion about 

what the image contains or additional processing that an individual will undergo when 

interpreting the image that will result in an unpredictable pattern of response. If it can 

be demonstrated that synthetic images indeed produce activations matching a pre-selected 

target pattern, the NeuroGen framework could be used to perform macro-scale neuronal 

population control in humans. Such a novel, noninvasive neuromodulatory tool would not 

only be powerful in the hands of neuroscientists, but could also open up possible avenues for 

therapeutic applications.

5. Conclusions

The NeuroGen framework presented here represents a robust and flexible framework that 

can synthesize images predicted to achieve a target pattern of regional activation responses 

in the human visual cortex that exceeds that of predicted responses to natural images. 

We posit that NeuroGen can be used for discovery neuroscience to uncover novel stimuli-
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response relationships. If it can be shown with future work that the synthetic images actually 

produce the desired target responses, this approach could be used to perform macro-scale, 

non-invasive neuronal population control in humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Deepnet-fwRF encoding model and NeuroGen framework for synthetic image generation. A 
The deepnet-fwRF encoding model begins by passing an image through the Alexnet feature 

extractor, then applying a 2D Gaussian pooling receptive field to obtain multi-scale feature 

maps. Finally, ridge regression is applied to the multi-scale features to predict brain region-

specific responses to the image. B The deepnet-fwRF encoding model is concatenated 

with a pretrained conditional generative network (BigGAN-deep) to synthesize images that 

are predicted to optimally match a desired response pattern (e.g. maximizing predicted 

activation in the fusiform face area). The optimized synthetic images are created in three 

steps. First, a single image for each of the 1000 classes in the conditional GAN is created 

from an initial truncated Gaussian noise vector; the resulting images are provided to the 

encoding model to obtain their predicted activation responses. Second, the 10 classes that 

give the predicted activation best matching the target activation are identified (e.g. those that 

give maximal predicted activation in the fusiform face area). Third, fine tuning of the noise 
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vectors for each of the 10 synthetic images via gradient descent is performed; gradients flow 

from the encoding model’s predicted response back to the synthetic image and to the noise 

vector that initializes the conditional GAN.
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Fig. 2. 
The Deepnet-fwRF encoding model accurately predicts brain response to visual stimuli. A 
Accuracy and noise ceiling calculation. For comparison, we selected those images in the 

held-out shared image set that were viewed twice by each subject to quantify the reliability 

of repeated measurements as a noise ceiling for our model predictions. The noise ceiling 

thus was calculated as the Pearson correlation between the two fMRI measurements, while 

the prediction accuracy was calculated as the Pearson correlation between the predicted 

activation and the concatenated fMRI measurements. Note the measured responses are 

different for the two repeats of the same image, but the predictions are the same. B, C, 
D, E and F Distribution of the individuals’ prediction accuracies and noise ceilings for 

faces, body, place, word and early visual ROIs, respectively. Each point in the violin plot 

represents an individual; accuracy and noise ceiling of the same subject are connected by 

dashed line. Face ROIs: OFA - occipital face area; FFA - fusiform face area; mTLfaces - 

medial temporal lobe face area; aTLfaces - anterior temporal lobe face area. Body ROIs: 

EBA - extrastriate body area; FBA - fusiform body area; mTLbodies - medial temporal lobe 

body area. Place ROIs: OPA - occipital place area; PPA - parahippocampal place area; RSC 
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- retrosplenial cortex. Word ROIs: OWFA - occipital word form area; VWFA - visual word 

form area; mfswords - mid-fusiform sulcus word area; mTLwords - medial temporal lobe 

word area. Early visual ROIs: v - ventral; d - dorsal.
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Fig. 3. 
The Deepnet-fwRF encoding model can smooth noise present in fMRI-based individual 

image response maps. A An example illustrating the relationship between predicted/

measured activation for single images and, averaged predicted activation within non-

overlapping windows of size 20, averaged measured activation within non-overlapping 

windows of size 20, with the rank of the images ordered by predicted activation. Smoothed 

accuracy is calculated by first ranking order the held-out images by their predicted 

activation, and then applying non-overlapping windows and correlating the averaged 

predicted activations within that window with the averaged measured activations within 

those windows. B, C, D, E and F The smoothed accuracy increases as the window size 

increases for face, body, place, word and early visual ROIs respectively. The “smoothed 

accuracy” all show the trend of approximating 1 when increasing the window size.

Gu et al. Page 25

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Synthetic images generated to maximize predicted activation in five example visual regions 

in different individuals. In each panel, the top row contains the 10 natural images that had 

highest measured fMRI responses for that region, the second row contains the 10 natural 

images that had the highest encoding model predictions for that region, and the third row 

contains the 10 optimized synthetic images from NeuroGen for that region. Five example 

regions are shown, i.e. FFA1 (face), EBA (body), mfs-words (word), PPA (place) and V1v 

(early visual), each for a different individual that had median encoding model accuracy. The 

top encoding model images and NeuroGen images appear more consistent in their reflection 

of expected features/content compared to the top natural images with highest observed 

activation (e.g. fMRI top images include a giraffe for FFA1, a zebra for EBA and many lack 

text in the mfs-words area). The corresponding wordcloud plots show the image labels. A 
Subject 3’s FFA1 region. B Subject 7’s EBA region. C Subject 4’s PPA region. D Subject 

8’s mfs-words region. E Subject 6’s V1v region.

Gu et al. Page 26

Neuroimage. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Individual-specific and region-specific differences in face region responses are reflected 

in and amplified by the NeuroGen framework. A, B and C Sets of images that had the 

highest activation in FFA1 (fusiform face area 1) for all individuals, one per row, derived 

from three different sources. A Natural images that have the highest observed activation 

measured directly via fMRI. B Natural images that have the highest predicted activations 

from the encoding model. C Synthetic images that were created using NeuroGen. D The 

x-axis displays the dog vs. person preference from the observed fMRI data, quantified by 

the t-statistic of observed fMRI activations from all natural dog images compared to the 

observed activations from all natural people images. The quantities were calculated for each 

of the five face areas in each of the eight individuals. The y-axes represent the dog vs person 

preference present in the top 10 synthetic images, calculated by taking the difference in 

the count of dog images minus the count of person images, divided by the total count of 

dog and person images. Values close to −1 indicate strong person preference and values 

close to 1 indicate strong dog preference. Points outside the grey area have t-statistics that 

are significant after FDR correction. A significant correlation exists between the observed 
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dog-person preference from the entire fMRI dataset and the dog-person preference in the top 

10 synthetic images from NeuroGen (Spearman r = 0.6681, p = 1.157e − 5).
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Fig. 6. 
Face area preferences in semantic image content are reflected in the wordclouds illustrating 

image content for the top 10 natural and synthetic images. Each row represents the 

source of the top 10 images: natural images that have the highest observed activation 

measured directly via fMRI, natural images that have the highest predicted activations 

from the encoding model, and synthetic images that were created using NeuroGen. Each 

column represents one of the five face regions. The presence of the “dog” label (as well 

as, unsurprisingly, “person” label) can be appreciated most prominently in NeuroGen’s 

synthetic images.
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Fig. 7. 
Individual-specific and region-specific differences in word area responses are reflected in 

and amplified by only 10 images from the NeuroGen framework. Sets of images that had 

the highest activation in A OWFA (occipital word form area), B ventral word form area 1 

(VWFA1) and C mfs-words, for all eight individuals (one per row). D The x-axis displays 

the activation contrast for six categories of natural images (human, dog, bird, other animal, 

food and clock) from the observed fMRI data, quantified by the t-statistic of observed 

fMRI activations from natural images of the category in question compared to the observed 

activations from all other natural images (not containing that item). The y-axis represents 

the proportion of top 10 synthetic images that contain that item. Points outside the grey 

area have t-statistics that are significant after FDR correction. A significant correlation 

exists between the observed image category contrasts from the entire fMRI dataset and 

the proportions of that image category in the top 10 synthetic images from NeuroGen 

(Spearman rank r = 0.557, p = 2e − 15).
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Fig. 8. 
Multiple-region optimization creates synthetic images with generally more extreme 

predicted activation when compared to natural images. Scatter plots show the predicted 

response from top 10 natural and synthetic images that either jointly maximize the 

sum of the two regions (+ROI1+ROI2) or jointly maximize one and minimize the other 

(+ROI1−ROI2) and (−ROI1+ROI2), for the following region-pairs A FFA1 and V1v, B PPA 

and V1v and C FFA1 and PPA. D shows all sets of three-region optimization combinations 

for FFA1, PPA and V1v together. Typical synthetic image examples are shown for each 

dual and triple optimization; the optimization specifics are listed below each synthetic image 

(green = that region’s minimization, red = that region’s maximization).
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